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Abstract

Background: Modeling childhood body mass index (BMI) trajectories, versus estimating change in BMI between
specific ages, may improve prediction of later body-size-related outcomes. Prior studies of BMI trajectories are
limited by restricted age periods and insufficient use of trajectory information.

Methods: Among 3,289 children seen at 81,550 pediatric well-child visits from infancy to 18 years between 1980
and 2008, we fit individual BMI trajectories using mixed effect models with fractional polynomial functions. From
each child’s fitted trajectory, we estimated age and BMI at infancy peak and adiposity rebound, and velocity and
area under curve between 1 week, infancy peak, adiposity rebound, and 18 years.

Results: Among boys, mean (SD) ages at infancy BMI peak and adiposity rebound were 7.2 (0.9) and 49.2 (11.9)
months, respectively. Among girls, mean (SD) ages at infancy BMI peak and adiposity rebound were 7.4 (1.1) and 46.8
(11.0) months, respectively. Ages at infancy peak and adiposity rebound were weakly inversely correlated (r = -0.09). BMI
at infancy peak and adiposity rebound were positively correlated (r = 0.76). Blacks had earlier adiposity rebound and
greater velocity from adiposity rebound to 18 years of age than whites. Higher birth weight z-score predicted earlier
adiposity rebound and higher BMI at infancy peak and adiposity rebound. BMI trajectories did not differ by birth year or
type of health insurance, after adjusting for other socio-demographics and birth weight z-score.

Conclusions: Childhood BMI trajectory characteristics are informative in describing childhood body mass changes
and can be estimated conveniently. Future research should evaluate associations of these novel BMI trajectory
characteristics with adult outcomes.

Background
Childhood body mass index (BMI) predicts adulthood
obesity [1,2] and other long-term health outcomes [3-5].
But previous studies have observed weak or moderate cor-
relations (r = 0.2-0.5) between early childhood (< 7 years
of age) and adulthood BMI [6,7]. Most of these studies
[2,8-10] have used BMI at fixed ages or change in BMI
between fixed ages as predictors. This fixed-age approach
assumes that individuals in the sample belong to a homo-
geneous group with similar developmental patterns, which

seems unrealistic for childhood BMI [11]. Also, the biolo-
gical meaning of childhood BMI at a given fixed age may
differ among children who have different growth patterns
(initiation, velocity, duration, etc.) in bone, muscle, and fat
tissues. Instead, a more appealing way of examining child-
hood BMI is to model individual trajectories based on
repeated BMI measures throughout childhood. The capa-
city of childhood BMI to predict adult BMI can potentially
be improved by using a child’s BMI trajectory, in addition
to or in place of his or her BMI at specific ages.
Individual- and group-based approaches are the two

distinct methods for studying childhood BMI trajectories
in the literature. The group-based approach tries to gen-
erate several groups or classes that share overall patterns
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of changes in BMI [12], BMI z-score [13], or risk of high
BMI [11] across childhood, using methods such as latent
growth mixture modeling. Despite its simplicity in sum-
marizing overall patterns, the group-based approach
requires the investigator’s subjective decisions on the
number of groups, even after optimization by statistical
software. It is also subject to arbitrary names or defini-
tions of selected groups, substantial variations in patterns
within each group, and un-satisfying generalizability (e.g.,
the number and patterns of groups often change among
new samples). Alternatively, the individual-based
approach examines the specific trajectory for each child
and then estimates informative BMI characteristics, and
thus allows for further links to individual-specific expo-
sures or health outcomes. For example, from individual-
specific trajectories, one can identify BMI milestones
including infancy peak and adiposity rebound [14-17],
and also estimate some novel features of BMI change,
such as velocity and the area under a BMI trajectory
curve. Modeling childhood BMI trajectory may reveal
stronger ties between childhood and adulthood BMI,
leading to a better rationale for childhood interventions
to prevent obesity and other health outcomes in adult-
hood. However, previous studies using the individual-
based approach are limited by restricted age periods,
such as from birth to 3 years [14] or from 2 to 18 years
[17,18]. Consequently, the full picture on correlations
between BMI milestones throughout childhood remains
unclear [14], as does their independent and interactive
impacts on long-term outcomes.
Our aims are: 1) to build parametric models to fit BMI

trajectory throughout childhood; 2) to estimate BMI tra-
jectory milestones and related characteristics; and 3) to
examine pairwise correlations and socio-demographic pre-
dictors of BMI trajectory characteristics.

Methods
Study sample
As part of the Collecting Electronic Nutrition Trajectory
Data Using e-Records of Youth (CENTURY) Study, we
extracted length/height, weight, and demographic data
from electronic medical records of well-child visits from
1980 through 2008 at Harvard Vanguard Medical Associ-
ates (HVMA), a multi-site group practice in eastern
Massachusetts. Details of the data collection methods
can be found elsewhere [19]. The study protocol was
approved by the Institutional Review Board of Harvard
Pilgrim Health Care.
Inclusion criteria
In this analysis, to assure sufficient data points for accu-
rately estimating individual-specific BMI trajectories, we
included children who had their weight and length/height
measured at a minimum of 18 visits between 1 week and
18 years. Specifically, we included children who had at

least two visits during the age interval 1 week-2.9
months, two visits during 3-7.4 months, two visits during
7.5-13.4 months, two visits during 13.5-20.9 months, one
visit during 21.0-29.9 months, one visit during 2.5-3.4
years, one visit during 3.5-4.4 years, one visit during
4.5-5.4 years, one visit during 5.5-6.4 years, three visits
during 6.5-10.4 years, one visit during 10.5-14.4 years,
and one visit during 14.5-18.0 years. We determined
these age intervals and corresponding minimum numbers
of visits based on the need for more data points during
periods of fast change and around turning points [20], as
well as on schedules of preventive pediatric health care
recommended by the American Academy of Pediatrics
[21]. To be eligible, children must therefore have been
born between October 1, 1979 (and be 2.9 months on
January 1, 1980, the first date of data extraction) and
June 30, 1994 (and be 14.5 years old on December 31st,
2008, at the end of data extraction). These criteria limited
our eligible sample to 142,346 children with 1,075,237
visits. Among them, 3,289 children (2.3%) with 81,550
visits (7.6%) met our criteria for minimum number and
timing of visits. To assess potential selection bias, we
compared demographics and birth characteristics of the
analytic sample to the excluded age-eligible sample
(139,057 children with 993,687 visits). There were no
substantial differences in sex, birth weight, or year of
birth between the two samples, but the analytic sample
contained a higher proportion of whites (71.8% vs 42.9%)
and a lower proportion of unknown race/ethnicity (15.3%
vs 37.7%) as well as lower proportion (3.9% vs 5.2%) of
Medicaid-insured children than the excluded sample
(Table 1).

Measures
At well-child visits, medical assistants measured chil-
dren’s weight and length/height according to the written
protocol of HVMA. Anthropometric equipment is cali-
brated annually at HVMA, and a master trainer con-
ducts periodic quality checks of anthropometric
measures by medical assistants. Using pediatric scales,
medical assistants measured weight without heavy
clothes and shoes, and rounded it to the nearest 0.25
pound (0.11 kg). Although the position for length mea-
sure was not documented in medical records, medical
assistants usually measured length without shoes in
recumbent position using a paper-and-pencil technique
(see below) for children younger than 24 months, and
height without shoes in standing position for those aged
24 months or older [22].
Briefly, for the paper-and-pencil technique, the child

lay supine on a piece of paper atop an examination
table. The medical assistant drew a tick mark abutting
the top of the child’s head, and then straightened the
child’s legs, flattened the child’s knees, flexed the child’s
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foot to be perpendicular to the table, and marked the
paper again at the bottom of the child’s heels. The med-
ical assistant then measured the distance between the
two marks with a flexible tape, and rounded it to the
nearest quarter inch. However, in our previous valida-
tion study among 0 to 24 month-old infants conducted
at one of the participating pediatric practice sites, we
found that the paper-and-pencil method systematically
overestimated children’s length compared with a refer-
ence method [22]. We converted our paper-and-pencil
lengths to 0.953 × length measured by paper-and-pencil
method + 1.8 cm, as estimated in the validation study
[22]. We applied this regression correction for all chil-
dren younger than 24 months, and recognize that this
universal correction might artificially introduce some
errors in a small number of children who were mea-
sured in standing position before 24 months. We calcu-
lated BMI as, weight in kilograms/(height or length in
meters)2.

We extracted children’s race/ethnicity from medical
records, and then recoded it as non-Hispanic white,
non-Hispanic black, or other race/ethnicity including
Hispanic, Asian American, Native American, Alaskan
Native, and Native Hawaiian or other Pacific Islander.
We calculated internal z-score of birth weight as, (indi-
vidual birth weight - mean value)/standard deviation, for
boys and girls separately within the analytic sample. The
type of health insurance, Medicaid vs. non-Medicaid,
was retrieved from medical records.

Statistical analysis
We chose ages 3 months, 6 months, 1 year, 3 years, 4
years, 7 years, 11 years, and 18 years to check the nor-
mality of age-specific BMI distribution. Q-Q plots and
Kolmogorov-Smirnov tests showed that BMI was
approximately normally distributed at most of these age
points, except for some right skewness at 18 years of age
(skewness, 0.86 for boys and 0.90 for girls). So the

Table 1 Characteristics of the analytic and excluded age-eligible sample born between October 1, 1979 and June 30,
1994

Characteristic Analytic sample Excluded sample

Child-level

Total # of children 3289 139057

Sex, n (%)

Boys 1680 (51.1) 70216 (50.5)

Girls 1609 (48.9) 68841 (49.5)

Race/ethnicity, n (%)

White 2362 (71.8) 59644 (42.9)

Black 214 (6.5) 14341 (10.3)

Other 168 (5.1) 7847 (5.6)

Unknown 503 (15.3) 52443 (37.7)

Year of birth, n (%)

1979 ~ 1984 382 (11.6) 38343 (27.6)

1985 ~ 1989 1315 (40.0) 48075 (34.6)

1990 ~ 1994 1592 (48.4) 52639 (37.9)

Birth weight in grams, mean (SD) 3442 (488) 3433 (507)

Type of health insurance, %

Medicaid 129 (3.9) 7,256 (5.2)

Non-Medicaid 3160 (96.1) 131801 (94.8)

Visit-level

Total # of visits 81550 993687

Age at visit (years), n (%)

0 ~ 1 25188 (30.9) 294540 (29.6)

2 ~ 5 17501 (21.5) 215744 (21.7)

6 ~ 10 16681 (20.5) 175422 (17.7)

11 ~ 14 12974 (15.9) 164369 (16.5)

15 ~ 18 9206 (11.3) 143612 (14.5)

SD, standard deviation
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normality assumption for age-specific BMI distribution is
fairly acceptable in this sample.
We performed the main data analysis in three steps:

modeling BMI trajectory, estimating trajectory charac-
teristics, and examining correlations and predictors of
trajectory characteristics. Given the well-known sex dif-
ferences [23] in childhood growth, we conducted steps 1
and 2 among boys and girls separately.
Step I
We used a fractional polynomial approach to model child-
hood BMI trajectory as a function of age [24,25]. Briefly,
the expected value of BMI was modeled as

E(BMI) = b0 +
m∑

j=1

bjAgepj, where m is the degree of the

model, and powers pj are selected from a fixed set of 8
candidate values, including -2, -1, -0.5, 0 or log, 0.5, 1, 2,
and 3. To enhance the model interpretability and also
reduce computational burden, we simplified the original
fractional polynomial method by excluding duplicated
powers. Since most children had two milestones or turn-
ing points, infancy peak and adiposity rebound, we set the
minimum model degree m = 3. Accordingly, we consid-
ered 219 candidate models, including 56 models of 3rd-
degree, 70 models of 4th-degree, 56 models of 5th-degree,
28 models of 6th-degree, 8 models of 7th-degree, and
1 model of 8th-degree (Table 2).
We fit BMI trajectories with mixed effect models [26],

specifying fixed effects of each fractional polynomial term,

reflecting the population-average trend, and random
effects of each term per child, modeling the deviation of
each child from the population-average. We applied a
two-stage method [27] to select optimal mean and residual
variance-covariance structures: first we used the most
complex mean structure (m = 8, the model with all 8 can-
didate powers) to select the best variance-covariance
structure from 8 candidates (autoregressive, spatial power,
compound symmetry, heterogeneous, toeplitz, heteroge-
neous toeplitz, unstructured, and variance components);
and then fixed this best variance-covariance structure to
select the best mean structure from the 219 candidate
models mentioned above. We used the Bayesian informa-
tion criterion (BIC) [28] to make this selection.
We calculated individual-specific BMI trajectories by

combining the estimated fixed effects, which are shared
by all subjects within sex, with the predicted random
effects, which are specific to each individual. This results
in a unique predicted trajectory for each subject. To
assess the goodness of fit for each individual BMI trajec-
tory, we first calculated the residual between the
observed BMI and the estimated individual-specific BMI
trajectory, and then used these residuals to calculate the
residual BMI variance for each child (note that a smaller
value implies a better fit).
Step II
In this analysis, we were interested in ages and BMI
values at two BMI trajectory milestones: infancy peak
and adiposity rebound. We also estimated several other

Table 2 Mixed effect models with the best fractional polynomial function for childhood BMI trajectory, by model
degreea

Degree No. of candidate models Included age terms in the mixed effect model with the best
fractional polynomial function

Goodness of fit (smaller is
better)b

Age(-2) Age(-1) Age(-0.5) log(Age) Age0.5 Age Age2 Age3 -2 Log likelihood BIC

Boys (N = 1,680)

3 rd degree 56 × × × 150196 150218

4th degree 70 × × × × 149688 149710

5th degree 56 × × × × × 147836 147858

6th degree 28 × × × × × × 148889 148911

7th degree 8 × × × × × × × 161668 161690

8th degree 1 × × × × × × × × 166173 166181

Girls (N = 1,609)

3 rd degree 56 × × × 141787 141809

4th degree 70 × × × × 139990 140012

5th degree 56 × × × × × 138131 138153

6th degree 28 × × × × × × 140079 140101

7th degree 8 × × × × × × × 152402 152424

8th degree 1 × × × × × × × × 156241 156248

BIC, Bayesian information criterion
a Data from 3,289 children with at least 18 well-child visits from age 1 week to 18 years
b The best-fitting models are in bold font

Wen et al. BMC Medical Research Methodology 2012, 12:38
http://www.biomedcentral.com/1471-2288/12/38

Page 4 of 13



BMI trajectory characteristics related to these mile-
stones, including age difference, change in BMI, velocity
(linear rate of change in BMI), and area under curve
(AUC) from 1 week to infancy peak, from infancy peak
to adiposity rebound, and from adiposity rebound to 18
years of age. Figure 1 shows the key characteristics of
BMI trajectory for a hypothetical child.
Based on the reported means and standard deviations

(SD) of BMI trajectory milestones, or turning points on
BMI curves, in the existing literature [14,17], we defined
their hypothetical age intervals as within 3 SD of from the
mean: 3 to 17 months for infancy peak and 15 months to
9.5 years for adiposity rebound. Because of the relatively
small sample size in previous studies, we combined both
sexes for these age intervals, to assure a large probability
of identifying plausible BMI milestones. Then we divided
age from 1 week to 18 years into 8,632 evenly spaced
“minor” points 0.025 months (about 1 day) apart. We then
estimated the velocity at each of these points by taking the
first derivative of the individual-specific BMI trajectory
curve. The criteria for existence of a milestone within the
corresponding age interval were that two consecutive
minor age points had opposite signs of the first derivative
[14]: for infancy peak, the derivative at minor point k > 0
and point k + 1 < 0; for adiposity rebound, derivative at k
< 0 and at k + 1 > 0. Within each pair of consecutive ages
meeting the criteria above, the minor point with derivative
closer to zero was designated the age at the milestone.

Note that some children did not have both BMI mile-
stones: infancy peak did not exist for 2 girls, while adipos-
ity rebound did not exist for 37 boys and 62 girls. This
occurs when the individual-specific curves lack a local
maximum (infancy peak) or a local minimum (adiposity
rebound) in the specified age ranges.
The predicted BMI (i.e., the point on the curve) at the

minor age point identified is the basis for our BMI trajec-
tory measures. We calculated the linear BMI velocity
(defined as ‘difference in BMI/difference in age’) for three
time periods: between 1 week of age and infancy peak,
between infancy peak and adiposity rebound, and between
adiposity rebound and 18 years of age. If BMI values at
1 week and 18 years of age were not observed at well-child
visits, they were estimated from the fit individual-specific
BMI trajectory models instead. The area under curve was
estimated as the definite integral between the two age
points. The SAS code used in Step II is available upon
request.
Step III
We calculated pairwise Pearson correlation among pairs
of BMI trajectory characteristics. Multivariable linear
regression was used to examine predictors of the BMI
trajectory characteristics; predictors included the child’s
sex, race/ethnicity, year of birth, z-score of birth weight,
and the type of health insurance. Modeling was per-
formed within a sub-sample with complete data on all
these predictors.
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Results
Sample characteristics
Table 1 shows characteristics of the analytic sample.
Among the 3,289 children, 51.1% were boys; 71.8% non-
Hispanic whites, 6.5% non-Hispanic blacks, 5.1% other
race/ethnicity and 15.3% unknown race/ethnicity; 48.4%
were born after 1990; the mean number of visits was 25
(range, 18 to 93). Among the total of 81,550 visits, over
half occurred before 6 years of age.

Models for BMI trajectory
Among the 8 candidate variance-covariance structures,
the autoregressive structure had the lowest BIC in the
model 8 candidate polynomials, and was thus chosen for
further selection of the best mean structure from the
219 candidate models. The mean of BIC values of these
candidate models was 168,029 (SD, 7,841) for boys, and
158,490 (SD, 8,006) for girls. Table 2 shows goodness of
fit for the best models by degree. For boys, the best
model (lowest BIC) was “BMI = 96.8 - 3.6*Age(-2) +
51.0*Age(-1) - 134.9*Age(-0.5) - 24.4*ln(Age) + 4.6*Age0.5,
and for girls it was “BMI = 90.8 - 3.2*Age(-2) +
47.0*Age(-1) - 125.4*Age(-0.5) - 22.7*ln(Age) + 4.3*Age0.5.
Overall, these two 5th-degree models fit BMI trajectories
of most children with reasonable accuracy, according to
the distribution of residual BMI variances: inter-quartile
range 0.49-1.18 BMI units for boys and 0.51-1.15 for
girls (Figure 2). Figure 3 shows observed BMI values
and individual-specific fitted BMI trajectories of 8 chil-
dren randomly selected within quartile of residual BMI
variance by sex.

BMI trajectory characteristics and their correlations
Table 3 shows means and medians of BMI trajectory
characteristics. The mean age at infancy BMI peak was
7.2 months for boys and 7.4 months for girls; the mean
BMI at infancy peak was 17.8 kg/m2 for boys and
17.3 kg/m2 for girls. The mean age at adiposity rebound
was 49.2 months for boys and 46.8 months for girls; the
mean BMI at adiposity rebound was 15.6 kg/m2 for
boys and 15.5 kg/m2 for girls.
Table 4 shows pairwise correlations between BMI trajec-

tory characteristics. For simplicity, we only report correla-
tions among the total sample, because stratification
analysis by child sex did not yield considerable differences.
Overall, the within-period correlations were stronger than
between-period correlations. Age at infancy peak was
weakly inversely correlated with age at adiposity rebound
(r = -0.09). BMI at infancy peak and at adiposity rebound
were strongly positively correlated (r = 0.76). BMI velocity
and AUC from 1 week to infancy peak were weakly corre-
lated with those from infancy peak to adiposity rebound
(r = -0.27 for velocity, r = 0.01 for AUC) and with those

from adiposity rebound to age 18 years (r = -0.02 for velo-
city, r = 0.28 for AUC). In contrast, BMI velocity (r = 0.40)
and AUC (r = -0.87) from infancy peak to adiposity
rebound were moderately or strongly correlated with
those from adiposity rebound to age 18 years.

Predictors of BMI trajectory characteristics
Table 5 shows the adjusted associations between BMI tra-
jectory characteristics and their predictors from multivari-
able linear regression models. On average, girls had older
age and lower BMI at infancy peak, but younger age at
adiposity rebound, than boys. Girls had smaller velocity
from 1 week to infancy peak (increase). Girls had smaller
velocity (decrease) and smaller AUC from infancy peak to
adiposity rebound. Non-Hispanic blacks had younger age
at adiposity rebound, smaller AUC from infancy peak to
adiposity rebound, but greater AUC and velocity from
adiposity rebound to 18 years of age, than non-Hispanic
whites. Greater z-score of birth weight was associated with
younger age at adiposity rebound; higher BMI at both
infancy peak and adiposity rebound; smaller velocity from
1 week to infancy peak; greater AUC from 1 week to
infancy peak and from adiposity rebound to 18 years of
age. BMI trajectory characteristics did not differ consider-
ably by the three intervals of birth year, 1979-1984, 1985-
1989, and 1990-1994, or the two types of health insurance,
Medicaid and non-Medicaid.

Discussion
Using repeated growth measures from well-child visits, we
fit childhood BMI trajectory from 1 week to 18 years of
age and estimated BMI trajectory milestones and related
characteristics. The majority of BMI trajectory characteris-
tics were correlated with each other. Some BMI trajectory
characteristics, including age and BMI at infancy peak and
adiposity rebound, varied substantially by children’s sex,
race/ethnicity, and z-score of birth weight, but there was
little evidence of cohort effects.

BMI trajectory characteristics
We were able to estimate infancy BMI peak and adiposity
rebound for most children. To the best of our knowledge,
the present study is the first one to propose the period-
specific AUC to characterize childhood BMI trajectory.
We think this novel measure can reflect the child’s cumu-
lative “exposure” to excessive body weight; and its poten-
tial role in predicting later obesity and obesity-related
diseases warrants further research.
One important but unanswered question in BMI trajec-

tory literature is the extent of correlations among BMI tra-
jectory milestones [14]. Our analysis showed that the
majority of BMI trajectory characteristics were moderately
or strongly correlated with each other. These correlations
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may be driven by 2 distinct biological forces. First, human
growth is an inherently continuous process: the higher
BMI is at infancy peak, the higher it will be at adiposity

rebound. Second, the force of ‘regression to mean’ inhibits
too extreme growth: the greater the velocity from 1 week
to infancy peak, the lower the velocity from infancy peak
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to adiposity rebound. This multicollinearity can pose a
challenge for separating the independent effects of these
BMI trajectory characteristics on adult outcomes.

However, the magnitude of correlations between BMI tra-
jectory characteristics estimated in our study should be
interpreted cautiously, because we did not observe the

Table 3 Means and medians of childhood BMI trajectory characteristics, by sex

Boys (N = 1,680) Girls (N = 1,609)

BMI trajectory characteristics na Mean (SD) Median (range) nb Mean (SD) Median (range)

1 week to infancy peak

Age at infancy peak, months 1680 7.2 (0.9) 7.1 (3.9, 12.5) 1607 7.4 (1.1) 7.3 (3.3, 14.2)

BMI at infancy peak, kg/m2 1680 17.8 (0.9) 17.7 (15.0, 20.6) 1607 17.3 (0.9) 17.2 (14.5, 20.3)

Change in BMI, kg/m2 1680 10.7 (5.4) 10.7 (-8.2, 30.8) 1607 8.5 (5.1) 8.2 (-12.6, 28.1)

Velocity, kg/m2/month 1680 1.58 (0.82) 1.57 (-1.31, 5.10) 1607 1.21 (0.75) 1.15 (-1.50, 5.65)

Area under curve (kg/m2-months) 1680 114 (18) 112 (60, 207) 1607 116 (21) 113 (45, 242)

Infancy peak to adiposity rebound

Age at adiposity rebound, months 1643 49.2 (11.9) 50.0 (24.0, 84.2) 1547 46.8 (11.0) 47.1 (24.1, 85.3)

BMI at adiposity rebound, kg/m2 1643 15.6 (1.3) 15.5 (11.9, 19.9) 1547 15.5 (1.2) 15.4 (11.8, 19.4)

Age difference, months 1643 42.0 (12.0) 42.8 (14.2, 76.7) 1547 39.4 (11.2) 40.0 (14.0, 77.0)

Change in BMI, kg/m2 1643 -2.2 (0.8) -2.2 (-4.7, -0.2) 1547 -1.8 (0.7) -1.9 (-4.0, -0.2)

Velocity, kg/m2/month 1643 -0.05 (0.01) -0.05 (-0.08, -0.01) 1547 -0.04 (0.01) -0.05 (-0.08, -0.01)

Area under curve (kg/m2-months) 1643 680 (182) 690 (251, 1332) 1547 629 (170) 633 (239, 1301)

Adiposity rebound to age 18 years

Change in BMI, kg/m2 1643 8.3 (3.0) 7.5 (2.9, 20.0) 1547 8.1 (2.6) 7.5 (2.6, 18.8)

Velocity, kg/m2/month 1643 0.02 (0.01) 0.02 (0.00, 0.05) 1547 0.02 (0.01) 0.02 (0.00, 0.05)

Area under curve (kg/m2-months) 1643 3206 (590) 3115 (2010, 4985) 1547 3213 (534) 3139 (2008, 4725)

BMI, body mass index; SD, standard deviation
a 37 boys had no adiposity rebound
b 2 girls had no infancy peak and 62 girls had no adiposity rebound

Table 4 Correlation matrix of childhood BMI trajectory characteristics (N = 3,289)

1 week to infancy peak Infancy peak to adiposity rebound Adiposity rebound to age 18
years

Parameters 1 2 3 4 5 6 7 8 9 10 11 12 13

1 week to infancy peak

1 Age at infancy peak, months

2 BMI at infancy peak, kg/m2 0.39

3 Change in BMI, kg/m2 -0.03 0.45

4 Velocity, kg/m2/month -0.25 0.34 0.96

5 Area under curve (kg/m2-months) 0.96 0.63 0.07 -0.14

Infancy peak to adiposity rebound

6 Age at adiposity rebound, months -0.09 0.15 0.12 0.11 -0.08

7 BMI at adiposity rebound, kg/m2 0.59 0.76 0.26 0.13 0.76 -0.48

8 Age difference, months -0.17 0.12 0.13 0.13 -0.16 0.99 -0.53

9 Change in BMI, kg/m2 0.46 0.01 -0.13 -0.20 0.42 -0.91 0.66 -0.94

10 Velocity, kg/m2/month 0.84 0.23 -0.10 -0.27 0.79 -0.54 0.71 -0.61 0.82

11 Area under curve (kg/m2-months) -0.06 0.33 0.21 0.19 0.01 0.98 -0.32 0.97 -0.87 -0.51

Adiposity rebound to age 18 years

12 Change in BMI, kg/m2 -0.10 -0.18 -0.07 -0.01 -0.09 -0.94 0.38 -0.93 0.79 0.38 -0.93

13 Velocity, kg/m2/month -0.08 -0.18 -0.07 -0.02 -0.07 -0.95 0.39 -0.93 0.80 0.40 -0.93 0.99

14 Area under curve (kg/m2-months) 0.22 0.16 0.03 0.00 0.28 -0.94 0.71 -0.95 0.91 0.64 -0.87 0.91 0.92

Strong correlations (|r| ≥ 0.5) are bold
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Table 5 Predictors of BMI trajectory characteristics, from multivariable linear regression models that include all covariates in the table

Mean difference in the BMI trajectory characteristic (95% confidence interval)

Girls(vs boys) Race/ethnicity (vs white) Year of birth (vs 1979 ~ 1984) Z-score of birth weight Medicaid (vs non-Medicaid)

BMI trajectory characteristics na Black Other 1985 ~ 1989 1990 ~ 1994

1 week to infancy peak

Age at infancy peak, months 2128 0.2 (0.2, 0.3) -0.1 (-0.2, 0.1) -0.1 (-0.3, 0.0) 0.0 (-0.2, 0.1) 0.0 (-0.1, 0.2) 0.0 (0.0, 0.1) 0.1 (-0.1, 0.4)

BMI at infancy peak, kg/m2 2128 -0.5 (-0.6, -0.4) 0.0 (-0.2, 0.1) 0.0 (-0.1, 0.2) 0.2 (0.0, 0.3) 0.1 (0.0, 0.3) 0.2 (0.2, 0.3) 0.1 (-0.1, 0.3)

Change in BMI, kg/m2 2128 -2.2 (-2.6, -1.7) -0.1 (-0.9, 0.6) 0.3 (-0.5, 1.0) 0.7 (0.1, 1.4) 0.2 (-0.5, 0.9) -1.4 (-1.7, -1.2) -0.3 (-1.4, 0.8)

Velocity, 10-2 kg/m2/month 2128 -35.4 (-41.7, -29.1) -0.5 (-12.6, 11.5) 7.1 (-4.9, 19.1) 12.9 (2.7, 23.2) 3.1 (-7.1, 13.2) -21.4 (-24.6, -18.2) -7.1 (-23.8, 9.5)

Area under curve (kg/m2-months) 2128 1 (0, 3) 0 (-3, 3) -2 (-5, 1) 1 (-2, 3) 2 (-1, 4) 3 (2, 3) 3 (-1, 7)

Infancy peak to adiposity rebound

Age at adiposity rebound, months 2063 -2.1 (-3.0, -1.1) -3.3 (-5.3, -1.3) -1.6 (-3.5, 0.3) 0.1 (-1.5, 1.6) -0.2 (-1.8, 1.4) -0.6 (-1.1, -0.1) -1.9 (-4.5, 0.8)

BMI at adiposity rebound, kg/m2 2063 -0.1 (-0.2, 0.0) 0.2 (0.0, 0.4) 0.0 (-0.2, 0.2) 0.2 (0.0, 0.3) 0.2 (0.0, 0.3) 0.3 (0.3, 0.4) 0.3 (0.0, 0.6)

Age difference, months 2063 -2.3 (-3.3, -1.3) -3.2 (-5.2, -1.2) -1.4 (-3.4, 0.5) 0.1 (-1.5, 1.7) -0.2 (-1.8, 1.4) -0.6 (-1.1, -0.1) -2.0 (-4.7, 0.7)

Change in BMI, kg/m2 2063 0.3 (0.3, 0.4) 0.2 (0.0, 0.3) 0.0 (-0.1, 0.2) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.1 (0.0, 0.1) 0.2 (0.0, 0.4)

Velocity, 10-2 kg/m2/month 2063 0.6 (0.5, 0.7) 0.1 (-0.1, 0.2) -0.1 (-0.2, 0.1) 0.0 (-0.2, 0.1) 0.0 (-0.1, 0.2) 0.1 (0.0, 0.1) 0.2 (0.0, 0.4)

Area under curve (kg/m2-months) 2063 -46 (-61, -31) -48 (-78, -18) -25 (-53, 4) 7 (-17, 31) 1 (-23, 25) 1 (-7, 9) -24 (-65, 16)

Adiposity rebound to age 18 years

Change in BMI, kg/m2 2063 -0.3 (-0.5, 0.0) 0.9 (0.4, 1.4) 0.4 (0.0, 0.9) 0.1 (-0.3, 0.5) 0.1 (-0.3, 0.5) 0.1 (0.0, 0.2) 0.4 (-0.2, 1.1)

Velocity, 10-2 kg/m2/month 2063 -0.1 (-0.1, 0.0) 0.3 (0.1, 0.4) 0.1 (0.0, 0.3) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.0 (0.0, 0.1) 0.1 (-0.1, 0.3)

Area under curve (kg/m2-months) 2063 -6 (-55, 42) 162 (65, 258) 70 (-23, 163) 32 (-47, 110) 44 (-34, 121) 70 (45, 94) 115 (-15, 246)
a Sample size reduced due to missing data on race/ethnicity (15.3%) and birth weight (22.7%)
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characteristics directly, but estimated these characteristics
from the same fitted BMI trajectory.
In our cohort, boys and girls had different BMI trajec-

tories and best-fitting models. In line with a previous
study [14] and CDC 2000 growth charts, we found that
girls were older and had lower BMI at infancy peak, and
earlier adiposity rebound. These sex differences may be
explained by genetics, growth or sexual hormones, diet,
or physical activity levels. One of our novel findings is
the racial/ethnic-differences in BMI trajectory character-
istics. Compared to their white peers, non-Hispanic
black children had BMI trajectory profiles that may be
associated with higher risk of later obesity, including
younger age at adiposity rebound [17], and larger velo-
city and greater AUC from adiposity rebound to 18
years of age. However, these racial differences should be
interpreted with caution, given insufficient control of
socio-economic status other than the type of health
insurance. Consistent with the literature [14], we found
that birth weight was a strong predictor for most BMI
trajectory characteristics. Overall there were no substan-
tial changes in BMI trajectory characteristics with year
of birth, after controlling for other socio-demographics
and z-score of birth weight. This suggests that child-
hood BMI trajectory was fairly stable across the ana-
lyzed years in our cohort.

Modeling childhood BMI trajectory
Generally, there are two broad types of methods to esti-
mate childhood BMI trajectory milestones: visualization
and modeling [29]. Simple visualization was first used in
early studies to determine adiposity rebound as the visual
nadir or the point with the lowest BMI [30-32]. Although
straightforward and convenient, the age at adiposity
rebound estimated by simple visualization is quite arbi-
trary, especially for children with a flat valley around the
nadir, and thus subject to large inter-observer variation.
Instead, several recent studies [14,17,18,33-36] have

used statistical modeling to identify BMI trajectory mile-
stones more objectively. Commonly, researchers select
reasonable combinations of polynomial age terms to fit
ordinary regression models within each child [17,18,35],
or mixed effect models [14,33,34] among a group of chil-
dren. Ordinary regression models require many data
points for each child; their estimates are unbiased, but
are often subject to large variability. In contrast, mixed
effect models need fewer data points for each child and
yield more stable estimates, although the estimates may
be a little biased, especially for those with very few data
points. A study comparing simple regression with mixed
effect model for the same sample [36] found estimated
BMI values at adiposity rebound were similar between
them but estimated ages at adiposity rebound differed.

One common limitation of the existing studies [14,17] is
that they only modeled a segment of childhood. Our novel
contribution is developing a good parametric model for
BMI trajectory throughout childhood, from 1 week to
18 years of age. Alternatively, some researchers use semi-
parametric modeling [14,37], such as cubic and linear
spline models, to fit childhood BMI trajectory. Cubic
spline models are more flexible and thus may fit the data
better than our fractional polynomial models, but they
require arbitrary decisions on the number and locations of
age ‘knots’, carry the potential for undesirable multiple
infancy peaks and adiposity rebound points, and have lim-
ited generablizability of their fitted models due to heavy
data-dependence [38,39]. Taken together, all current
methods have both advantages and disadvantages. Our
method can meet the high need of accurate milestone esti-
mates and is flexible for various study populations and
data structures, including missing data and non-fixed age
of follow-ups; but it requires a large enough sample to
build stable mixed effect models and strong statistical
skills. We also note that, although the overall best-fitting
fractional polynomial function for the total sample is not
necessarily optimal for each individual, it is robust and
appropriate especially for those children with only a few
repeated BMI measures.

Study strengths
Our study has several strengths. First, the large original
dataset yielded a large analytic sample that met our strict
eligibility criteria. Second, the small individual-level resi-
dual BMI variance supported the applicability of our
selected fractional models for most children. Third, our
methods can help researchers estimate novel BMI trajec-
tory characteristics conveniently with common statistical
software (e.g. SAS, R, and STATA). As a next step, we
plan to develop user-friendly software to make our model-
ing and estimating process more convenient for general
researchers and clinicians.

Study limitations
Our study also had several limitations. One limitation is
the quality of the clinical weight and height measures,
although the use of a written protocol, annual scale cali-
bration, periodic quality assurance, and mathematical
correction for error in length measures under 2 years of
age likely reduced measurement errors. In addition, we
included only a small proportion of the total sample in
the final analysis, and this sample seemed to differ from
the excluded sample in race/ethnicity and type of health
insurance. The over-representation of white children in
the analytic sample makes our estimated BMI trajectory
characteristics and possibly the best-fitting models less
generalizable to racial/ethnic minorities. Our study
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population was from one multi-site pediatric practice in
eastern Massachusetts. We did not validate our best-fit-
ting models in an external population. Thus our best-fit-
ting models and estimated means and SD for BMI
trajectory characteristics may not be generalizable to
other populations. But our methods for modeling child-
hood BMI trajectory and estimating BMI trajectory char-
acteristics can be broadly used in other studies.
Therefore, we recommend other researchers first select
the best-fitting models for BMI trajectories in their own
samples, and then estimate the corresponding BMI tra-
jectory characteristics, rather than use our best-fitting
model and estimated coefficients. Finally, our estimated
associations between BMI trajectory characteristics and
their predictors from multivariable regression models
might be biased, as we did not adjust for some important
potential confounders, such as parents’ weight and height
as well as family socio-economic status (except the type
of child health insurance).

Conclusions
Our mixed effect models with fractional polynomial
functions fit childhood BMI trajectories well for most
children seen at well-child visits in this sample. Using
our method, one can conveniently estimate BMI trajec-
tory milestones and related characteristics with reason-
able accuracy. Future research should evaluate the
independent and interactive roles of these novel BMI
characteristics on later outcomes. Moreover, prenatal
and early-life determinants of these BMI trajectory char-
acteristics also warrant further investigation.
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