# Table 2 The inconsistency in the illustrative examples

a) b) c) d) e)
Q df p Q df p Q df p Q df p Q df p
Q inc 9.17 3 0.027 7.50 3 0.058 11.67 3 0.009 4.17 1 0.041 16.67 10 0.082
$Q ( 1 : 2 ) inc$ 0.00 2 1 6.82 2 0.033 6.82 2 0.033 0.00 0 1 0.00 9 1
$Q ( 1 : 3 ) inc$ 5.36 2 0.069 5.36 2 0.069 0.00 2 1     15.62 9 0.075
$Q ( 1 : 4 ) inc$              15.62 9 0.075
$Q ( 1 : 5 ) inc$              15.62 9 0.075
$Q ( 1 : 6 ) inc$ 8.33 2 0.016 0.00 2 1 8.33 2 0.016 0.00 0 1 15.62 9 0.075
$Q ( 2 : 3 ) inc$ 0.00 2 1 6.82 2 0.033 6.82 2 0.033 0.00 0 1 15.62 9 0.075
$Q ( 2 : 4 ) inc$              15.62 9 0.075
$Q ( 2 : 5 ) inc$              15.62 9 0.075
$Q ( 2 : 6 ) inc$              15.62 9 0.075
$Q ( 3 : 4 ) inc$ 8.33 2 0.016 0.00 2 1 8.33 2 0.016 0.00 0 1 16.67 9 0.054
$Q ( 3 : 5 ) inc$              16.67 9 0.054
$Q ( 3 : 6 ) inc$              16.67 9 0.054
$Q ( 4 : 5 ) inc$ 9.09 2 0.011 6.82 2 0.033 11.36 2 0.003 0.00 0 1 16.67 9 0.054
$Q ( 4 : 6 ) inc$ 8.93 2 0.012 5.36 2 0.069 10.71 2 0.005     16.67 9 0.054
$Q ( 5 : 6 ) inc$ 9.09 2 0.011 6.82 2 0.033 11.36 2 0.003 0.00 0 1 16.67 9 0.054
1. The Q statistic for inconsistency as well the Q statistic after detaching the effect of design d are given for each of the scenarios a) to e) in Figure 3. In addition, the degrees of freedom (df) of the corresponding chi-squared distribution and the p value (p) are shown.