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Abstract

commonly used regression models.

Background: Many previous studies estimating the relationship between body mass index (BMI) and mortality
impose assumptions regarding the functional form for BMI and result in conflicting findings. This study investigated
a flexible data driven modelling approach to determine the nonlinear and asymmetric functional form for BMI
used to examine the relationship between mortality and obesity. This approach was then compared against other

Methods: This study used data from the National Health Interview Survey, between 1997 and 2000. Respondents
were linked to the National Death Index with mortality follow-up through 2005. We estimated 5-year all-cause
mortality for adults over age 18 using the logistic regression model adjusting for BMI, age and smoking status. All
analyses were stratified by sex. The multivariable fractional polynomials (MFP) procedure was employed to
determine the best fitting functional form for BMI and evaluated against the model that includes linear and
quadratic terms for BMI and the model that groups BMI into standard weight status categories using a deviance
difference test. Estimated BMI-mortality curves across models were then compared graphically.

Results: The best fitting adjustment model contained the powers -1 and -2 for BMI. The relationship between 5-
year mortality and BMI when estimated using the MFP approach exhibited a J-shaped pattern for women and a U-
shaped pattern for men. A deviance difference test showed a statistically significant improvement in model fit
compared to other BMI functions. We found important differences between the MFP model and other commonly
used models with regard to the shape and nadir of the BMI-mortality curve and mortality estimates.

Conclusions: The MFP approach provides a robust alternative to categorization or conventional linear-quadratic
models for BMI, which limit the number of curve shapes. The approach is potentially useful in estimating the
relationship between the full spectrum of BMI values and other health outcomes, or costs.

Background

Obesity and its impact on health and the healthcare sys-
tem is one of the most important public health issues
Western society faces. Many studies have measured the
detrimental effect of obesity on life expectancy by esti-
mating the relationship between mortality and body mass
index (BMI) [weight (kg)/height* (m?*)]. However, the evi-
dence is mixed as to the exact relationship. While some
studies have concluded no relation [1], an inverse relation
[2] or a direct relation [3], the majority of studies have
identified a U-shaped relation [4-10] or a J-shaped
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relation [11-15]. One reason for these differences is the
wide array of datasets used in the analyses. However, the
results in these studies are also sensitive to assumptions
regarding the estimation sample and functional form for
BMIL

The vast majority of studies have employed a non-para-
metric approach, by treating BMI as a categorical vari-
able. The mortality risk of individuals in different BMI
groups is computed relative to a reference BMI category.
World Health Organization (WHO) BMI classifications
[16] are typically used. For example, numerous studies
have computed the excess mortality due to being over-
weight (BMI = 25-30) and obese (BMI > 30) [17-22].
Categorizing continuous variables has been a popular
approach, particularly because of a priori knowledge that
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the relationship between the two measures is nonlinear.
However, Royston, et al. (2006) [23] pointed out a num-
ber of disadvantages with this approach. The most signif-
icant drawback is the loss of information and power
through what is equivalent to rounding. For example,
studies of excess mortality using WHO BMI classification
implicitly assume all individuals that are in the normal
category (BMI = 18.5-25) exhibit the same mortality risk.
However, the normal category is heterogenous and
includes individuals who are healthy and those who are
chronically ill. Categorization is particularly problematic
if groups are large. In addition, the number of cutoff
points and where to place cutoff points is arbitrary.
Finally, results are not necessarily robust across the
choice of reference category.

A number of studies have used other approaches that
maintain BMI as a continuous variable. Estimation of
the BMI-mortality curve using a continuous measure is
problematic because the relationship is nonlinear and
the distribution of BMI is right skewed. Schauer et al.
(2010) [24] included linear and squared terms to
account for nonlinearities, but truncated their sample to
respondents with a BMI of 25 or greater to address the
skewness in BMI. Durazo et al. (1998) [6] transformed
BMI into a normally distributed variable using Tukey’s
“ladder of powers” method. Gronniger et al. (2006) [25]
treated BMI non-parametrically without categorization.

The purpose of this study was to investigate a flexible
approach to modelling the nonlinear and asymmetric rela-
tionship between adult mortality and obesity measured
using BMI. We implemented the multivariable fractional
polynomials (MFP) method [26,27] and maintained BMI
as a continuous variable. Instead of imposing a specific
functional form, the MFP method allows the data to deter-
mine the best fitting functional form for BMI and other
adjustment variables. We hypothesized that this method
would provide the ability to capture the relationship
between mortality and BMI in a compact, parsimonious
model. The MFP performance and results were then com-
pared against other commonly used regression models
that estimate the BMI-mortality relationship.

Methods

The data used in this study were from the NHIS, publicly
available through the Centers for Disease Control and
Prevention (CDC). The NHIS is a nationally representa-
tive cross-sectional household survey covering the non-
institutionalized civilian population in the United States
(U.S.) and is conducted annually [28]. Households and
non-institutional sample units with special living arrange-
ments (e.g. dormitories, boarding houses) were randomly
sampled. For each unit sampled, a randomly selected
adult and child (if present) were used to collect core
health information. Beginning in 1997, individuals aged
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65 and above who were black, Hispanic or Asian were
oversampled. We combined data from 1997 through
2000. Our sample was linked to the National Death
Index (NDI) with mortality follow-up through December
31, 2005 ensuring all respondents were tracked for at
least five years after completing the NHIS. Self-reported
weight and height measurements without shoes were
used to construct BMI. Smoking history was a dichoto-
mous variable indicating whether an individual has ever
smoked. Individuals below the age of 18 and under 18.5
BMI were excluded from our analysis. We also excluded
4,599 respondents who have missing BMI measurements
or have a BMI of over 99.99, whose observations were
truncated, and 229 observations with unknown smoking
status. The final sample contained 117,961 respondents.

We investigated the relationship between mortality and
obesity through BMI using the logistic regression model,
stratified by gender and adjusting for age and smoking
history. The logistic model was chosen over the Cox pro-
portional hazards model because the proportional
hazards condition did not hold for the BMI fractional
polynomial (FP) terms. We used 5-year all-cause mortal-
ity as the dependent outcome because of the very low
incidence of death annually. To check for robustness, we
also estimated all models using 3-year mortality as the
outcome, which produced similar results. Analyses were
stratified by gender because the biological process by
which men and women gain and maintain weight is dif-
ferent [29]. We adjusted for smoking status because it
confounded the BMI-mortality relationship, which if
ignored may result in overestimation of the BMI asso-
ciated with minimum mortality [30]. Sample adult
weights from the NHIS, which denoted the inverse prob-
ability of inclusion into the sample were used within the
logistic regression model to correct for potential biases
resulting from the NHIS sampling design. Because data
were pooled, sampling weights were divided by the num-
ber of years to generate a sample that is representative of
the U.S. population on average from 1997-2000.

We maintained BMI as a continuous variable in our
analysis. To account for the nonlinear and asymmetric
relationship between BMI and mortality, we first applied
the fractional polynomials [31,32] method. To allow for
flexibility in fitting a curve with a single turning point, we
considered second degree polynomial transformations for
BMI. We used the closed test procedure [33] which first
determined the best fitting second degree polynomial by
choosing power transformations from the set {-2, -1, -0.5,
0, 0.5, 1, 2, 3}, where 0 denotes the log transformation.
The best fitting second-degree FP was then compared
against the null model using a deviance difference test
with four degrees of freedom to determine whether BMI
should be included in the model. If the first test was sta-
tistically significant, a second deviance difference test
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with three degrees of freedom was applied to compare
the best fitting second degree FP against the linear
model. If the second test was significant, a final deviance
difference test with two degrees of freedom compared
the best fitting second degree FP with the best fitting first
degree FP. If the final test was significant, the second
degree FP was included, otherwise the first degree FP was
chosen. To prevent collinearity and model overfit, the
best fitting first degree polynomial was chosen for age.
The selection of powers for BMI and age was computed
simultaneously using the multivariable fractional polyno-
mials (MFP) method [26,27], which combined backward
elimination to select the best fitting model. The regres-
sion model we estimated was

logit(rr;) = Bo + B1BMI"' + B,BMIP? +
B3AGE™ + B4SMOKE

where 77; was the 5-year death probability for individual
i, pI and p2 were the fractional powers for BMI, and g1
was the fractional power for age. The MFP method also
scaled and centered variables in model selection process
to improve numerical stability and to provide a model
intercept that was easier to interpret. A nominal p-value
of 0.05 was used to test all hypotheses. To evaluate the
validity of the FP model for BMI, we graphically com-
pared three models with the main FP model defined by
(1). First, we estimated the model which categorized BMI
into 30 narrow bins (1 bin for each BMI unit between 18
and 40, for every two BMI units between 40 and 54 and a
single bin for BMI above 54) while also adjusting for age
and smoking status. We then estimated separate FP mod-
els after omitting subjects with early death (< 1 year from
baseline) and extreme BMI values (> 50).

Interactions between adjustment variables were tested to
address the possibility of differences in the BMI-mortality
curve across the age distribution, and by smoking history.
The multivariable fractional polynomial interaction
(MFPI) algorithm [26] was used to assess interactions,
which first determined the best fitting polynomial func-
tions for BMI and age using MFP and then tested for sig-
nificant interactions between fractionally transformed
variables and smoking history using a deviance difference
test. We then verified interactions found by the MFPI
algorithm graphically using Lowess smoothed curves. The
use of FPs when fitting models using BMI as a continuous
variable avoided inclusion of spurious interactions in a
strictly linear model.

The BMI associated with minimum mortality was cal-
culated by first estimating the final MFP model (includ-
ing interaction terms) using logistic regression. To derive
the optimal BMI, we set the first derivative of the esti-
mated FP model equal to 0 and solved for BMI. As an
example, the optimal BMI for the model with linear and
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quadratic BMI terms without interactions is —8,/(28,).
where B, and B, are the logistic regression coefficients
for the linear and quadratic BMI terms, respectively.
Confidence intervals were based on standard errors com-
puted using the delta method.

We compared the BMI-mortality curves derived using
the MFP method with the continuous BMI model con-
taining linear and quadratic BMI terms and the catego-
rical model based on WHO BMI classifications. Models
were compared on the basis of model fit, the shape of
the BMI-mortality curve, the magnitude and uncertainty
in the BMI associated with minimum mortality and
mortality estimates. All statistical models were fit using
the STATA Statistical Software (Version 11; College Sta-
tion, TX). The STATA procedure MFP was used to
determine the functional forms for age and BMI and the
procedure NLCOM was used to calculate estimates and
confidence intervals for the BMI associated with mini-
mum mortality.

Results

Descriptive statistics for the NHIS sample used in this
study are presented in Table 1. Our sample included
52,549 men and 65,412 women with a mean age of
45.49 and 47.13 years, respectively. The percentage of
respondents who died within five years was 6.37%
among men and 5.55% among women. The number of
deaths per thousand individuals were similar across
annual survey cohorts for both the male and female
samples. The majority of the sample was in the normal
and overweight BMI ranges. Ever smokers made up
54.93% of the male sample and 40.47% of the female
sample.

Model Fit
The best fitting model for BMI identified by the MFP pro-

cedure included the terms gp4;~2 and BMI * In(BMI)

for the male sample and the terms gp4;~2 and gpy~! for

the female sample, where BMI = BMI/10. In both sam-
ples, the best fitting model included a squared term for
age. The main adjustment model contained smoking sta-
tus, two BMI and one age polynomial terms. For men, the
transformed model significantly improved model fit rela-
tive to the untransformed model (Deviance Difference =
231.79, p-value < 0.001), the linear-quadratic model
(Deviance Difference = 105.62, p-value < 0.001) and the
categorical model (Deviance Difference = 81.63, p-value <
0.001). Similar improvements in model fit were found in
the female sample for the FP model relative to the
untransformed model (Deviance Difference = 173.04, p-
value < 0.001), the linear-quadratic model (Deviance Dif-
ference = 131.93, p-value < 0.001) and the categorical
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Table 1 Descriptive statistics for NHIS adult cohort from
1997 to 2000 used to estimate the BMI-mortality relation

Survey Year 1997 1998 1999 2000 Total
Male
Sample Size 14460 13103 12147 12839 52549
# Deaths (5-year) 984 914 835 837 3570
Deaths/1000 persons 68.05 69.76 6874 6519 6794
Age (Mean) 4517 4558 4583 4544 4549
BMI Level (% Prevalence)
Normal: [18.5, 25) 37.14% 3580% 35.119% 34.38% 35.66%
Overweight: [25,30) 43.78% 43.88% 4349% 4431% 43.87%
Obese I: [30, 35) 1410% 1509% 1549% 1534% 14.97%
Obese I: [35, 40) 349%  383% 4.16% 4.28%  3.92%
Obese llI: 40+ 149%  140% 1.75%  1.70%  1.58%
Ever Smoker 56.20% 5539% 5491% 53.06% 54.93%
Female
Sample Size 18210 15928 15340 15934 65412
# Deaths (5-year) 1002 926 845 858 3631
Deaths/1000 persons 5502 5814 5508 5385 5551
Age (Mean) 46.80 47.36 47.35 47.08 4713
BMI Level (% Prevalence)
Normal: [18.5, 25) 49.75% 4817% 4737% 46.69% 48.06%
Overweight: [25,30) 2890% 2936% 29.69% 2932% 29.30%
Obese I: [30, 35) 1345% 14.04% 1449% 14.68% 14.14%
Obese II: [35, 40) 487%  520% 511% 562% 519%
Obese llI: 40+ 303% 322% 334% 369% 331%
Ever Smoker 4096% 4098% 40.23% 39.63% 4047%

model (Deviance Difference = 82.11, p-value < 0.001). The
FP model for BMI produced a similar BMI-mortality
curve compared to the model categorizing BMI into nar-
row bins for both genders. Also, the BMI-mortality curves
produced by the main FP model and the models omitting
early deaths and extreme BMI values were similar in
shape (Figure 1).

After finding the best fit for the main model, the age-
smoking history (Deviance Difference = 15.88, p-value <
0.001) and BMI-age interactions (Deviance Difference =
35.31, p-value < 0.001) were both identified as statisti-
cally significant in the female sample. The final model
was selected using forward selection. After including the
age-BMI interactions, the age-smoking history interac-
tion remained significant (Deviance Difference = 15.44,
p-value < 0.001). Logistic regression results for the FP
model, including significant interactions are in Table 2.
We did not find statistically significant interactions in
the male sample.

Overfit of the model may result in spurious interac-
tions. We assessed interactions identified as significant
graphically by performing Lowess smoothing on 5-year
of death transformed into logits. Figure 2 shows the
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differential effect of age across smoking status and BMI,
respectively, in the female sample. Differences in the
slope of running smoothed lines across the age distribu-
tion confirmed the interactions identified as significant.

BMI-Mortality Curve

Fitted curves showing the relationship between the 5-
year probability of death and the associated 95% confi-
dence interval as a function of BMI are in Figure 3. We
present curves for male and female non-smokers at ages
40, 50 and 65, respectively. For BMI 18.5 and above, the
estimated relationship between BMI and mortality was
J-shaped for women, but U-shaped for men. At all ages,
the female curve was lower and less steep at both tails
of the BMI distribution. Increases in age were associated
with increases in mortality, however, fitted curves have
the same shape across the age distribution. For both
genders, the 5-year probability of death increased expo-
nentially with BMIL Death probabilities increased rapidly
starting at BMI = 40. The wide confidence intervals at
the right tail of the BMI distribution stemmed from the
low proportion of extremely obese (BMI > 40) indivi-
duals in the population. Similar curve shapes were
found for those who have ever smoked (Figure 4).

The top panel of Figure 5 compares the MFP and lin-
ear-quadratic BMI models for male and female never
smokers, respectively, at age 50. For both genders, the
BMI-mortality curve produced by the linear-quadratic
model was J-shaped. The linear-quadratic overestimated
mortality at the right tail of the BMI distribution and
underestimated mortality in the 31-50 range for men
and 30-52 BMI range for women when compared to the
MFP model. In the male sample, the MFP model pro-
duced higher mortality estimates for subjects at the low
end of the normal category.

The bottom panel of Figure 5 compares the MFP and
categorical models for age 50 never smokers. The cate-
gorical approach matched MFP estimates closely in the
overweight category for men. There was a lower degree
of correspondence in BMI-mortality curves for all other
BMI classifications. The categorical model also underes-
timated mortality at both tails of the BMI distribution.

BMI Associated with Minimum Mortality

For the MFP model, the BMI associated with minimum
mortality was 26.97 (95% Confidence Interval [CI], 26.41
to 27.54) (Figure 5) in the male sample. Because we did
not identify significant interactions with BMI, the opti-
mal BMI was constant for both smokers and non-smo-
kers and across all ages. In contrast, the BMI associated
with minimum mortality for women increased with age.
At age 50, the optimal BMI was 22.34 (95% CI, 20.10 to
24.57). The optimal BMI ranged from 19.25 (95% CI,
13.31 to 25.18) at age 18 to 26.86 (95% CI, 25.70 to
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28.02) at age 85. The BMI associated with minimum
mortality was lower for men at all ages and for women
age 56 and below when compared to the linear-quadra-
tic model. The optimal BMI in the linear-quadratic
model was 31.84 (95% CI, 30.34 to 33.34) for men and
23.04 (95% CI, 18.15 to 27.93) for women. With the
categorical model, minimum mortality was associated
with the overweight category for both genders.

Mortality Estimates

Mortality estimates for a 50-year old individual across
models are in Table 3. At the optimal BMI, the MFP
model produced lower mortality estimates compared to
the linear-quadratic model, but higher mortality esti-
mates compared to the categorical model for men. For
women, the MFP model produced lower mortality esti-
mates compared to both the linear-quadratic and catego-
rical models. Based on the MFP model, 5-year mortality

for a 50-year old never smoker with BMI = 50 was 3.11
times greater than the minimum in the male sample and
3.54 times greater in the female sample. Mortality for an
individual with BMI = 50 relative to the minimum was
smaller in both the linear-quadratic and categorical mod-
els. For male never smokers, adjusted mortality was
greater by a factor of 2.89 in the linear-quadratic model
and a factor of 2.10 in the categorical model. For female
never smokers, adjusted mortality was higher by a factor
of 2.39 in the linear-quadratic model and a factor of 2.43
in the categorical model.

Discussion

This paper outlined and applied a flexible method to
modelling the nonlinear and asymmetric relationship
between BMI and mortality. Using the MFP approach,
we found that the BMI-mortality relation was J-shaped
for women and U-shaped for men among individuals
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Table 2 Logistic regression coefficient estimates and
standard errors in parentheses for the final adjustment
model including smoking status, fractionally transformed
BMI" and age? and interactions identified as significant

Male Female
BMI(p1) 24.260 20.328
(1.938) (5.186)
BMI(p2) -49.284 -18490
(4.307) (3.766)
Age(q1) 0.077
(0.001)
Age(q1)*BMI(p1) 0.244
(0.165)
Age(q1)*BMI(p2) -0.115
(0.125)
Age(q1) | Ever Smoked = 0 0.082
(0.002)
Age(q1) | Ever Smoked =1 0.075
(0.002)
Ever Smoked 0.581 0.832
(0.050) (0.084)
Constant -4.366 -4.712
(0.054) (0.075)
Log Likelihood -9503.563 -10179.990

1 BMI\ 2
For the male sample, BM[(p]) = 10 -0.137,

BMI\ ? BMI
BMI(p2) = 10 *In 10 - 0376 and for the female
BMI\ 2 BMI\ !
sample, BMI(p1) = ( 10 ) -0.142, BMI(p2) = ( 0 ) -

0.376.

2 Age 2
For the male sample, Age(q]) = - 20.692 and for the female
10

2
sample, Age(ql) = <A1%e) - 22.216.

with a BMI of 18.5 and over. We also identified the
nadir of the BMI-mortality curve to exist in the over-
weight range for the average U.S. male and the normal
range for the average U.S female. However, differences
in death probabilities around the nadir were small. The
results in this paper with regard to the shape and nadir
[2,10,25,34,35] of the BMI-mortality curve are consistent
with prior findings. With regard to the nadir, most stu-
dies have found the nadir is in the normal BMI cate-
gory, however, minimum mortality associated with the
overweight category has been found in a number of
other studies. For example, using NHANES I data, Dur-
azo et al. (1997) [34] reported the BMI of minimum
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mortality to be 24.8 for white men and 24.3 for white
women. However, for black men and women, the BMI
of minimum mortality was 27.1 and 26.8, respectively.
The downward slope at the low end of the BMI distri-
bution for men stemmed from the fact that the normal
BMI category consists of a mix of healthy lean and
chronically ill, which confounded the relationship
between mortality and obesity. This result was consis-
tent with other studies [36-38] that report an inverse
relation between low BMI individuals and mortality irre-
spective of the length of follow-up.

The MFP approach provides a robust alternative to
other commonly used methods for addressing the non-
linear and asymmetric relationship between BMI and
mortality by allowing the data itself to determine the
functional form for BMI and other adjustment vari-
ables. The closed test algorithm used in this study
determined the best fitting model from a predefined
set of candidate models based on power transforma-
tions of BMI. Improvements in model fit were found
relative to other commonly used models including the
linear-quadratic BMI model, which imposes symmetry
on the BMI-mortality curve. This in conjunction with
low variation in mortality among those in the 21-30



Wong et al. BMC Medical Research Methodology 2011, 11:175
http://www.biomedcentral.com/1471-2288/11/175

Page 7 of 11

Male — Age 40
©
=
=)
s =
od
88
8y
Q-
=
T T T T T
20 30 40 50 60
Body Mass Index (BMI)
Male — Age 50
ol
="
g-
og
[
28
3
T o
<
T T T T T
20 30 40 50 60
Body Mass Index (BMI)
Male — Age 65
—_m
£
8q
fa)
» N
s
L
®.
(o Te}
=
T T T T T
20 30 40 50 60
Body Mass Index (BMI)
never smokers, age 40, 50 and 65.

\

Figure 3 Predicted mortality and 95% confidence interval based on the best fitting fractional polynomial model for male and female

Female — Age 40

©
=
=)
§ =
o3
§3
Ty
I\.{_)/ d
ad
T T T T T
20 30 40 50 60
Body Mass Index (BMI)
Female — Age 50
&
£~
§ N
o8
83
T
0
a8
T T T T T
20 30 40 50 60
Body Mass Index (BMI)
Female — Age 65
@
o
T
o)
O«
g
|>‘ .
9
T
<

20 30 40 50 60
Body Mass Index (BMI)

BMI range and high mortality among those with BMI
over 40 resulted in an overly flat curve in the center.
Allowing the estimated curve to have a flexible shape
made the MFP model more sensitive to variation in
death rates in the data. Improvements in model fit
were generally accompanied by smaller estimates of
the BMI associated with minimum mortality and nar-
rower confidence intervals. While the differences in
optimal BMI were small for the representative 50-year
old female, there was a large discrepancy in the male
sample with the nadir extending into the class I obese
range (BMI 30.0-34.9).

The other common approach to modelling the non-
linear functional form for BMI is a nonparametric
approach incorporating categorical variables defined by
WHO BMI classifications. Assessing the risk of a BMI
category relative to the normal category is a convenient
method to account for the nonlinear form, but assumes
mortality is uniform across a BMI category, which is

problematic when a category is heterogenous. In particu-
lar, the normal category consists of a mix of healthy and
sick lean. Studies employing the categorical approach
also typically take the mortality risk of obese individuals
beyond a given threshold as constant. We addressed this
difficulty by allowing the data from across the entire BMI
distribution to predict mortality risk at extreme obesity
levels, where fewer observations exist. Because our results
showed that mortality increased exponentially for extre-
mely obese individuals, categorization can drastically
underestimate mortality at the right tail of the BMI dis-
tribution. The use of wide BMI categories are also inade-
quate for the purposes of prediction. Categorizing BMI
using finer intervals can alleviate some of these difficul-
ties, but the decision of which categories to add is gener-
ally an arbitrary choice. Moreover, the additional
categories increase the variance of parameter estimates,
particularly in high BMI categories where the sample size
is small.
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Our study also employed methods that differentiate
the effect of BMI across gender and age. The identifica-
tion of distinct FP terms across gender samples point to
important differences in the BMI-mortality relationship.
Further differences were identified within the female
sample through interactions. The finding of significant
interactions between age and BMI is not common in lit-
erature, but has been identified in a select number of
studies [39,40]. The inclusion of age-BMI interactions
resulted in optimal BMI estimates that varied with age
and predicted the nadir to exist in the overweight range
for women at age 71 and above.

This study has at least two notable limitations. The
logistic regression model with 5-year mortality as the
dependent outcome was chosen over the Cox survival
model because the assumption of proportional hazards
failed to hold. However, the disadvantage of the logis-
tic regression model is that full information regarding
the individual’s exact time of death was not used. Sec-
ond, while the primary goal of this study was to com-
pare approaches to modelling the BMI-mortality
relation using three important covariables, the com-
plete case approach to addressing missing data and the
omission of other potentially important explanatory

variables may have introduced biases in parameter
estimates.

Conclusions

The MFP method identified improvements in model fit
compared to other commonly employed models that
estimate the BMI-mortality relationship, and is a robust
method to determine the functional form for BMI.
Using the MFP method, we found that the shape of the
BMI-mortality curve was different across gender, but
consistent with other previous studies. Specifically, the
relation was U-shaped for men and J-shaped for women.
We also identified important differences in shape and
nadir of the BMI-mortality curve and mortality esti-
mates compared to other commonly used models.
Understanding the relation between obesity and BMI is
important from a policy perspective, for addressing
issues such as determining the efficacy of approaches
designed to reduce obesity and in communicating with
the public about the importance of obesity as a public
health issue. Flexible methods, such as those employed
in this study, are central in achieving reliability in mea-
sures used relevant analyses and are also potentially use-
ful in estimating the relationship between the full
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Table 3 Comparison of optimal BMI and 5-year mortality estimates across models

MFP

Linear-Quadratic

Categorical

Never Smokers

Male

Optimal BMI

26.97 [2641, 27.54]

31.84 [30.34, 33.34]

25-30

Mortality at Optimum

0.0176 [0.0158, 0.0196]

0.0188 [0.0168, 0.0210]

0.0169 [0.0152, 0.0188]

Mortality at BMI = 50

0.0548 [0.0428, 0.0699]

0.0544 [0.0383, 0.0766]

0.0355 [0.0251, 0.0499]

Female

Optimal BMI

2234 [20.10, 24.57]

23.04 [18.15, 27.93]

25-30

Mortality at Optimum

0.0100 [0.0088, 0.0115]

0.0128 [0.0115, 0.0141]

0.0120 [0.0107, 0.0134]

Mortality at BMI = 50

0.0355 [0.0274, 0.0460]

0.0306 [0.0377, 0.0248]

0.0291 [0.0233, 0.0363]

Ever Smokers

Male

Optimal BMI

26.97 [2641, 27.54]

31.84 [30.34, 33.34]

25-30

Mortality at Optimum

0.0306 [0.0283, 0.0331]

0.0329 [0.0301, 0.0358]

0.0299 [0.0273, 0.0326]

Mortality at BMI = 50

0.0939 [0.0750, 0.1168]

0.0926 [0.0667, 0.1271]

0.0619 [0.0447, 0.0852]

Female

Optimal BMI

2234 [20.10, 24.57]

23.04 [18.15, 27.93]

25-30

Mortality at Optimum

0.0223 [0.0199, 0.0250]

0.0237 [0.0217, 0.0260]

0.0223 [0.0200, 0.0248]

Mortality at BMI = 50

0.0765 [0.0610, 0.0955]

0.0559 [0.0459, 0.0680]

0.0534 [0.0433, 0.0657]

95% confidence intervals are in brackets.
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spectrum of BMI values and other health outcomes or
costs.
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