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Abstract 

Background  A Generalized Linear Mixed Model (GLMM) is recommended to meta-analyze diagnostic test accuracy 
studies (DTAs) based on aggregate or individual participant data. Since a GLMM does not have a closed-form likeli-
hood function or parameter solutions, computational methods are conventionally used to approximate the likeli-
hoods and obtain parameter estimates. The most commonly used computational methods are the Iteratively 
Reweighted Least Squares (IRLS), the Laplace approximation (LA), and the Adaptive Gauss-Hermite quadrature 
(AGHQ). Despite being widely used, it has not been clear how these computational methods compare and perform 
in the context of an aggregate data meta-analysis (ADMA) of DTAs.

Methods  We compared and evaluated the performance of three commonly used computational methods for GLMM 
- the IRLS, the LA, and the AGHQ, via a comprehensive simulation study and real-life data examples, in the context 
of an ADMA of DTAs. By varying several parameters in our simulations, we assessed the performance of the three 
methods in terms of bias, root mean squared error, confidence interval (CI) width, coverage of the 95% CI, conver-
gence rate, and computational speed.

Results  For most of the scenarios, especially when the meta-analytic data were not sparse (i.e., there were no or neg-
ligible studies with perfect diagnosis), the three computational methods were comparable for the estimation 
of sensitivity and specificity. However, the LA had the largest bias and root mean squared error for pooled sensitiv-
ity and specificity when the meta-analytic data were sparse. Moreover, the AGHQ took a longer computational time 
to converge relative to the other two methods, although it had the best convergence rate.

Conclusions  We recommend practitioners and researchers carefully choose an appropriate computational algorithm 
when fitting a GLMM to an ADMA of DTAs. We do not recommend the LA for sparse meta-analytic data sets. However, 
either the AGHQ or the IRLS can be used regardless of the characteristics of the meta-analytic data.

Keywords  Meta-analysis, Diagnostic test accuracy, Generalized linear mixed models, Computational methods, 
Adaptive Gauss-Hermite, Laplace approximation, IRLS

Background
Meta-analysis is a statistical technique used in research 
to combine and analyze the results of multiple independ-
ent studies on a particular topic or research question [1]. 
A meta-analysis of diagnostic test accuracy (DTA) is a 
specific type of meta-analysis that focuses on combining 
and analyzing data from multiple studies assessing the 
performance of diagnostic tests, allowing for synthesizing 
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diagnostic test characteristics, such as sensitivity (Se) and 
specificity (Sp) across multiple independent studies [2, 
3]. In an aggregate data meta-analysis (ADMA) of DTAs, 
one gathers information on the true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) 
results for a specific diagnostic test across various stud-
ies. From these data, the study-specific observed Se, Sp, 
and other relevant measures of diagnostic accuracy can 
be calculated. By pooling the results from multiple stud-
ies, researchers aim to derive summary estimates of these 
test characteristics, while considering the variability and 
potential biases present in the individual studies.

Researchers and practitioners usually use generalized 
linear mixed models (GLMM) such as the bivariate ran-
dom-effects model of Chu and Cole [4] to meta-analyze 
DTA data and obtain the maximum likelihood estimates 
(MLEs) of the model parameters. However, unlike the lin-
ear mixed model version of Reitsma et al. (2005) [5], since 
Chu and Cole’s GLMM does not have a closed-form solu-
tion for the log-likelihood due to the complex random 
effects variance components, one needs to use numerical 
methods to approximate the log-likelihood function and 
obtain MLEs of the model parameters. Commonly used 
computational methods in the context of an ADMA of 
DTAs include the Adaptive Gaussian Hermite quadrature 
(AGHQ) [6], the Laplace approximation (LA) [6], and the 
iteratively re-weighted least squares (IRLS) [7, 8].

There have been some attempts at comparing and eval-
uating some of these numerical methods in different con-
texts. Ju et  al. (2020) [9] compared the AGHQ, LA and 
the penalized quasi-likelihood (PQL) for meta-analyzing 
sparse binary data, and found that the AGHQ and PQL 
did not show improved performance compared to the 
LA. However, Ju et al. did not take the IRLS into account, 
and compared the numerical methods only in terms of 
the pooled odds ratio but not concerning the between-
study variance and covariance. Additionally, their study 
was focused on a meta-analysis of sparse binary interven-
tion studies outcomes, not on DTA data. Thomas, Platt & 
Benedetti [10] studied the performances of the PQL and 
AGHQ algorithm for meta-analysis of binary outcomes 
in the context of an individual participant data meta-
analysis (IPDMA) of intervention studies. They found 
that there were no appreciable differences between the 
two computational methods. However, Thomas et al. did 
not consider the LA and meta-analysis of DTAs.

However, to the best of our knowledge, there was 
no evidence in the literature that describes the perfor-
mance of these widely used computational algorithms 
for GLMM in the context of either IPDMA or ADMA of 
DTAs, partly because DTA meta-analysis is a relatively 
newer area of research compared to the widely studied 
meta-analysis of intervention studies. Additionally, since 

diagnosis precedes intervention, it is crucial to establish 
the accuracy of diagnostic tests using sound statisti-
cal methods or algorithms to minimize misdiagnosis of 
patients due to flawed evidence. Moreover, since meta-
analytic methods for intervention or treatment studies 
cannot be used to meta-analyze DTA data because of dif-
ferences in data characteristics and model assumptions 
[11], establishing evidence on the performance of com-
putational methods for ADMA of DTA studies is needed. 
Therefore, this paper aims to fill this important research 
gap by comparing and evaluating the AGHQ, IRLS, and 
LA performances for GLMM to meta-analyze DTAs 
using aggregate data. We will compare the numerical 
methods using an extensive simulation study in terms of 
absolute bias, root mean squared error (RMSE), coverage 
probability, 95% confidence interval (CI) width, conver-
gence rate, and computational speed. We will also illus-
trate the methods using real-life meta-analytic data.

The rest of this article is organized as follows. Motivat-
ing examples section presents motivating examples using 
two real-life data, Methods section introduces the statisti-
cal methods, including the GLMM model, the numerical 
algorithms and a simulation study. In Simulation study 
results  section, we discuss our simulation study results, 
and in Illustrative examples section, we illustrate the com-
putational methods using the motivating examples data. 
We conclude the manuscript with a discussion and con-
cluding remarks in Discussion and Conclusions sections.

Motivating examples
This Section describes two real-life data sets (see 
Appendix Tables A1 and A2) to motivate the statistical 
methods we present in Methods section.

First, consider an article by Vonasek et  al. (2021) 
[12], which studied the accuracy of screening tests 
(e.g., visually identifying early signs and symptoms) 
for active pulmonary tuberculosis in children. Figure  1 
depicts the forest plots of the sensitivity and specificity 
measurements.

The meta-analysis of Vonasek et  al. [12] included 
19 studies with no indication of sparsity in either Se or 
Sp; that is, none of the included primary studies had 
observed Se or Sp close to 0 or 1. The average number 
of diseased ( n1 ) and non-diseased ( n2 ) participants were 
about 99 and 11,058, respectively, where the average n2 
was affected by four potentially outlier studies whose 
respective number of non-diseased participants were 
1,903 [13], 1,903 [13], 1,336  [14], and 200,580 [15]. In 
Illustrative examples  section, we will demonstrate how 
the three computational algorithms deal with the data 
since the existence of such outlying studies may poten-
tially distort the meta-analysis results.
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In the second example, we present the study by Jullien 
et  al. (2020) that studied the diagnosing characteristics of 
“Rapid diagnostic tests for plague” [16]. As can be seen from 
the forest plots presented in Fig. 2, this meta-analysis con-
tained only nine studies and the average number of diseased 
and non-diseased participants were 188 and 223, respec-
tively, with no indication of potentially outlying studies.

However, the second meta-analysis had some sparse 
data, particularly in the diseased group. There were 4/9 
(44%) primary studies with 100% sensitivity (i.e., with 
FN = 0 ). Thus, we will revisit this data set in Illustrative 
examples section to examine how the numerical methods 
perform in the context of sparse DTAs.

Methods
In this Section, we describe the commonly used conven-
tional meta-analytic model for ADMA of DTAs, the three 
computational methods used to estimate the parameters 
of this model and methods for our simulation study.

The standard model
The bivariate binomial-normal (BBN) model is a bivariate 
random-effects model first developed by Chu and Cole 
[4]. The BBN model assumes the binomial distribution 
for modelling the within-study variability and the bivari-
ate normal distribution for modelling the between-study 
variability in Se and Sp across studies. The BBN is gener-
ally accepted as the preferred model for ADMA of DTAs 
because it models the within-study variability using the 
exact Binomial distribution, instead of approximating 
it with the normal distribution, and it does not require 
an ad hoc continuity correction when any of the four 
cell frequencies in a DTA contain zero counts. If we let 
yi = [logit(Sei), logit(Spi)]

′ denote the study-specific 
logit-transformed sensitivity and specificity vector, bi the 
study-specific random-effects, µ the pooled sensitivity 
and specificity vector, and � the between-study heteroge-
neity parameter, the marginal likelihood function of the 
BBN model can be given as in equation 1. However, since 

Fig. 1  Forest plots of sensitivity (left) and specificity (right) of the meta-analysis from Vonasek et al. (2021) [12]. The a and b in Schwoebel 2020 
denote the two distinct screening tests, “One or more of cough, fever, or poor weight gain in tuberculosis contacts” and “One or more of cough, 
fever, or decreased playfulness in children aged under five years, inpatient or outpatient,” respectively, utilized in the study

Fig. 2  Forest plots of sensitivity (left) and specificity (right) of the meta-analysis from Jullien et al. (2020) [16]
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this likelihood does not have closed-form expression 
because the integral cannot be evaluated analytically in a 
closed-form [4], one needs to use numerical approxima-
tion methods to estimate the likelihood.

where i = 1, ..., k denotes the i-th study in the 
meta-analysis.

The AGHQ [6] is a numerical method used to approxi-
mate log-likelihoods by numerical integration to obtain 
the MLEs of model parameters. Although estimation 
becomes more precise as the number of quadrature 
points increases, it often gives rise to computational dif-
ficulties for high-dimension random effects and con-
vergence problems where variances are close to zero or 
cluster sizes are small [6]. Most of the time, the AGHQ 
[6] is the default estimation method and is regarded as 
the most accurate. Nonetheless, the LA [6] which is the 
Gauss-Hermite quadrature of order one [17] and the 
IRLS [7, 8] that aims to find the solution to a weighted 
least squares iteratively, can also be used to find MLEs 
and usually have lower computational difficulties and 
faster computational speed.

Simulation study design
Data simulation
To compare the three computational methods for each 
combination of model parameter settings, we simulated 
data based on each simulation scenario and fitted the 
BBN model using the AGHQ, LA, and IRLS algorithms. 
To inform our simulations, we scraped the Cochrane 
Database of Systematic Reviews and selected 64 reviews 
containing meta-analyses data. Unwrapping these 
reviews and performing data cleaning gave us access to 
393 meta-analyses covering a wide range of medical diag-
nosis tests. We fitted the BBN model to each of the 393 
meta-analyses to obtain the empirical distribution of the 
model parameters. Based on these results, we defined 
our true parameter settings as shown in Table 1. Follow-
ing Ju et al. (2020) [9] and Jackson et al. (2018) [18], we 
introduced sparsity into the meta-analysis by considering 
large values of (Se, Sp).

Accordingly, we considered a total of 34 × 4 = 324 
total scenarios in our simulation study. For each 

TPi|b1i ∼ Binomial(n1i, Sei); y1i = µ1 + b1i;

TNi|b2i ∼ Binomial(n2i, Spi); y2i = µ2 + b2i;

bi ∼ N2(0,�);

(1)L(µ,�|y) =
R2

k

i=1

fyi|bi(yi|bi,µ)fbi(bi|�i)dbi, parameter combination, we conducted our simula-
tion study by (1) simulating 1000 DTA data based on 
normal random effects following the steps described 
by Negeri and Beyene [19], (2) fitting the BBN model 
to each simulated data using the three computational 
methods, and (3) comparing the estimated results by 
each numerical method with the true values in terms 
of absolute bias, RMSE, CI width, coverage probability, 
convergence rate, and computing time.

We used the R statistical language [20] version 4.2.2 
and RStudio [21] version 2023.09.0+463 for all data 
analyses. We utilized the glmer() function from the 
lme4 R package [22] to apply the IRLS and LA by set-
ting nAGQ to 0 and 1, respectively. We fitted the BBN 
model with the AGHQ algorithm using the mixed_
model() function from the GLMMadaptive R package 
[23] by setting the number of quadrature points used in 
the approximation (nAGQ) to 5.

Performance evaluation criteria
In our simulation study, we defined the convergence 
rate of the BBN model as the number of converged 
fits over the total number of fits in an iteration. We 
counted fits with non-positive semi-definite covari-
ance matrices and fits that did not meet optimal-
ity conditions as non-converging. While assessing 
the convergence rate, we found that the “converged” 
message provided in the model summary from the 
glmer() function is sometimes non-trustable. For 
example, we saw a warning message such as “bound-
ary (singular) fit: see help(’isSingular’)” when fitting 
the BBN model, which indicates a fit that did not con-
verge, but the “converged” option wrongly provided 
convergence. Thus, we treated those singular fits as 
non-convergence to calculate the convergence rate. 
We measured the computing speed for each numerical 
method using R’s built-in function system.time(). 
The remaining metrics, such as the absolute bias, 
RMSE, coverage probability, and CI width were cal-
culated following Burton et al. (2006) [24] and Morris 
et al. (2019) [25].

Table 1  True parameter settings for the simulation study

Parameter Setting 1 Setting 2 Setting 3 Setting 4

(Se, Sp) (0.7, 0.8) (0.8, 0.9) (0.95, 0.99)

(σ 2
1 , σ

2
2 ) (0.90, 0.55) (1.51, 1.0) (1.59, 1.83)

σ12 -0.03 -0.34 -0.70

(n1, n2) (50,100) (100,200) (200,300)

k 5 15 25 50
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Simulation study results
In this Section, we use the different metrics described in 
Methods section to evaluate the performance of the three 
computational methods and summarize our simulation 
study findings by metrics. Note that the solid line is IRLS, 
the dashed line is LA, the dotted line is AGHQ, and that 
the lines might overlap for some scenarios when there is 
no difference in results between the three computational 
methods.

Absolute bias
Figure  3 depicts the bias of the three computational 
methods for sensitivity and specificity. We found that 
when the true Se and Sp were far from perfect, there 
was barely any difference among these three numerical 
methods as the three lines overlap for the first two col-
umns. However, for all variance-covariance settings, the 
LA had the largest absolute bias compared to the AGHQ 
and the IRLS (Fig. 3, third pane). Moreover, when data is 
sparse (i.e. large Se and Sp closer to 100%), the IRLS and 

AGHQ were comparable, although IRLS had a slightly 
larger absolute bias. We observed consistent results for 
the other scenarios considered in our simulations (see the 
Appendix figures).

Similarly, the three computational methods had com-
parable performance when it comes to the bias of the 
between-study variances σ 2

1  and σ 2
2  for relatively small 

Se and Sp (Fig.  4, first two panes). However, for sparse 
DTA data (large Se and Sp), the LA still had the largest 
absolute bias, and the AGHQ had the smallest bias for 
between-study variances. Similar results were found for 
the other scenarios examined in our simulations (see the 
Appendix figures).

Root mean squared error (RMSE)
Concerning RMSE (Fig.  5), we observed a similar trend 
to bias. That is, the three numerical methods were com-
parable when the DTA data was not sparse, but the LA 
yielded larger RMSE for all (Se, Sp) pairs. Furthermore, 

Fig. 3  Bias for sensitivity (Se) and specificity (Sp) based on the IRLS (solid line), Laplace approximation (dashed line) and Gauss-Hermite quadrature 
(dotted line) when σ 2

1 = 1.59 , σ 2
2 = 1.83 , σ12 = −0.34 , n1 = 300 , and n2 = 500
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the IRLS and the AGHQ were comparable, although the 
AGHQ had a slightly larger RMSE. Consistent results 
were observed for the other scenarios considered in our 
simulations (see the Appendix figures).

Confidence interval (CI) width and coverage
For CI width (Fig. 6), the three numerical methods gave 
almost the same results when the true Se and Sp were 
small. However, there were marginal differences among 
the computational methods when DTA was sparse, as the 
IRLS had the smallest CI width for specificity and the LA 
yielded the smallest CI width for sensitivity. Moreover, as 
Se or Sp increased, the width of the CI decreased.

Figure  7 presents the coverage probabilities of the 
three computational methods. Similar to the other met-
rics, the AGHQ, LA, and IRLS had comparable cover-
age probability when data were not sparse (i.e., small 
Se and Sp). However, the LA had the smallest coverage 
probability for sparse DTA data compared to the other 
two methods, and the AGHQ had a slightly larger cov-
erage than the IRLS. Moreover, as the number of studies 

in a meta-analysis increased, the coverage probability of 
the methods decreased. We found similar results for the 
other simulation scenarios considered in our simulations 
(see the Appendix figures).

Convergence rate and computing time
Table 2 depicts the average convergence rate, average com-
puting time, and the interquartile range (IQR) for com-
puting time across all simulation scenarios for the three 
computational methods. Accordingly, on average, the 
AGHQ had the highest convergence rate but the longest 
computing time compared to the two methods. We also 
observed that longer computing times were associated 
with higher convergence rates. Moreover, the AGHQ also 
had the largest IQR of the three numerical methods.

Illustrative examples
This Section summarizes the results of fitting the BBN 
model to the two motivating examples presented in 
Motivating examples  section using the three computa-
tional algorithms.

Fig. 4  Bias for between-study variances based on the IRLS (solid line), Laplace approximation (dashed line) and Gauss-Hermite quadrature (dotted 
line) when σ 2

1 = 1.59 , σ 2
2 = 1.83 , σ12 = −0.34 , n1 = 300 , and n2 = 500
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Fig. 5  RMSE for sensitivity (Se) and specificity (Sp) based on the IRLS (solid line), Laplace approximation (dashed line) and Gauss-Hermite 
quadrature (dotted line) when σ 2

1 = 1.59 , σ 2
2 = 1.83 , σ12 = −0.34 , n1 = 300 , and n2 = 500

Table 3 summarizes the results of applying the numeri-
cal algorithms to the Vonasek et al. (2021) [12] data. All 
three numerical algorithms converged to the MLEs. The 
AGHQ estimated both the pooled Se and pooled Sp very 
differently than the other two methods. The LA and IRLS 
approaches resulted in similar pooled Se and pooled Sp 
estimates, with their pooled Sp closer to the observed 
specificities of the outlying studies identified in Motivat-
ing examples section than the non-outlying studies, indi-
cating that the LA and IRLS estimates may be influenced 
by outlying studies [2, 3]. These results suggest that the 
AGHQ yielded estimates that were less affected by the 
outlying studies in specificity. However, all three methods 
yielded comparable between-study variance-covariance 
estimates.

We present the results of fitting the BBN model to 
the meta-analysis of Jullien et al. (2020) [16] in Table 4. 
The AGHQ algorithm failed to converge with its Hes-
sian matrix being non-positive-definite. Despite that, all 
three methods produced comparable pooled Se and Sp 
estimates, σ12 and σ 2

2  . However, the LA produced a very 

large between-study variance of logit-transformed sen-
sitivity (σ 2

1 ) , which could be attributed to the apparent 
data sparsity among the diseased participants, consistent 
with our simulation study results.

Discussion
In this study, we compared three commonly used com-
putational algorithms, the AGHQ, the LA, and the IRLS, 
that numerically approximate the log-likelihood function 
of a bivariate GLMM for ADMA of DTAs. To determine 
which method is more appropriate in practice, we com-
pared the performance of these methods using extensive 
simulation studies and real-life data sets. Our simula-
tion settings were informed after analyzing 393 real-life 
meta-analyses from the Cochrane Database of Systematic 
Reviews.

In almost all of our simulation scenarios, we observed 
no obvious difference among the three numerical meth-
ods when Se and Sp were relatively small and not close 
to 100%. However, when the DTA data were sparse or 
equivalently when Se and Sp were both large and close 
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to 100%, there were appreciable differences among these 
three computational algorithms. The LA usually had the 
largest absolute bias and RMSE but the smallest cover-
age probability for Se and Sp compared to the IRLS and 
the AGHQ. The IRLS and AGHQ were comparable, but 
IRLS had the smallest convergence rate. Though the 
AGHQ had the largest convergence rate among the three 
algorithms, it had the longest computing time.

Unlike the results reported by Ju et  al. (2020) [9] for 
meta-analysis of rare intervention studies, we found 
appreciable differences in bias and RMSE of the LA and 
the AGHQ for sparse data, albeit in the context of ADMA 
of DTAs. However, we were not able to make similar com-
parisons in terms of the between-study variances since 
it wasn’t reported in their study. Similarly, a comparison 
was impossible between our findings and those of Thomas 
et al. (2017) [10] since the latter study evaluated only the 
AGHQ, not the LA and IRLS algorithms.

Our real-life data analyses also revealed consist-
ent results with our simulation studies. The AGHQ 
produced robust pooled Se and Sp estimates when 

applied to DTA data with a few outlying studies. The 
LA yielded the largest between-study variance esti-
mates when a GLMM was fitted to sparse DTA data. 
Although the PQL approach has been discouraged by 
other researchers in the context of intervention stud-
ies meta-analysis with binary outcomes [9] and is not 
commonly used in the context of meta-analysis of DTA 
studies, following a Reviewer’s suggestion, we applied 
it to our motivating examples data sets (see Appendix 
Table C3) and observed inferior results consistent with 
that of Ju et  al. [9]. Thus, we opted not to investigate 
its performance in our simulation study. Moreover, it 
was not unexpected to find the LA and IRLS algorithms 
affected by outliers since they utilize methods known 
to be prone to unusual observations – the normal dis-
tribution and least squares, respectively. Whereas the 
LA works by approximating the integrand of the like-
lihood with the normal distribution, for example, the 
IRLS iteratively solves a system of score equations via 
weighted least squares. The AGHQ approximates the 
entire likelihood or integral via a numerical approach 

Fig. 6  CI width for sensitivity (Se) and specificity (Sp) based on the IRLS (solid line), Laplace approximation (dashed line) and Gauss-Hermite 
quadrature (dotted line) when σ 2

1 = 1.59 , σ 2
2 = 1.83 , σ12 = −0.34 , n1 = 300 , and n2 = 500
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known as quadrature method, making it the least sensi-
tive approach to outliers.

The strengths of our manuscript include being the first 
study to report on the evaluation and comparison of com-
monly used computational methods for ADMA of DTAs 

and considering several real-life scenarios by informing 
our simulation study with 393 meta-analysis results from 
the Cochrane Database of Systematic Reviews. Thus, 
our study has contributed to the literature by filling an 
existing gap in the body of knowledge and by produc-
ing results applicable to practical real-world situations. 
Although we considered only the frequently used numeri-
cal methods in ADMA of DTAs, not including more than 
three such computational algorithms can be considered a 
limitation of our study, which can be pursued in a future 
study. For example, it is worth evaluating and validating 
the performance of these numerical methods in compari-
son with the Newton-Raphson-based algorithms [26], the 

Fig. 7  Coverage for sensitivity (Se) and specificity (Sp) based on the IRLS (solid line), Laplace approximation (dashed line) and Gauss-Hermite 
quadrature (dotted line) when σ 2

1 = 1.59 , σ 2
2 = 1.83 , σ12 = −0.34 , n1 = 300 , and n2 = 500

Table 2  Average convergence rate, average computing time, 
and IQR computing time by computational method

Performance Metric IRLS LA AGHQ

Convergence Rate 69.75% 73.33% 98.14%

Average Computing Time (seconds) 0.0782 0.1670 0.4860

IQR Computing Time (seconds) 0.0012 0.0130 0.3900

Table 3  Application of the three computational methods to the Vonasek et al. (2021) [12] meta-analysis

Method Se (95% CI) Sp (95% CI) σ 2
1

σ 12 σ 2
2

Conv

AGHQ 0.3880 (0.0729, 0.8364) 0.8996 (0.1357, 0.9980) 1.1350 -0.6005 1.2299 Yes

LA 0.5135 (0.3668, 0.6579) 0.7551 (0.6446, 0.8398) 1.1310 -0.5949 1.2075 Yes

IRLS 0.5119 (0.3668, 0.6550) 0.7540 (0.6433, 0.8390) 1.1301 -0.5952 1.2074 Yes
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many procedures implemented in the metadta Stata tool 
[27], or in the context of IPDMA of DTA studies with or 
without multiple cut-offs [28]. Moreover, the LA and IRLS 
algorithms appeared to be impacted by outlying studies 
when applied to a real-life meta-analysis. Thus, it is worth 
a future study investigating this issue further via a simu-
lation study to see if this property of the two algorithms 
repeats for different data settings.

Conclusions
In summary, the IRLS, AGHQ, and the LA had simi-
lar performances for non-sparse data, but the LA per-
formed worse for sparse DTA data sets. Whereas the 
AGHQ had the best convergence rate but the longest 
computing time, the IRLS had the shortest comput-
ing time but the worst convergence rate. Therefore, we 
suggest practitioners and researchers use any of the 
three computational methods for conducting ADMA 
of DTAs without sparse data. However, the LA should 
be avoided and either the IRLS or the AGHQ should be 
used when sparsity is a concern.
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