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Abstract

Background: Structural equation models (SEMs) provide a general framework for analyzing mediated longitudinal
data. However when interest is in the total effect (i.e. direct plus indirect) of a predictor on the binary outcome,
alternative statistical techniques such as non-linear mixed models (NLMM) may be preferable, particularly if specific
causal pathways are not hypothesized or specialized SEM software is not readily available. The purpose of this
paper is to evaluate the performance of the NLMM in a setting where the SEM is presumed optimal.

Methods: We performed a simulation study to assess the performance of NLMMs relative to SEMs with respect to
bias, coverage probability, and power in the analysis of mediated binary longitudinal outcomes. Both logistic and
probit models were evaluated. Models were also applied to data from a longitudinal study assessing the impact of
alcohol consumption on HIV disease progression.

Results: For the logistic model, the NLMM adequately estimated the total effect of a repeated predictor on the
repeated binary outcome and were similar to the SEM across a variety of scenarios evaluating sample size, effect
size, and distributions of direct vs. indirect effects. For the probit model, the NLMM adequately estimated the total
effect of the repeated predictor, however, the probit SEM overestimated effects.

Conclusions: Both logistic and probit NLMMs performed well relative to corresponding SEMs with respect to bias,
coverage probability and power. In addition, in the probit setting, the NLMM may produce better estimates of the
total effect than the probit SEM, which appeared to overestimate effects.

Background
SEMs are a general modeling framework often used in
the social sciences to analyze complex relationships
between variables, such as mediated relationships
between variables. A mediator is a variable in the causal
pathway between a predictor and the outcome of inter-
est. SEMs are becoming more common in the clinical
research setting and can be used to model hypothesized
causal pathways between variables of interest. Exten-
sions of SEMs have been developed to allow for more
general types of dependent variables, including binary
outcomes [1]. Common statistical techniques for non-
mediated longitudinal binary data include non-linear
mixed models (NLMM) [2] and generalized estimating
equations (GEE) [3]. When interest is primarily in the
total effect of a predictor on an outcome, even if

mediation may be present, these commonly used techni-
ques may be preferred over SEMs as they specify
straightforward predictor-outcome variable relationships
and do not require specialized software, as the SEM
often does. It is therefore of interest to determine, in a
setting conducive to using SEMs, whether a method
such as NLMMs adequately models the total effect of a
predictor on binary outcomes without directly modeling
mediation. We focus on NLMM rather than GEE in this
paper as it is more similar to the non-linear SEMs for
longitudinal data available in SEM software-both are
conditional rather than marginal models.
Comparisons have been made between SEM and other

statistical models in different contexts [4-13]. Mixed
effect models have been evaluated against SEMs with
continuous data [14,15], and found to adequately model
mediated predictor-outcome relationships. MacKinnon
et al. [16] examined the calculation of mediated effects
in cross-sectional binary data with non-SEM techniques
using two different methods (difference of coefficients

* Correspondence: emily.blood@childrens.harvard.edu
1Department of Biostatistics Boston University School of Public Health 801
Massachusetts Avenue 3rd Floor Boston, MA 02118 USA
Full list of author information is available at the end of the article

Blood and Cheng BMC Medical Research Methodology 2012, 12:5
http://www.biomedcentral.com/1471-2288/12/5

© 2012 Blood and Cheng; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:emily.blood@childrens.harvard.edu
http://creativecommons.org/licenses/by/2.0


and product of coefficients). While, Palta and Lin [17]
compared structural equation models to various mar-
ginal models in longitudinal binary data without media-
tion. To our knowledge, evaluation of NLMMs relative
to SEMs has not yet been performed in the context of
mediated longitudinal binary data.
Linear and non-linear mixed models differ both in

terms of the distributional assumptions and the estima-
tion techniques used for inference. In addition, the para-
meter estimates in non-linear mixed models using a
logit or probit link are inherently scaled to the predic-
tors (and mediators) included in the model. Therefore,
comparisons of parameter estimates between NLMMs
with different sets of predictors must first be re-scaled
in order to make them comparable [16].
In this paper, we evaluate the performance of NLMMs

relative to SEMs for the modeling of mediated, binary
longitudinal data in a setting where the SEM is pre-
sumed to be optimal. The purpose is to assess whether
there is an impact of direct modeling of causal pathways
in terms of bias, power, and coverage probability when
the goal is to determine the total effect of the main
independent variable. A simulation study is performed
to assess these two classes of models across a variety of
settings. We also describe, in an appendix, two different
approaches for rescaling estimates when analyzing real
world data in order to allow direct comparisons between
NLMMs and SEMs or to compute mediated effects via
NLMMs only.

Methods
In the current study, we consider a longitudinal data set-
ting with binary outcomes, a repeated binary predictor, a
repeated continuous mediator, and a continuous covari-
ate measured at baseline. An example of such a clinical
setting would be a prospective cohort study evaluating
the impact of heavy alcohol consumption on HIV disease
progression, defined as low CD4 cell count (e.g. <350
cells/μL). Heavy alcohol consumption may influence pro-
gression of HIV, while also influencing adherence to
anti-retroviral therapy (ART). Level of adherence to ART
is also a predictor of HIV disease progression. In this set-
ting there is a repeated binary independent variable of
primary interest, heavy alcohol consumption (zj), and a
longitudinal binary outcome, low CD4 cell count (Yj) sig-
nifying HIV progression. In addition, ART adherence
(Mj), a continuous mediating variable, is measured
repeatedly, and age (w) is a continuous covariate assessed
at baseline. ART adherence is said to be a mediator
because the primary independent variable, heavy alcohol
use, may affect CD4 count directly as well as indirectly
through ART adherence. We arbitrarily assume six time-
points at which the predictor, outcome and mediator are

measured. Time is represented by tj with j = 1, 2,..., 6. In
this setting, we considered measurement times to be
equally spaced and the same for all individuals. We gen-
erated data with a mediated non-linear relationship
between the predictor (heavy alcohol consumption) and
outcome (low CD4 cell count), i.e. we allowed the media-
tor (ART adherence) to be directly affected by the predic-
tor and the outcome to be directly affected by both the
predictor and mediator. Both the probit and logit links
were assessed. We also describe the application of these
models to data from a prospective cohort study evaluat-
ing the impact of heavy alcohol use on HIV disease
progression.
As described by Fitzmaurice, Laird, and Ware [18] and

others, binary outcome models can be described equiva-
lently in two ways. The first approach would be to
define a linear function of an underlying latent continu-
ous variable (Y*) that when dichotomized represents the
observed binary outcome (Y). For example, we could
define a continuous latent (unobserved) variable Y* such
that observed Y is 1 if Y* > 0 and 0 otherwise and write:

Y∗ = β0 + β1x + ε (1)

A second approach would be to define a non-linear
model of the probability of a binary response. If we con-
sider � ~ N(0,1), the model in Equation 1 defines a uni-
variate probit model that can be equivalently
represented using the following non-linear link format:

P(Y = 1) = Φ(β0 + β1x).

Likewise, if we could consider the errors in Equation 1
to have standard logistic distribution (mean of 0 and

variance of
π2

3
) the model defines a univariate logistic

model that can be represented as:

P(Y = 1) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.

In more complex situations, such as the longitudinal
data we are studying, the same equivalence between
model descriptions exist and we use both model formu-
lations for the NLMMs and SEMs that follow. The con-
vention for binary or categorical outcomes in SEMs has
been to describe binary regression models with the
latent variable format while the NLMMs are often
defined using the non-linear link format.

SEM
To evaluate the performance of NLMMs in a setting
conducive to the use of SEMs, we generated mediated
longitudinal binary outcomes using a non-linear SEM.
We then fit the data with a NLMM as well as the non-
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linear SEM to evaluate the performance of the NLMM
relative to the SEM. The non-linear SEM used to gener-
ate the data and subsequently fit to the generated data
is described below.
Following the notation from above, xj is the indepen-

dent variable of primary interest, Mj is the continuous
mediating variable, w is a continuous time-invariant cov-
ariate, and tj represents time-point. Using the latent
variable notation, we define a continuous unobserved
outcome Y∗

ij that takes a value of 1 only if Y∗
ij > 0 for j

= 1 to 6. This model can be expressed as follows (drop-
ping the subject index i for simplicity), where:

Measurement model

Y∗
j = U1 + tjU2 + λMj + κzj + εj (2)

Just as in the simpler models above, if we assume �j ~
N(0,1) this defines a probit model and if we assume �j ~

Logistic (0,
π2

3
) this defines a logit model.

Structural model

U1 = α1 + γ2w + ς1 (3)

U2 = α2 + ς2 (4)

For j = 1 to 6,

Mj = α3 + γ1zj + ς2+j, (5)

where Ui1 represents a latent intercept, Ui2 represents
a latent slope, zij represents the repeated binary predic-
tor and Mij represents the repeated continuous media-
tor. The errors in the structural model are normally
distributed with cov(ζ1, ζ2) = Ψ, cov(ζ3 : ζ8) = Θ and ζ(2
+j) ~ N(0, θ). This model can be represented in a path
diagram (Figure 1), a visual display of the

interrelationships between variables typically presented
along with SEMs.
The parameters of the SEM defined in Equations 2 - 5

include: l, which represents the effect of the repeated
mediator on the repeated outcome; g1, which represents
the effect the repeated primary independent variables on
the repeated mediator; g2, which represents the effect of
the continuous covariate on the repeated outcomes; and
�, which represents the effect of the repeated indepen-
dent variable on the repeated outcome.
In this simulation study we focused on the total effect

of the repeated binary predictor and the repeated binary
outcome, which is represented by lg1 + �. The interpre-
tation of the parameters of this model is subject-specific
since it represents the effect of a predictor on the out-
come when the individual intercept, individual slope and
mediator value are held constant.
When the structural model Equations (3-5) are substi-

tuted into the measurement model Equation 2, the full
model can be rewritten as:

Y∗
j = ωj + ς1 + tjς2 + λς2+j + εj

where ωj = (a1 + l a3) + g2w + a2 tj + (� + lg1) zj.
The following presents the non-linear link formats for
the probit and logit SEMs where the structural equa-
tions have been substituted into the measurement equa-
tion (the subject index i has again been dropped for
simplicity):
Probit SEM

E(Y1|ς1, ς2, ς2+j) =
Φ(ωj + ς1 + tjς2 + λς2+j)

(6)

Logit SEM

E(Yj|ς1, ς2, ς2+j) =
exp(ωj + ς1 + tjς2 + λς2+j)

1 + exp(ωj + ς1 + tjς2 + λς2+j)

(7)

To fit these models, Mplus uses maximum likelihood
estimation when a logit link is used and weighted least
squares estimation with a robust estimation of standard
errors (WLSMV) when a probit link is used [19].

Non-linear mixed effects model
The following NLMM was evaluated in comparison to
the SEM:

Y∗
j = β0 + β1w + β2tj + β3zj + b1 + b2tj + ej. (8)

where b1 is a random individual intercept and b2 is a
random individual slope. Since the objective is to evalu-
ate the total effect of the main independent variable, the
mediator is excluded from this model [20]. The regres-
sion coefficient associated with the primary predictor

Figure 1 Path diagram. The non-linear structural equation model
defined in Equations 2 to 5.
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(b3) therefore represents its total (i.e. direct plus indir-
ect) effect on the outcome [14].
Probit NLMM
The probit model assumes that ej ~ N(0,1) and can be
written as:

E(Y|b1, b2) = Φ(νj + b1 + b2tj) (9)

where νj = b0 + b1 w + b2 tj + b3 zj.
Logit NLMM

the logit model assumes that ej ~ Logistic (0,

√
π2

3
) and

can be written as:

E(Y|b1, b2) =
exp(νj + b1 + b2tj

1 + exp(νj + b1 + b2tj)
(10)

These models can be fit with SAS PROC NLMIXED
which estimates parameters via maximum likelihood
[21]. We note that the regression coefficients of the
NLMM are interpreted conditional on the random indi-
vidual intercept and random individual slope, but mar-
ginal on the residual error of the mediator (since the
mediator is not included in the model).

Comparing NLMMs to SEMs
As noted previously, the SEM and NLMM condition dif-
ferently on the mediating variable. Specifically, the SEM
conditions on the random intercept and slope as well as
on the residual variance of the mediating variable, while
the NLMM conditions only on the random intercept
and random individual slope. Thus estimates from the
two types of models are not directly incomparable.
Instead, to compare parameters from the NLMM to
that of the SEM, we must first re-scale the regression
coefficient from the NLMM so that it represents the
effect of the primary predictor variable zj conditional on
the mediator. To determine the scaling factor, we
rewrite the SEM (for both the probit and logistic mod-
els) conditional only on the variance of the random
intercept and slope to mimic the conditioning in the
NLMM.
Comparing probit models
For the probit SEM, we generated the data according to
the model described in Equations 6 and 7. Conditioning
only on the variances of the random intercept and slope
(ζ1 and ζ2), but not on the variance of the mediator (ζ2
+j), it can be shown that:

E(Y|ς1, ς2) = P(Y∗ > 0|ς1, ς2)
= P(εj + λς2+j > −(ωj + ς1 + tjς2)|ς1, ς2).

(11)

The sum of terms on the left-hand side of the inequal-
ity do not have a standard normal distribution since lζ2
+j is added to �j which itself has a standard normal

distribution. In order to express the probability in Equa-
tion 11 using the standard normal cumulative probabil-
ity function, we re-scale the terms on either side of the
inequality by the standard deviation of �j +lζ2+j to create
a standard normal random variable:

= P
(

εj + λς2+j√
1 + λ2θ

>
−(ωj + ς1 + tjς2)√

1 + λ2θ
|ς1, ς2

)

= �

(
(ωj + ς1 + ς2tj√

1 + λ2θ

)

Conditioning on only the variance of the random indi-
vidual intercept and slope, all regression coefficients are
divided by the factor

√
1 + λ2θ . For example, the regres-

sion coefficient associated with zj, which was � + l g1, is

now
κ + λγ1√
1 + λ2θ

. Thus, the model parameters from the

SEM are scaled to the variance of �j + lζ2+j which is 1 +
l2 θ and the model parameters from the NLMM are
scaled to the variance of �j which is 1, resulting in a

scaling factor of

√
1 + λ2θ

1
Parameter estimates from the

SEM and NLMM must be on the same scale before
making direct comparisons. For example, the total effect
of the main independent variable from the probit
NLMM, b3, which is also conditioned only on the ran-
dom individual intercept and slope (Equation 9) should
be multiplied by a factor of

√
1 + λ2θ before it is com-

pared to the total effect from the probit SEM, � + lg71.
Direct comparisons of parameter estimates from the
NLMM to those from the SEM without first re-scaling
would underestimate effects by a factor of

√
1 + λ2θ . In

the current study we present the conditional total effect
estimates from the SEM and compare them to scaled
and unscaled NLMM estimates. Note that in the analy-
sis of real (i.e. non-simulated) data, true parameter
values are unknown and therefore must be estimated.
We describe in the appendix two approaches for rescal-
ing estimates in practice to allow direct comparisons
between NLMMs and SEMs or to compute mediated
effects via NLMMs only.
Comparing logistic models
Unlike the probit model, when the logit SEM is condi-
tioned on only the random intercept and slope, the true
relationship between the predictor and the outcome no
longer follows a logistic model. That is, the distribution
of the terms on the left-hand side of Equation 11 in a
logit SEM does not follow a logistic distribution since
the sum of a normal random variable (�j) and logistic
random variable (ζ2+j) does not follow a logistic distribu-
tion. The result of this is that the scaled coefficients
from the logit NLMM only approximate the mediated
relationship described in a logit SEM. A similar situation
occurs, for example, when comparing a non-linear
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mixed model to a non-linear generalized estimating
equation as noted by Fitzmaurice, Laird, and Ware [18].
The scale factor for the logit model is created in the

same was as it was for the probit model. The regression
coefficient representing the total effect of the main inde-
pendent variable (b3) from the logit NLMM, can be
multiplied by the standard deviation of �j + lζ2+j and
divided by the standard deviation of �j. The scaling fac-
tor for the logit model is therefore:

[(
π2

3
+ λ2θ

)
/
π2

3

]1
2 .

Simulation plan
Data generation and model fitting
Because the goal of this study was to evaluate the per-
formance of NLMM relative to SEMs in the setting
where the SEM is presumed to be optimal, the SEM fra-
mework was used to generate the mediated binary data
for the simulation studies. Data were generated accord-
ing to Equations 2-5. For the probit model, errors in
Equation 2 were assumed to be independent standard
normal random variates. For the logistic model, the
errors in Equation 2 were assumed to be independent
standard logistic random variates. Data generation was
repeated to create 1000 datasets. NLMM were fit with
SAS (Version 9.2) PROC NLMIXED and SEM were fit
with Mplus (Version 5.2).

Simulated data scenarios
We evaluated the performance of NLMM against SEM
across several scenarios by examining the following:

• Sample size: ranging from 100 to 1000. The range
of sample sizes was chosen to evaluate sample sizes
that achieved adequate power with a moderate effect
size.
• Effect size: ranging from 0.2 to 0.5. The range of
effect sizes represent small to moderate effect sizes
as defined by Cohen [22].
• Distribution of effects: three cases were evaluated:
equally distributed direct and indirect effects, pri-
marily direct effects of the main independent vari-
able, and primarily indirect effects of the main
independent variable. The total effect sizes (0.3 for
probit models and 0.4 for logit models) were chosen
such that adequate power was obtained when direct
and indirect effects were equally distributed.

Model performance was assessed based on the follow-
ing: 1) Bias- the difference between the true parameter
value and the mean observed parameter value divided
by the true parameter value; 2) Coverage probability-

the percentage of the 1000 95% confidence intervals that
contained the true parameter value; 3) Power - the per-
centage of the 1000 datasets in which the null hypoth-
esis that the total effect of the main independent
variable is equal to zero was statistically significant.

Results
Logistic link
The results evaluating the conditional total effect from
simulations evaluating sample size are displayed in
Table 1. For the logistic model, a sample size of 700 was
required to obtain adequate (83%) power to detect a
moderate effect size (0.3) for both the SEM and NLMM.
Across all sample sizes, the estimates of power for the
scaled NLMM were comparable to the SEM. As
expected, for the unscaled NLMM, effects were underes-
timated in all cases. For example with a sample size of
600, the bias of the SEM was -0.6% while the bias for
the unscaled NLMM was -3.8% and the bias of the
scaled NLMM was -1.6%. Once the scale factor was
applied to the NLMM, however, the estimated bias
decreased and the power and coverage probability esti-
mates were similar to that of the SEM. The results for
the unscaled NLMM are therefore not described in sub-
sequent tables as they are not directly comparable to
the SEM results.
The results of the simulations in which the effect size

(Table 2) and effect distribution (Table 3) were varied
also demonstrated that the appropriately scaled NLMM
produced comparable estimates of the total effect of the
exposure relative to the SEM. The scaled NLMM results
were similar to the comparison SEM with low bias at all
effect sizes (ranging from -2.0% to 0.4%) and effect dis-
tributions (ranging from -1.4% to -1.0%). As expected,
the models showed increasing power with increasing
effect sizes (e.g., from 37% power for an effect size of
0.2 to 98% power for an effect size of 0.5) and power
was highest (91%) when the effect distribution was pri-
marily direct.

Probit models
For the probit model, the SEM showed consistent posi-
tive bias (i.e., no simulation scenario with the probit
model resulted in a negative bias for the probit SEM).
For example, the estimated bias for a sample size of 100
was 51.5% and decreased to 7.5% with a sample size of
1000. In comparison, the scaled NLMM had bias ran-
ging from 2.7% to -2.1%. Notably, the estimated power
for the NLMM was consistently higher than that of the
comparison SEM. In the effect size simulation scenarios,
bias in the SEM appeared to increase with effect size
(effect sizes of 0.2, 0.3, and 0.5 resulted in biases of
7.6%, 8.8%, and 11.7%, respectively). In contrast, the
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probit NLMM showed relatively small bias (-0.7% to
1.7%) for all effect sizes. For the probit model, the scaled
NLMM generally performed better than the SEM, across
a range of sample sizes, effect sizes, and effect distribu-
tions, with higher estimated power and lower bias.

Positive bias in probit models
We explored possible explanations of the unexpected
positive bias observed for the probit SEM models. We
repeated simulations by first eliminating mediation from
the simulated scenarios to evaluate whether the positive
bias in the SEM persisted in unmediated settings. In
addition, we assessed different estimation methods,

including WLSMV (implemented in MPlus software)
and also maximum likelihood using iteratively re-
weighted least squares (implemented in Splus and SAS).
We found that the mean regression coefficient estimates
using WLSMV had larger bias in nearly all cases com-
pared to estimates using maximum likelihood and itera-
tively reweighted least squares (Table 4). The positive
bias for the WLSMV method was avoided only with a
sample size of 5000. Our results suggest that the
WLSMV, which is used by Mplus, may produce posi-
tively biased results. This bias was also present, however
to a smaller degree, in the NLMM fit with maximum
likelihood.

Table 1 Impact of sample size. Based on 1000 simulated datasets with moderate effect size (0.3) equally distributed
between direct and indirect effects. Impact of sample size on model performance in evaluating the total effect of the
repeated independent variable on the repeated outcome.

Simulated Data SEM Unscaled NLMM Scaled NLMM

Sample Size Bias (%) Coverage (%) Power (%) Bias (%) Coverage (%) Power (%) Bias (%) Coverage (%) Power (%)

Logit Link Results

200 1.3 95 35 -2.3 95 34 -0.09 95 35

300 2.3 96 49 -0.8 96 47 1.4 96 48

400 -0.8 95 57 -4.1 95 56 -1.9 95 56

500 0.2 94 68 -2.8 95 68 -0.6 95 68

600 -0.6 94 77 -3.8 94 77 -1.6 94 77

700 0.1 94 83 -3.0 95 83 -0.8 94 84

Probit Link Results

100 51.5 97 20 -4.7 94 31 2.1 94 30

200 20.4 96 42 -4.3 94 53 2.7 94 54

300 11.4 95 57 -7.1 94 72 -0.2 95 72

400 8.3 93 69 -7.9 94 80 -1.2 94 80

500 8.8 95 79 -6.7 93 88 0.2 94 88

600 7.5 94 87 -7.0 93 93 -0.2 94 94

1000 7.5 94 87 -8.8 92 99 -2.1 94 99

Table 2 Impact of effect size. Based on 1000 simulated datasets with sample size of 500 equally distributed between
direct and indirect effects. Impact of effect size on model performance in evaluating the total effect of the repeated
independent variable on the repeated outcome.

Simulated Data SEM Scaled NLMM

Effect Size Bias (%) Coverage (%) Power (%) Bias (%) Coverage (%) Power (%)

Logit Link Results

0.2 -1.1 96 38 -2.0 96 37

0.3 0.2 94 68 -0.6 95 68

0.4 -0.6 96 89 -1.3 95 89

0.5 1.3 95 99 0.4 95 98

Probit Link Results

0.2 7.6 94 47 -0.7 95 58

0.3 8.8 95 79 0.2 94 88

0.4 11.1 93 95 1.7 93 98

0.5 11.7 95 >99 1.6 95 >99
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Real data example: alcohol and HIV disease progression
To demonstrate the application of both the logit and
probit NLMMs and SEMs evaluated in the simulation
study, we analyzed data from a prospective cohort study
evaluating the effect of alcohol use on HIV disease pro-
gression. Samet et al. have previously reported the ana-
lyses from this longitudinal cohort study [23]. The
original analyses combined data from two cohorts (the
HIV-ALC and HIV-LIVE cohorts), however, to illustrate
the models evaluated in this paper, we have used data
from the HIV-LIVE study only. For clarity of presenta-
tion, we limited the analyses to subjects who reported
any ART use during follow-up, had complete data on
the first four time-points (as Mplus and SAS have differ-
ent methods for handling missing data in these models),
and examined only the following key variables: heavy
alcohol consumption (yes vs. no), the main independent

variable; ART adherence (percentage of pills taken in
the last three days), the mediator; age, a potential con-
founder; and low CD4 cell count (dichotomized at <350
cells/μL), the primary outcome. Each variable was
assessed every six months for up to four years, however
for the current example only the first four time-points
were analyzed in order to maximize the number of sub-
jects with complete data. The resulting dataset was com-
posed of 98 individuals contributing 392 observations.
The total effect of heavy alcohol consumption on low
CD4 cell count was not significant for any of the SEMs
or NLMMs fit to the data. For the logit SEM, the total
effect estimate (SE) was 0.554(1.246) with an associated
p-value of 0.66. The scaled result from the logit NLMM
was similar: estimated total effect (SE) = 0.5107(0.701),
p = 0.47. However for the probit link, the estimated
total effects (SE) from the SEM and NLMM appeared to
differ substantially (probit SEM: 6.287(52.661),p = 0.91;
scaled probit NLMM: 0.303(0.391), p = 0.44). Thus con-
sistent with the results from the simulation study, the
logit SEM and NLMM produced similar estimates in the
real data example, whereas the probit SEM produced
estimated effects that appeared much larger in magni-
tude in comparison to the probit NLMM.

Discussion
The purpose of this study was to evaluate the perfor-
mance of NLMMs relative to SEMs in the analysis of
mediated longitudinal binary outcomes in a setting
where the SEM is presumed to be optimal. We found
model performance differed based on the link function
that was used in the non-linear portion of the models.
Based on simulations performed across a variety of set-
tings, the logistic NLMM performed well with respect
to bias, coverage probability and power relative to the
logistic SEM. The results were similar for the SEM and
scaled NLMM in the logistic model setting, with both
accurately estimating the effect of the time-dependent

Table 3 Impact of effect distribution. Based on 1000 simulated datasets with sample size of 500 and effect size of 0.4
for the logit link and effect size of 0.3 for the probit link. Impact of effect distribution on model performance in
evaluating the total effect of the repeated independent variable on the repeated outcome.

Simulated Data SEM Scaled NLMM

Effect Distribution Bias (%) Coverage (%) Power (%) Bias (%) Coverage (%) Power (%)

Logit Link Results

Equal -0.6 96 89 -1.3 95 89

Direct -0.6 95 91 -1.0 95 91

Indirect -0.2 95 90 -1.4 95 89

Probit Link Results

Equal 8.8 95 79 0.2 94 88

Direct 5.9 96 80 -0.9 95 90

Indirect 8.6 95 76 0.09 94 88

Table 4 Univariate Probit Model Results

Sample
Size

Effect
Size

WLSMV Bias ML-IRLS
(Splus)

ML-IRLS
(SAS)

250 0.3 1.7 1.4 1.5

500 0.3 0.4 0.3 0.3

750 0.3 0.6 0.5 0.5

900 0.3 0.1 0.007 0.007

1000 0.3 0.3 0.2 0.2

5000 0.3 -0.1 -1.6 -0.2

250 2.0 2.7 1.9 1.9

500 2.0 2.0 1.6 1.6

750 2.0 1.2 0.9 0.9

1000 2.0 1.0 0.8 0.8

500 -0.3 0.1 -0.05 -0.05

500 5.0 4.5 3.3 3.3

Simulated univariate probit model with a single predictor and single binary
outcome. Simulation results fit using weighted least squares with robust
standard errors (WLSMV) in Mplus and maximum likelihood via iteratively re-
weighted least squares (ML-IRLS) in Splus, and SAS.
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predictor on the longitudinal binary outcome. Applica-
tion of these techniques to a real-date example from a
prospective cohort assessing the effect of heavy alcohol
consumption on low CD4 cell count also illustrate the
similarity of results from the logit SEM and NLMM.
For the probit model, however, the SEM consistently

overestimated the total effects of the predictor and gen-
erally had larger bias and lower power compared to the
NLMM in both mediated and non-mediated data. The
larger bias may be due to the weighted least squares
estimation method used for the probit SEMs (fit with
Mplus), which differs from the maximum likelihood
estimation method used for the NLMM (fit with SAS)
and for the logistic SEM (fit with Mplus). In contrast to
the SEM, the scaled probit NLMM had good perfor-
mance (low bias and high power and coverage probabil-
ity) with adequate sample sizes. Similar results were
observed in the real data example where estimates from
the probit SEM appeared larger than those from the
probit NLMM.
The results showing similar estimated effects for the

SEM and NLMM in the logistic model setting are simi-
lar to results seen in the non-mediated case where SEM
was compared to the generalized estimating equations (a
non-SEM) technique. Palta and Lin [17] compared pro-
bit models for SEM and generalized estimating equa-
tions in the analysis of data from a cohort study and
found that when appropriately scaled, the two models
yielded similar results. They noted, however, that the
SEM allowed for more flexible specification of variance
structure and therefore allowed coefficients to be scaled
to provide marginal or cluster-specific interpretation.
To obtain scaled NLMM estimates in practice, it may

be preferable to model the mediation by fitting separate
equations, one for each pathway, using maximum likeli-
hood rather than weighted least squares (the only esti-
mation method currently available for probit link
models in MPlus). The potential burden of fitting multi-
ple equations separately rather than simultaneously
using SEMs may be outweighed by the benefit of using
maximum likelihood estimation which, in the probit
model simulations, appeared to produce less biased
results. In addition, estimating scale parameters and
using the product of coefficients method appears to pro-
duce acceptable estimates of the total effect of the expo-
sure. Our study demonstrated that results using this
approach were similar to those obtained when NLMM
results were scaled using true parameter values. If indir-
ect effects are of interest and the NLMM is used to ana-
lyze the mediated longitudinal binary data, scaling will
also be necessary. Unlike the case with linear models for
continuous outcome data, the product of coefficients
method is not equivalent to the “difference of coeffi-
cients” method of determining the indirect or mediated

effect [24] in the case of binary outcomes. Using the dif-
ference of coefficients approach in linear models, the
total effect is obtained by fitting a model that excludes
the mediating variable and the direct effect is obtained
by fitting a model including the mediating variable. The
indirect effect is then determined by taking the differ-
ence between the total effect and direct effect. However,
in the binary case, the scale of the direct effect obtained
from a model that includes the mediating variable is dif-
ferent from the scale of the total effect obtained from a
model that excludes the mediating variable [16]. As
demonstrated by MacKinnon et al., to obtain compar-
able estimates of the indirect effect in binary outcome
models, the total effect must be appropriately scaled
before the difference is taken.
This study presents results based on simulated data

from a single-mediator model. Conclusions from these
results may not be generalizable to scenarios with differ-
ent data characteristics. For example, in scenarios with
multiple mediators and pathways, the advantages and
disadvantages of NLMMs relative to SEMs may differ.
The performance of NLMMs and SEMs in other scenar-
ios, such as the analysis of nominal and ordinal out-
comes as well as the case of multiple mediators, should
be evaluated in future studies.

Conclusions
Overall, we found the NLMM performed sufficiently
well in the analysis of mediated longitudinal binary out-
comes with respect to bias, coverage probability, and
power. Under the logistic model, both the NLMM and
SEM had acceptable performance and the results for the
two types of models were similar. The NLMM requires
scaling of the regression parameters and this scaling
requires fitting additional models to separately estimate
direct effects of the predictor, and effects of the primary
predictor on the mediator. An advantage of the SEM is
that it can fit all of the linear and non-linear models
simultaneously, avoiding the burden of fitting multiple
models. For the probit model, however, the SEM esti-
mated using weighted least squares may overestimate
effects. In contrast, the NLMM appears to perform ade-
quately across a range of settings and therefore is pre-
ferred over the SEM for probit models.

Appendix
Estimating the Scaling Factor for Total Effect Estimates
Scaling effect estimates is necessary to obtain total effect
estimates that represent the total effect of the predictor
on the outcome, conditional on the mediation. This is
the case when one wishes to compare estimates from
SEMs to estimates from NLMMs, but also necessary if
one wishes to compute indirect (i.e. mediated) effects
using results from NLMMs only. The difference in scale
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for models with differing sets of predictors is due to the
variance of the residual error term being fixed. This is
not an issue in linear models where this variance is esti-
mated rather than fixed [16-18]. In practice, the
unknown parameters necessary for scaling, i.e. θ (the
variance of �j and l (the effect of the mediator on the
outcome), can be estimated by fitting the following addi-
tional models:

Mj = α0 + α1zj + εj (12)

Φ−1(Yj) = β0 + β1w + β2tj + β3zj + β4Mj + b1 + b2tj(13)

The first model (Equation 12) is similar to part of
the structural model in the SEM (Equation 5), but
instead is fit as a general linear model for longitudinal
data with Mj as the outcome and zj as the predictor
that allows correlation between the repeated observa-
tions. Using data from the alcohol and HIV example
described earlier, this would be a model with longitu-
dinal ART adherence measures as the outcome and
measures of heavy alcohol consumption as time-vary-
ing predictors. The second model is an NLMM model-
ing Yj as a function of a random intercept and slope,
and fixed effects for the continuous covariate (w), time
(tj), the repeated binary predictor (zj), and the repeated
mediator (Mj). For the HIV example, this would be a
model with low CD4 count as the outcome and
include both heavy alcohol consumption and ART
adherence as predictors.
Using Equations 12 and 13, the estimated variance of

�j provides an estimate of θ and the estimated coefficient
b4 associated with Mj provides an estimate of l. The
original, unscaled NLMM estimate of the total effect of
the primary predictor, b3 from Equation 8), can then be

rescaled by multiplying by the factor:
√
1 + λ̂2θ̂ for a

probit model (or
[(

π2

3
+ λ̂2θ̂

)
/
π2

3

]1
2 for a logit

model).
An alternative approach to using scaled regression

coefficients would be to model indirect and direct path-
ways separately and obtain the total effect by summing
the indirect and direct effects. That is, estimates of the
coefficients b3 and b4 associated with zj and Mj, respec-
tively (from Equation 13) can be used along with esti-
mates of the coefficient a1 associated with zj (from
Equation 12) to obtain the estimated total effect of the
main independent variable β̂3 + α̂1β̂4 .
In the current simulation study, we calculated the

total effects of the main independent variable using both
of the approaches described above. For the probit
model, both methods yielded results comparable to

those where the true parameters were known. The
rescaled NLMM resulted in a parameter estimate (stan-
dard error) of 0.407 (0.105) which is a bias of 1.7%. The
product of coefficients method yielded an estimate of
0.400 (0.102), which is a bias of 1.7%. Both estimates
were very similar to those obtained using true values for
the scaling factor, parameter estimate of 0.407 (0.096)
and bias of 1.7%.
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