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Abstract

Background: Estimating the disease prevalence and test accuracy (sensitivity and specificity) for two dependent
screening tests when the status of individuals who are negative on both tests is unverified represents a
considerable challenge, as the disease rates for individuals negative on both tests are not identifiable without
additional assumptions.

Methods: This article presents a unified framework for handling this non-identifiability problem using two-step
hierarchical informative prior on the sensitivities by two-stage Bayesian modeling with the characterized by joint
testing strategies based on the inherent attribute of screening/diagnostic tests. We assign a diffuse and less risky
two-step hierarchical informative uniform prior to the sensitivities while assigning a uniform (0,1) prior distribution
to the specificities and prevalence. Strategies for model evaluation, general global evaluations, and individual cell
checking are presented. Simulations are conducted under various scenarios to evaluate the performance of the
proposed method. Applications to real data are also presented to illustrate the potential impact and benefit of
the proposed method.

Results: Our results indicate that when the priors of sensitivities are assigned as appropriate two-step hierarchical
informative priors, or even in the absence of the priors for the specificities and prevalence, the parameters involved
in this study can still be estimated well. The advantages and limitations of this method in solving such problems
are discussed and compared with other two-stage methods.

Conclusions: We developed a two-stage Bayesian method for two dependent dichotomous screening tests with
unverified individuals who are negative on both tests, and addressed the ad hoc model evaluation and checking
procedures. The method can be understood easily and used conveniently by non-statisticians.
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Background
Screening programs for a specific disease or condition of
interest are typically divided into two stages. In the first
stage, a population of known size n is screened by simple
and rapid but imperfect tests to classify people as likely
or unlikely to have the disease or condition of interest.
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In the second stage, individuals who appear likely to
have the disease or condition are examined further using
a gold standard test to confirm the disease or condition.
To improve the sensitivity of these screenings, two sim-
ple and rapid tests are often used in the first stage [1]. If
either of the tests is positive, then a full evaluation of the
correct disease status using a gold standard classification
is undertaken in the second stage [2]. This strategy is
widely used in screening for chronic diseases, infectious
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Table 1 Data structure of two-stage Bayesian modeling
for two dependent dichotomous screening tests with
individuals who are negative in both tests unverified

Stage one Stage two

T2+ T2- Total D+ D- Total

T1+ x11 x10 x1. SI+ a11 a10 a1.

T1- x01 x00 x0. SI- [a01] [a00] a0.

Total x.1 x.0 n Total [a.1] [a.0] n

Note: SI, simultaneous testing; [] indicates that the frequencies are unavailable.
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diseases, and animal diseases [2-4]. One characteristic of
this strategy is that negatives in both tests are not verified
by a gold standard test because the disease probability in
the sub-population is so low that further investigations are
costly, unacceptable, and possibly unethical. Another
characteristic is that the two tests in the first stage are
often conditionally dependent on disease status and/or
non-disease status [5]. If the two screening tests have a
similar biological basis, as is often the case, the conditional
dependence assumption is suitable. For example, when we
use two fecal occult blood tests (occult blood tests and
immunohistochemical methods) for colon cancer screen-
ing, a positive occult blood test is often accompanied by a
positive immunochemical result; thus, the results of the
two tests are dependent [2].
Estimating the disease prevalence and test accuracy

(sensitivity and specificity) when the two tests are
dependent and when individuals negative on both tests
are unverified is a considerable challenge, as the disease
rate for individuals who are negative on both tests is not
identifiable without additional assumptions [5-9]. Li et al.
reviewed several methods for resolving the non-identifia-
bility problem in the framework of classical statistics
[8]. They classified these methods into two types. The
methods of the first type are intended to solve the non-
identifiability problem by introducing additional assump-
tions about the association of the two tests. Walter et al.
assumed that the two test errors were independent [9],
while van der Merwe also assumed that the two tests were
independent under the disease status but dependent
under non-disease status [10]. The methods in the second
case resolve the non-identifiability problem directly by
adding an assumption that is more likely to hold than the
independence assumption [7]. Bohning and Patilea pro-
posed a capture-recapture approach for screening using
two diagnostic tests with information on disease status
available for the test positives only [11]. Chu et al. pro-
posed latent class models for screening studies using two
screening tests, with a categorical disease status verified in
positives test only [7]. However, these studies did not pro-
vide sufficient insight and details to solve the problem [8].
Li et al. presented a unified framework for solving the
non-identifiability problem by saturating the model using
certain homogeneous association assumptions [8]. In their
paper, although the five distinct models provided different
estimators, they were all saturated models and provided
the same maximum likelihood. Therefore, they are not
differentiable in terms of goodness-of-fit [8].
Recently, Bayesian analysis has been used increasingly

to solve the non-identifiability problem using prior
information [12-17]. Briefly, the use of this analysis is
appropriate for three scenarios. The first involves the use
of Bayesian model averaging (BMA) to address this chal-
lenging estimation problem, as a different homogeneous-
dependent model can provide the same goodness-of-fit
for the data but with substantively different estimates [7].
The second scenario involves the application of BMA to
inferences over conditional independence and dependence
models for the estimation of disease prevalence in a situ-
ation involving two imperfect tests in the absence of a
gold standard [18]. The third scenario involves the admin-
istration of a moderately effective but relatively cheap
screening test to all subjects in the first stage, after which
a gold standard test is performed on a subset of the high
screen and low screen groups in the second stage [19].
This article presents a unified framework to handle

the non-identifiability problem by a two-stage Bayesian
model using two-step hierarchical informative uniform
prior on the sensitivities. We provide detailed Bayesian
modeling for stages one and two, the specification of the
prior distribution, and the calculation of the posteriors
of the parameter distributions. The strategies for model
evaluation and checking are proposed. We illustrate our
approach using an example and simulation and conclude
this article with a discussion and some remarks.

Methods
Two-stage Bayesian modeling
Data structure and estimated parameters
Table 1 presents the outcomes of two screening tests
(T1, T2) from a total of n subjects, with disease statuses
(D+, D-) verified only for individuals with at least one
positive test. D+ represents a true diseased condition,
whereas D- represents the non-diseased, as determined
by a gold standard test. Ti(+,-) (i = 1,2) represents the
results of the test i. Let vector x = (x11, x10, x01, x00) de-
note the observed number for each combination of two
test outcomes (1 or 0 for test positive or test negative).
Let SI (+,-) (abbreviation of Simultaneous testing) repre-
sent the outcomes of the simultaneous testing in stage
one, and let a11, a10, a01, a00 denote D+ SI+, D- SI+, D+

SI-, D- SI-, respectively. Because the full evaluation of
the disease status is not performed if neither of the two
tests is positive in the first stage, the frequencies of [a01]
and [a00] in the bracket are unobserved, whereas the total
frequency of both tests being negative a0. = [a01] + [a00]
is known.
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The prevalence is defined as π = P(D+). The sensitivity
and specificity for the ith test are defined as Sei = P(Ti+|D+)
and Spi = P(Ti-|D-), respectively. Furthermore, let CovDp
and CovDn be the covariances between the two tests for
diseases (CovDp) and for non-diseases (CovDn). Let ρD+
and ρD- be the correlation coefficients under the conditions
of disease and non-disease, and let PPVJE be the positive
predictive value of the simultaneous testing. These param-
eters are defined as follows [12,20,21]:

PPV JE ¼ SeJE:π

SeJE :π þ 1− SpJE
� �

1−πð Þ ð1Þ

where SeJE and SpJE denote the joint sensitivity and specifi-
city of the simultaneous testing (described in equation (6))

CovDp ¼ Se11−Se1Se2;; CovDn ¼ Sp22 − Sp1Sp2; ð2Þ

where Se11 = P(T1 +,T2 +|D+), Sp22 = P(T1 −,T2 −|D−)

ρDþ ¼ CovDpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Se1 1−Se1ð ÞSe2 1−Se2ð Þp ;

ρD− ¼ CovDnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sp1 1−Sp1ð ÞSp2 1−Sp2ð Þp

ð3Þ

Bayesian modeling for stage one
According to the screening programs, in the first stage
(see Table 1, left column), two simple and rapid but
potentially imperfect screening tests, denoted as T1 and
T2, are applied simultaneously to each of the units sam-
pled. If either individual test is positive, this condition
indicates a positive result of the joint test. The strategy
is often called simultaneous testing and seeks to obtain a
joint testing strategy with increased sensitivity [22]. Let
vector Px = (Px11,Px10,Px01,Px00) be the probabilities,
respectively, from the vector x = (x11, x10, x01, x00). Sup-
posing that n subjects are sampled randomly with pre-
valence π, the vector x has the following multinomial
sampling distribution:

xemultinomial Px11; Px10; Px01;Px00ð Þ; nð Þ ð4Þ

Considering that the two tests are conditionally
dependent under disease status and non-disease status,
the multinomial cell probabilities are given by
Px11 ¼ P T 1þ;T 2þð Þ ¼ π Se1Se2 þ CovDpð Þ þ 1−πð Þ 1−ðð
Px10 ¼ P T 1þ;T 2−ð Þ ¼ π Se1 1−Se2ð Þ− CovDpð Þ þ 1−πð Þ ðð
Px01 ¼ P T1−;T 2þð Þ ¼ π 1−Se1ð ÞSe2− CovDpð Þ þ 1−πð Þ Sð
Px00 ¼ P T1−;T 2−ð Þ ¼ π 1−Se1ð Þ 1−Se2ð Þ þ CovDpð Þ þ ð
In stage one, the individuals are classified as likely to
have the disease or condition of interest only if either
of the two test outcomes is positive. The joint sen-
sitivity and specificity of the simultaneous testing
(denoted by the subscript JE, for ‘Joint Either’) are as
follows:

SeJE ¼ P Tþ
1 ∪T

þ
2 jDþ� � ¼ Se1 þ Se2‐Se1Se2‐CovDp

SpJE ¼ P T ‐
1∩T

‐
2jD‐

� � ¼ Sp1Sp2 þ CovDn:

ð6Þ

Bayesian modeling for stage two
In the second stage, a gold standard test is used only for
positive samples from the simultaneous testing of the
first stage, whereas the negative samples are not verified
by the gold standard test (see the right-hand column in
Table 1). Obviously, in this case, the simultaneous test-
ing of the first stage and the gold standard testing of the
second stage constitute sequential testing [22]. This
sequential testing is used mainly to increase feasibility
because applying the gold standard test to the nega-
tives is often costly, unacceptable, and unethical. Given
that the gold standard test and the simultaneous testing
are independent and that the sensitivity and specificity of
the gold standard test are equal to 100%, the joint sensiti-
vity and specificity of the sequential testing (denoted by
the subscript JB, for ‘Joint Both’) are as follows:

SeJB ¼ P Tþ
JE∩T

þ
GSjDþ� � ¼ SeJESeGS ¼ SeJE

SpJB ¼ P T ‐
JE∪T

‐
GSjD−

� � ¼ SpJE þ SpGS − SpJESpGS ¼ 1

ð7Þ
where SeGS and SpGS are the sensitivity and specificity of
the gold standard (denoted by the subscript GS, for
‘Gold Standard’), respectively.
Let vector a = (a11, a10, a0.) denote the observed num-

ber for each combination in stage two, where a0. is
the sum of the test negatives from the first stage. Let
Pa = (Pa11,Pa10,Pa0.) represent the respective probabilities
from vector a. Consider that elements from the propor-
tion vector of multinomial a are required the probabil-
ities to sum to 1. The multinomial sampling distribution
is given by

aemultinomial Pa11; Pa10;Pa0:ð Þ; nð Þ ð8Þ
where the multinomial cell probabilities are given by
Sp1Þ 1−Sp2ð Þ þ CovDnÞ;
1−Sp1ÞSp2− CovDnÞ;
p1 1−Sp2ð Þ− CovDnÞ;
1−πÞ Sp1Sp2 þ CovDnð Þ:

ð5Þ
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Pa11 ¼ πSeJESeGS þ 1−πð Þ 1−SpJE
� �

1−SpGSð Þ ¼ πSeJE

Pa10 ¼ πSeJE 1−SeGSð Þ þ 1−πð Þ 1−SpJE
� �

SpGS ¼ 1−πð Þ 1−SpJE
� �

Pa0:: ¼ 1−Pa11−Pa10
ð9Þ

Prior distributions
For Bayesian statistics, we wish to use all available infor-
mation at the design stage but might prefer a more vague,
less risky prior at the data analysis stage [23]. To reduce
the influence of subjective opinions on the data analysis as
much as possible, we placed an informative prior distribu-
tion on a minimum number of parameters [24].
In principle, a uniform prior distribution or Beta prior

distribution can be used over the set of unknown param-
eters. We chose the uniform non-Beta prior distribution
because a uniform prior distribution is more easily access-
ible for non-statisticians and less risky in this study. For
example, to determine the value of α and β for a Beta prior
distribution, we need to know the corresponding mean
and standard deviation or the 2.5 and 97.5 percentiles
[25], whereas for a uniform prior distribution, we need
only to determine the range of estimated parameters. Es-
pecially for the main parameters (Se1, Se2, Sp1, Sp2,) in this
study, lower bound values for the uniform distribution are
often estimated securely based on expert opinion, pub-
lished papers, or even test kit instructions. For example,
an epidemiologist can easily be assured that the sensitivity
of the enzyme-linked immunosorbent assay (ELISA) for
HIV antibody screening is higher than 80% [4]; i.e., the
lower bound of the uniform distribution is 0.8. However, a
reasonable choice for the upper bound of a uniform prior
distribution is sometimes difficult to determine because
the accuracy of the test kit might differ under various
practical conditions. We use the method of two-step hier-
archical priors to set the upper bound of the uniform
distribution. For an estimated parameter, such as sen-
sitivity (Sei), we first provide a uniform prior distribution
(aSei, bSei) and then give bSei another uniform distribution
(b1Sei, b2Sei). The method of two-step hierarchical priors is
a good strategy if it is difficult to determine the prior
distribution using a one-step method; even though an
incorrect prior is set in step two, the risk of this ac-
tion resulting in a mistaken result is smaller than in a
one-step prior [26].
For sensitivity, we set two steps for the hierarchical

uniform priors:

Sei e uniform aSei; bSeið Þ; bSei euniform b1Sei; b2Seið Þ:
ð10Þ

For specificities and prevalence, we might set a uniform
prior distribution based on the characteristics of this type
of study (see the Discussion section):
Spi e uniform aSpi; bSpi
� �

;π euniform aπ; bπð Þ: ð11Þ

For covariances CovDp and CovDn, the feasible range
is determined by the sensitivities among the diseased
subjects and the specificities among the non-diseased
subjects, where 0 ≤ CovDp ≤min (Se1,Se2)Se1Se2 for the
diseased subjects and 0 ≤ CovDn ≤min(Sp1,Sp2)Sp1Sp2
for the non-diseased subjects [20]. Because prior informa-
tion regarding the two covariances is typically unavailable,
uniform prior distributions over these ranges can be used
for CovDp and CovDn:

CovDp euniform 0; min Se1; Se2ð ÞSe1Se2ð Þ;
CovDn euniform 0;min Sp1; Sp2ð ÞSp1Sp2:ð ð12Þ

Calculation of the posteriors of parameter distributions
The posteriors of parameter distributions were calculated
using Markov-chain Monte Carlo techniques, in particular
the Gibbs sampler in WinBUGS (MRC Biostatistics Unit,
Cambridge, UK) [27]. For the analyses presented in this
paper, inferences were based on 105,000 iterations after
discarding an initial burn-in of 5,000 iterations, with con-
vergence assessed by running multiple chains from various
starting values [28]. The WinBUGS code used in this paper
is available in the Additional files 1 and 2 and can be
altered easily for use with different data.

Model evaluation and checking
Model evaluation and checking are highly active areas of
Bayesian statistics research. Researchers can use various
statistics to determine the plausibility of an assumption
of interest in light of the observed data [29]. In this
study, we divide the model evaluation and the checking
of the assumptions into individual and overall diagnos-
tics. Individual checks are based on the cell in Table 1,
and overall diagnostics aim to check the more general
assumptions of the model by DIC [21], pD [5], and
the Chi-squared goodness-of-fit test. The technical
details were given in Additional file 3. Given the spe-
cial circumstance that the negatives for both tests are
unavailable, none of the methods could be used alone
in the preceding model checks because they diagnosed
the models from a different perspective. For example,
a local Chi-squared goodness-of-fit test is based only
on known cells. For this reason, it is recommended
that the above methods be combined for model
checking.
Below, we present an ad hoc preliminary, exploratory

model that serves to check the criteria, based on empi-
rical information for this type of study. If (1) the values
of DIC and pD are reasonable [5]; (2) the p-value of the
local χ2 test is close to 0.5 or far from zero or one [29];
(3) the 95% BCI of the estimated PPV (model key point)



Table 3 Posterior parameters and models checking for the
application of two-stage Bayesian models to the colorectal
cancers data

Posterior parameters Model evaluation and checking

Median (95% BCI) True value Median (95% BCI)

π 0.0065 (0.0043, 0.0095) PPV 0.08 0.0807 (0.0559, 0.1107)
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includes its actual value; and (4) most frequencies of the
cells in Table 1 fall within their corresponding Bayesian
credible intervals, we may conclude that the model fits
the data well based on the current information and at a
specified probability level.

Results and discussion
Results
Screening study for colorectal cancers
The data in Table 2 are based on the data of Castiglione
et al. [30]. That study compared rehydrated guaiac testing
(Hemoccult) on three consecutive bowel movements with
immunochemical testing using reversed passive haemagglu-
tination (RPHA—Hemselect) on the first bowel movement
only to detect colorectal cancers or adenomas ≥ 10 mm in
5727 individuals aged 40–59 years. Subjects with a posi-
tive hemoccult and/or a positive/borderline hemese-
lect test were invited to undergo pancolonoscopy. A
double-contrast barium enema was performed when
pancolonoscopy was not possible. Further details of the
methods used in the study were provided by Castiglione
et al. [2], and the data were analyzed by Geoffrey Berry
et al [6].
According to the description in of Prior distribution

section of this paper, we placed hierarchical uniform
priors on Se1 and on Se2. These hierarchical priors were
elicited based on the opinions of a co-author (Dr. Hao
Yu) and on published papers [2,30]. The expert opinion
and previous information showed that the sensitivity of
test 1 (rehydrated hemoccult) was less than the sensitivity
of test 2 (RPHA-Hemeselect) and that the values of their
lower bounds values were at least 0.5 and 0.6, respectively.
The values of the upper bounds for Se1 and Se2 were
assigned as much diffuse, less risky two-step hierarchical
priors, as follows:

Se1 euniform 0:5; bSe1ð Þ; bSe1 e uniform 0:55; 0:99ð Þ;
Se2 euniform 0:6; bSe2ð Þ; bSe2 e uniform 0:65; 0:99ð Þ:

For the specificities and prevalence, we set the following
uniform prior:

Sp1 e uniform 0; 1ð Þ; Sp2 e uniform 0; 1ð Þ;π e uniform 0; 1ð Þ:
Table 2 Observed frequencies in the screening study for
colorectal cancers in 5727 individuals aged 40–59 years [6]

Stage one Stage two

T1+ T1- Total D+ D- Total

T2+ 39 91 130 SI+ 29 338 367

T2- 237 5360 5597 SI- [a01] [a00] 5360

Total 276 5451 5727 Total [a.1] [a.0] 5727

Note: T1, rehydrated Hemoccult; T2, RPHA-Hemeselect; SI, simultaneous testing; []
indicates that the frequencies are unavailable.
For the covariances CovDp and CovDn, the uniform
priors were assigned according to equation (12).
It is clear from Table 3 that the results from the

two-stage Bayesian model with two-step hierarchical
prior on Se1 and Se2 fit the data well in accordance
with the criteria presented in the Model evaluation
and checking section. All of the estimated values were
close to their true values, and all fell within 95% Bayesian
credible intervals over their corresponding true values.
The effective number of parameters, a pD of appro-
ximately 3.9, indicates that the two-stage Bayesian
strategy substantially improves the identifiability of
the models. The χ2 = 0.002 and P = 0.61 values indi-
cate that the distributions of the replicated and actual
data are similar.
Table 3 shows the sensitivity and specificity of joint

testing to be approximately 0.81 and 0.94, respect-
ively, with the strategy of joint-simultaneous testing
adding approximately 0.13 (SeJE (0.8103) minus Max
(Se1, Se2) (0.6825)) to the sensitivity at the expense of
only an approximate loss of 0.04 (SpJE (0.9405) minus
Max(Sp1, Sp2) (0.9812)) in specificity for the colorectal
cancer data. This result conformed to the theory of joint-
simultaneous testing. The correlation coefficients under
disease and non-disease status, which were approximately
0.4 and 0.1, respectively, suggested moderate and weak
dependence under the conditions of disease and non-
disease, respectively.
To analyze the influence of the prior distribution

of sensitivities (Sei, (i = 1,2)) on posterior distributions,
the non-informative prior, pessimistic and optimistic
two-step hierarchical informative priors were assigned,
respectively, as below:

Sei e uniform 0; 1ð Þ;
Sei e uniform 0:1; uniform 0:2; 0:99ð Þð Þ;
Sei e uniform 0:8; uniform 0:9; 0:99ð Þð Þ:
JE

Se1 0.6040 (0.5048, 0.8834) x11 39 39 (24, 58)

Se2 0.6825 (0.6039, 0.9036) x10 91 91 (67, 117)

Sp1 0.9812 (0.9772, 0.9849) x01 237 237 (200, 277)

Sp2 0.9559 (0.9513, 0.9603) x00 5360 5359 (5314, 5402)

SeJE 0.8103 (0.6503, 0.9557) a11 29 30 (16, 46)

SpJE 0.9405 (0.9360, 0.9450) a10 338 338 (296, 382)

pD = 3.9 DIC = 39.7

χ2 = 0.0002 P = 0.6101
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For the specificities and prevalence, the following
uniform priors were assigned:

Spi e uniform 0; 1ð Þ;π e uniform 0; 1ð Þ:

Table 4 shows that prior information of the sensitivities
produced substantive influence on the posterior distri-
butions. The hierarchical informative priors on the
sensitivities must be assigned reasonably in these types of
studies.
Berry et al. analyzed the data using maximum likelihood

by fitting the four versions of the models: (1) the inde-
pendence model, (2) independence in the non-diseased
group, (3) independence in the diseased group, and (4) the
dependence model [6]. Based on the χ2 test statistics, our
models provide a better fit to the data than those in the
Berry et al. paper. In addition, our method can estimate
parameter intervals that were not reported in the
Berry et al. paper. In fact, it is difficult for the method of
Berry et al. to calculate the confidence intervals of
certain complex statistics involved in joint simultan-
eous testing, such as the joint positive predictive value
(PPVJE), joint sensitivity (SeJE), and joint specificity (SpJE),
which are important in evaluating model fitting in this
type of study.
Simulation studies
To further illustrate the performance of the two-stage
Bayesian models, we applied them to a series of simu-
lated data sets with a conditional correlation coefficient
of ρD+ = 0.5 for the diseased and ρD- = 0.4 for the non-
diseased, as would typically be found in practice. Be-
cause our models contain a large number of parameters
and because the study design has been associated with a
wide range of prevalence values, sample sizes, and test
properties, it is impossible to investigate the perform-
ance of these models across all possible scenarios. We
therefore selected a range related to the actual screening
and diagnostic tests, based on the following parameters:
Table 4 Influence of the prior distributions of sensitivities on

Sei ~ U(0, 1) S

Median (95% BCI)

π 0.0102 (0.0044, 0.1793)

Se1 0.3053 (0.0075, 0.9666)

Se2 0.2658 (0.0055, 0.9397)

Sp1 0.9805 (0.9740, 0.9851)

Sp2 0.9540 (0.9434, 0.9595)

SeJE 0.5162 (0.0293, 0.9861)

SpJE 0.9398 (0.9276, 0.9445)

Note: U, uniform distribution; BCI, Bayesian credible interval.
(1) low prevalence and large sample size, such as
cancer screening for community population [30]
and HIV-antibody screening for blood donors [31].
(1.1) high test accuracy, (π, n, (Se1, Sp1), (Se2, Sp2)) =

(0.01, 20000, (0.90, 0.95), (0.95, 0.90));
(1.2) low test accuracy, (π, n, (Se1, Sp1), (Se2, Sp2)) =

(0.01, 20000, (0.60, 0.70), (0.70, 0.60)).
(2) high prevalence and small sample size, such as

the screening of suspicious patients in the hospital
or clinic.
(2.1) high test accuracy, (π, n, (Se1, Sp1),

(Se2, Sp2)) = (0.40, 200, (0.90, 0.95), (0.95, 0.90));
(2.2) low test accuracy, (π, n, (Se1, Sp1),

(Se2, Sp2)) = (0.40, 200, (0.60, 0.70), (0.70, 0.60))

We also examined the consequences of specifying
different prior information, which were divided into the
four scenarios (Table 5) given below:

(1) informative priors for model: the prior density of
the estimated model parameters (Se1, Se2, Sp1, Sp2,
and π) was centered at their true values.

(2) informative priors for sensitivities alone:
the prior density of the sensitivities alone was
centered at their true values, whereas the
specificities and prevalence were assigned as
non-informative priors.

(3) two-step informative priors for sensitivities alone:
the priors of the sensitivities were assigned
according to a two-step hierarchical prior with their
upper bounds assigned as much vaguer and less
risky priors, as described in the Prior distribution
section.

(4) informative priors for specificities alone: the
prior density of the specificities alone was
centered at their true values, whereas the
sensitivities and prevalence were assigned as
non-informative priors.

The results of applying our models to the simulated
data sets are given in Tables 6 and 7.
posterior distributions

ei ~ U(0.1, U(0.2, 0.99)) Sei ~ U(0.8, U(0.9, 0.99))

Median (95% BCI) Median (95% BCI)

0.0130 (0.0056, 0.0323) 0.0055 (0.0038, 0.0075)

0.2461 (0.1065, 0.1065) 0.8691 (0.803, 0.9612)

0.2414 (0.1057, 0.7268) 0.8675 (0.8032, 0.9596)

0.9806 (0.9762, 0.9848) 0.9818 (0.9781, 0.9853)

0.9545 (0.9494, 0.9594) 0.9561 (0.9516, 0.9604)

0.3996 (0.1703, 0.8295) 0.9466 (0.8561, 0.9899)

0.9401 (0.9354, 0.9446) 0.9405 (0.9360, 0.9449)



Table 5 Priors of two-stage Bayesian modeling for simulation studies

True value Informative priors
for model

Informative priors
for Se alone

Two-step informative priors
for Se alone

Informative priors
for Sp alone

Se = 0.6 U(0.5,0.7) U(0.5,0.7) U(0.5,U(0.55,0.99)) U(0,1)

Se = 0.7 U(0.6,0.8) U(0.6,0.8) U(0.6,U(0.65,0.99)) U(0,1)

Se = 0.8 U(0.7,0.9) U(0.7,0.9) U(0.7,U(0.75,0.99)) U(0,1)

Se = 0.9 U(0.85,0.95) U(0.85,0.95) U(0.85,U(0.9,0.99)) U(0,1)

Se = 0.95 U(0.90,0.99) U(0.90,0.99) U(0.9,U(0.95,0.99)) U(0,1)

Sp = 0.6 U(0.5,0.7) U(0,1) U(0,1) U(0.5,0.7)

Sp = 0.7 U(0.6,0.8) U(0,1) U(0,1) U(0.6,0.8)

Sp = 0.8 U(0.7,0.9) U(0,1) U(0,1) U(0.7,0.9)

Sp = 0.9 U(0.85,0.95) U(0,1) U(0,1) U(0.85,0.95)

Sp = 0.95 U(0.90,0.99) U(0,1) U(0,1) U(0.90,0.99)

π = 0.4 U(0.3,0.5) U(0,1) U(0,1) U(0,1)

π = 0.1 U(0.05,0.15) U(0,1) U(0,1) U(0,1)

π = 0.01 U(0.005,0.015) U(0,1) U(0,1) U(0,1)

Note: π, prevalence; U, uniform distribution.
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Here, we would like to make the following general
observations:

(1) It is clear that, as long as the priors of the
sensitivities were correctly set, the models with
informative priors for the model, informative priors
for the sensitivities alone, and two- step informative
priors for the sensitivities alone produced similar
results, all of which were centered over the true
values. This finding suggests that the prior
distributions of the prevalence and specificities
could be reasonably assigned as uniform (0, 1) in
these types of studies.
Table 6 Posterior medians and 95 per cent posterior credible in
data, with low prevalence (π = 0.01) and large sample size (n =

True value Informative priors
for model

Informative priors
for Se alone

π = 0.01 0.0094 (0.0079,0.0120) 0.0095 (0.0080,0.0119)

Se1 = 0.6 0.6013 (0.5035,0.6944) 0.5971 (0.5063,0.6936)

Se2 = 0.7 0.6998 (0.6047,0.7949) 0.6904 (0.6036,0.7940)

Sp1 = 0.7 0.7000 (0.6941,0.7052) 0.6998 (0.6947,0.7054)

Sp2 = 0.6 0.5996 (0.5951,0.6045) 0.5999 (0.5948,0.6049)

pD 3.99 3.93

DIC 53.84 53.74

π = 0.01 0.0099 (0.0089, 0.0110) 0.0099 (0.0089, 0.0110)

Se1 = 0.90 0.8996 (0.8526, 0.9479) 0.9019 (0.8545, 0.9479)

Se2 = 0.95 0.9445 (0.9020, 0.9876) 0.9429 (0.9031, 0.9875)

Sp1 = 0.95 0.9500 (0.9472, 0.9528) 0.9499 (0.9469, 0.9528)

Sp2 = 0.90 0.8998 (0.8969, 0.9027) 0.8998 (0.8969, 0.9028)

pD 3.82 4.01

DIC 65.59 65.95
(2) For models with informative priors for the
specificities alone, the estimates of the
prevalence and sensitivities were biased, and the
corresponding credible intervals were very wide,
suggesting that the precision of the estimated
parameters was low. The negative pD-values meant
that informative priors for the specificities alone are
insufficient to estimate the parameters. Thus, the
Bayesian models are non-identifiable from the
perspective of probabilistic constraints [5]. The DIC
was decreased because of the negative pD.

(3) The parameter specificities were always estimated
with greater precision than the sensitivities when
tervals for the application of the models to simulated
20000)

Two-step informative priors
for Se alone

Informative priors
for Sp alone

0.0093 (0.0075,0.0118) 0.0115 (0.0072,0.0590)

0.5972 (0.5045,0.8695) 0.4181 (0.0195,0.9603)

0.6816 (0.6040,0.9019) 0.3656 (0.0177,0.9636)

0.700 (0.6945,0.7054) 0.6982 (0.6824,0.7057)

0.5998 (0.5948,0.6048) 0.5964 (0.5762,0.6044)

3.87 -14.72

53.63 35.09

0.0099 (0.0090, 0.0111) 0.0133 (0.0093, 0.0377)

0.8940 (0.8528, 0.9678) 0.5017 (0.0321, 0.9563)

0.9341 (0.9015, 0.9759) 0.5130 (0.0720, 0.9736)

0.9499 (0.9469, 0.9527) 0.9480 (0.9404, 0.9522)

0.8997 (0.8967, 0.9027) 0.8975 (0.8906, 0.9018)

4.17 -2.41

66.28 59.47



Table 7 Posterior medians and 95 per cent posterior credible intervals for the application of the models to simulated
data, with high prevalence (π = 0.4) and small sample size (n = 200)

True value Informative priors
for model

Informative priors
for Se alone

Two-step informative priors
for Se alone

Informative priors
for Sp alone

π = 0.40 0.3916 (0.3186, 0.4831) 0.3972 (0.3160, 0.5015) 0.3905 (0.3018, 0.4997) 0.3627 (0.2813, 0.5415)

Se1 = 0.6 0.6029 (0.5051, 0.6946) 0.6054 (0.5059, 0.6953) 0.6004 (0.5077, 0.8582) 0.6220 (0.3960, 0.9331)

Se2 = 0.7 0.6943 (0.6052, 0.7920) 0.6928 (0.6041, 0.7944) 0.6833 (0.6041, 0.9111) 0.7441 (0.5105, 0.9790)

Sp1 = 0.7 0.7009 (0.6106, 0.7915) 0.7073 (0.5872, 0.8308) 0.7093 (0.5799, 0.8478) 0.7087 (0.6046, 0.7958)

Sp2 = 0.6 0.5993 (0.5167, 0.6826) 0.5933 (0.5134, 0.6900) 0.5970 (0.5033, 0.7004) 0.6085 (0.5092, 0.6928)

pD 3.40 3.59 3.50 3.05

DIC 44.18 44.68 44.66 44.07

π = 0.40 0.3969 (0.3556,0.4395) 0.3971 (0.3499,0.4428) 0.3999 (0.3561,0.4462) 0.4209 (0.3588,0.6559)

Se1 = 0.90 0.9039 (0.8531,0.9477) 0.9011 (0.8525,0.9479) 0.8933 (0.8517,0.9581) 0.8443 (0.5371,0.9874)

Se2 = 0.95 0.9515 (0.9041,0.9879) 0.9531 (0.9035,0.9884) 0.9380 (0.9022,0.9808) 0.9022 (0.5775,0.9947)

Sp1 = 0.95 0.9549 (0.9069,0.9887) 0.9548 (0.8822,0.9968) 0.9570 (0.8863,0.9978) 0.9537 (0.9038,0.9886)

Sp2 = 0.90 0.9039 (0.8610,0.9415) 0.9024 (0.8459,0.9486) 0.9021(0.8496,0.9478) 0.8977 (0.8548,0.9376)

pD 2.69 3.28 3.13 0.81

DIC 29.26 30.41 30.25 27.99
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the prevalence was low. Because the specificities
relate to the negative subjects, when the prevalence
is low, there are more truly negative subjects
who provide more experimental information for
specificities than for sensitivities; thus, the
more precise posteriori estimates of specificities
are obtained.

All of the above results indicate that prior information
on the sensitivities plays a key role in these types of
studies. We consider one of the reasons might be that the
prevalence was low, because in absence of enough positive
individuals, the prior distributions of sensitivities produced
substantive influence on the posterior distribution.
The results from both practical case (Tables 3 and 4)
and simulation study (Tables 6 and 7) supported the
consideration.
As described in the Background section, one of

characteristics of two stage screening tests is that the
two tests in the first stage are often conditionally
dependent on disease status and/or non-disease status
[5]. To further study how the prevalence and test ac-
curacy estimates vary with the model assumptions
(dependent or independent) and to evaluate the impact
of the misspecification of different models on the esti-
mation of the prevalence and test accuracy, we per-
formed four sets of simulations under the assumptions
of the independent model for independent data, the in-
dependent model for dependent data, the dependent
model for independent data, and the dependent model
for dependent data. For ease of presentation and inter-
pretation, we considered moderate parameter values for
the prevalence, sample size, and test accuracy, as shown
below:

π; n; Se1; Sp1ð Þ; Se2; Sp2ð Þð Þ
¼ 0:10; 2000; 0:70; 0:80ð Þ; 0:80; 0:70ð Þð Þ:

Table 8 shows that the independent models might gen-
erate incorrect statistical inferences for the conditional
dependent data and larger DIC (323.08) values, indica-
ting that the model was not appropriate for the data. For
conditional independent data, the independent models
and dependent models had similar results closer to their
true values. Thus, we suggest that, when the researcher
is uncertain as to whether the data are dependent or
independent, the less risky dependent model should be
used despite the slight loss of precision among the
estimated parameters (widened credible interval).

Discussion
This article presents additional methods for the estima-
tion problem for screening studies using two screening
tests with the disease statuses being verified for test pos-
itives only. The core of the methods is that Bayesian
modeling is divided into two stages characterized by a
joint testing strategy based on the inherent attributes of
this type of screening. The first stage is a joint simultan-
eous testing consisting of two dependent binary tests.
The second stage is a special joint sequential testing that
consists of simultaneous testing in the first stage and a
gold standard test in the second.
Another method presented in this study involves

assigning a diffuse and less risky two-step hierarchical



Table 8 Posterior medians and 95 per cent posterior credible intervals for the application of the dependent and
independent models to simulated dependent and independent data (two-step informative priors for sensitivities alone
were assigned (see Table 5))

Dependent data Independent data

Dependent model Independent model Dependent model Independent model

π = 0.10 0.0963 (0.0830,0.1151) 0.1184 (0.1088,0.1277)* 0.1030 (0.0919,0.1162) 0.1000 (0.0900,0.1107)

Se1 = 0.70 0.6985 (0.6048,0.7960) 0.7971 (0.7841,0.7999)* 0.6558 (0.6028,0.7847) 0.6979 (0.6068,0.7940)

Se2 = 0.80 0.7935 (0.7044,0.8950) 0.8965 (0.8818,0.8999)* 0.7864 (0.7030,0.8942) 0.7994 (0.7057,0.8942)

Sp1 = 0.80 0.7978 (0.7775,0.8196) 0.8866 (0.8700,0.9028)* 0.7948 (0.7740,0.8156) 0.8002 (0.7801,0.8205)

Sp2 = 0.70 0.6981 (0.6792,0.7164) 0.7677 (0.7511,0.7846)* 0.6966 (0.6764,0.7170) 0.6992 (0.6797,0.7191)

pD 3.87 3.08 3.87 3.38

DIC 58.63 323.08 58.63 58.76

*: incorrect statistical inference.
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prior structure for sensitivities. Because reasonably in-
formative prior information is necessary for resolving
the non-identifiability problem in this type of study, we
emphasized the setting of the sensitivity prior distribu-
tion based on the following three points. First, the priors
of the sensitivity are more important than the priors of
the specificity or prevalence when the prevalence is
lower than 50%, as is often found in this type of study.
Second, we placed the prior information of the sensitivity
on the least possible quantity, i.e., diffuse prior or less
risky prior information, such as two-step hierarchical prior
structure, to reduce the influence of subjective opinion
as much as possible on the results. Third, we set the
prior structure to be as easy as possible for use by non-
statisticians so that uniform prior distributions could be
used in this study.
We found that when the priors of the sensitivities were

assigned as appropriate priors, such as two-step hier-
archical uniform priors, in the absence of priors for the
specificities and prevalence (e.g., assigning a uniform dis-
tribution on (0,1)), the parameters involved in this study
could still be estimated well. However, changing the prior
structure of the sensitivities has a substantive effect on the
estimators (Tables 4, 6 and 7). The reasons for these re-
sults are presented in the Simulation studies section. Here,
we would like to state that this finding has important
practical significance because the sensitivities (related to
the diseased population) can often, but not always, be
obtained more easily than the specificities (related to the
healthy population) in medical practice. This characteristic
is partially based on the increased feasibility of applying
the gold standard test to the diseased population com-
pared with the healthy population, owing to the frequent
invasiveness, expense, and sophistication of many gold
standard tests, particularly ones with further ethical impli-
cations. Therefore, we suggest that the prior structure of
the sensitivities should be thoroughly investigated for
scenarios in low-prevalence populations.
To our knowledge, this study is the first to estimate
test accuracy and disease prevalence for two dependent
dichotomous screening tests with unverified negative
individuals on both tests using two-stage Bayesian model-
ing. Recently, Bohning and Patilea, Chu et al., and Li et al.
proposed two-stage methods to address the non-iden-
tifiability problem [7,8,11]. Their two-stage estimation
methods differ from ours. In the first stage, Bohning and
Patilea [11], Chu et al., and Li et al. [7,8] estimated the
parameters of known cells; in the second stage, they
estimated the parameters of unknown cells by making
assumptions regarding the cell probabilities of various
homogeneous association models. They circumvented the
non-identifiability problem using a capture–recapture ap-
proach or constrained maximum likelihood estimation.
Because all of the models are saturated, homogeneous
association assumptions are not testable. Therefore, the
dependence structure modeling considered can only be
viewed as a sensitivity analysis [7]. They did suggest that
Bayesian methods that incorporate prior information
could be a reasonable alternative to obtain improved
estimates, although further research is needed [8]. Their
suggestion was an important factor in initiating our study.
Our two-stage approach has certain advantages over

the previous methods. First, our method can be under-
stood more easily and used with greater convenience by
non-statisticians because the procedure of constructing
the model fully agrees with the practical screening pro-
cedure. Additionally, the modeling often only involves
the prior distribution for the sensitivities, because the
prior distributions of the specificities and prevalence are
assigned a non-informative uniform distribution of (0, 1),
respectively. Moreover, the method of model checking is
simple, intuitive, and convenient, as pD and DIC can be
obtained directly using WinBUGS. Second, this method
improves non-identifiability more reasonably, as probabil-
istic constraints not deterministic constraints (simplifying
the model) are used. Third, the method could obtain more
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information to evaluate the screening strategy than the
capture–recapture approach or constrained maximum
likelihood estimation [7,8,11]. For example, the method
could conveniently calculate the joint sensitivities and
joint specificities and make corresponding statistical
inferences, such as 95% credible intervals (Table 3). In
the framework of frequency statistics, such as capture–
recapture approaches or constrained maximum likeli-
hood estimations, it is often difficult to obtain statistical
inferences about the joint sensitivities and joint specific-
ities in these types of studies.
Conclusions
We developed a two-stage Bayesian method for two
dependent dichotomous screening tests with unverified
individuals who are negative on both tests. We also ad-
dressed the ad hoc model evaluation and checking proce-
dures based on empirical information for these types of
studies. Although the practical example and simulation
studies considering various practical situations showed
that these models fit well, three points should be clarified.
(1) Due to the lack of full data, it is impossible to check
the model completely without further information. (2)
Although our Bayesian two-stage modeling improves
non-identifiability based on probabilistic constraints,
the informative prior information on the sensitivities
must be assigned reasonably, even though the prior could
be diffuse, as in the two-step hierarchical uniform prior.
(3) Using our real example and simulated scenarios related
to real-life situations, the priors of the sensitivities are
more important than the priors of the specificities. How-
ever, when the prevalence is large, especially if it is greater
than 50% (rare in medical screening tests), the same atten-
tion should be paid to the priors of the specificities.
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Additional file 1: The WinBUGS code, data and results.

Additional file 2: Figure S1. The convergence diagnosis.

Additional file 3: The technical details of model evaluation and
checking.
Abbreviations
BCI: Bayesian credible interval; DIC: Deviance Information Criterion;
pD: Effective number of parameters; PPV: Positive predictive value;
SI: Simultaneous testing.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LJ and CF conceived and conducted the study, and drafted the manuscript.
YH participated in the design, data generation and interpretation of the
analyses. ZP and LL participated in the simulation and interpretation of the
analyses. All the authors read and approved the final manuscript.
Acknowledgments
This work was supported by the National Natural Science Foundation of
China [grant number 81273184].

Received: 7 July 2014 Accepted: 11 September 2014
Published: 23 September 2014

References
1. Macaskill P, Walter SD, Irwig L, Franco EL: Assessing the gain in diagnostic

performance when combining two diagnostic tests. Stat Med 2002,
21(17):2527–2546.

2. Castiglione G, Zappa M, Grazzini G, Mazzotta A, Biagini M, Salvadori P,
Ciatto S: Immunochemical vs guaiac faecal occult blood tests in a
population-based screening programme for colorectal cancer.
Brit J Cancer 1996, 74(1):141–144.

3. Branscum AJ, Gardner IA, Johnson WO: Bayesian modeling of
animal- and herd-level prevalences. Prev Vet Med 2004, 66(1–4):101–112.

4. Liu P, Xiao S, Shi ZX, Bi XX, Yang HT, Jin H: Bayesian evaluation of the
human immunodeficiency virus antibody screening strategy of duplicate
enzyme-linked immunosorbent assay in Xuzhou Blood Center, China.
Transfusion 2011, 51(4):793–798.

5. Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E: Estimating disease
prevalence in a Bayesian framework using probabilistic constraints.
Epidemiology 2006, 17(2):145–153.

6. Berry G, Smith CL, Macaskill P, Irwig L: Analytic methods for comparing
two dichotomous screening or diagnostic tests applied to two
populations of differing disease prevalence when individuals negative
on both tests are unverified. Stat Med 2002, 21(6):853–862.

7. Chu H, Zhou Y, Cole SR, Ibrahim JG: On the estimation of disease
prevalence by latent class models for screening studies using two
screening tests with categorical disease status verified in test positives
only. Stat Med 2010, 29(11):1206–1218.

8. Li F, Chu H, Nie L: A two-stage estimation for screening studies using two
diagnostic tests with binary disease status verified in test positives only.
Stat Met Med Res 2011. Epub ahead of print.

9. Walter SD: Estimation of test sensitivity and specificity when disease
confirmation is limited to positive results. Epidemiology 1999, 10(1):67–72.

10. van der Merwe L, Maritz JS: Estimating the conditional false-positive rate
for semi-latent data. Epidemiology 2002, 13(4):424–430.

11. Bohning D, Patilea V: A capture-recapture approach for screening using
two diagnostic tests with availability of disease status for the test
positives only. J Am Stat Assoc 2008, 103(481):212–221.

12. Branscum AJ, Gardner IA, Johnson WO: Estimation of diagnostic test
sensitivity and specificity through Bayesian modeling. Prev Vet Med 2005,
68(2–4):145–163.

13. Cheng D, Stamey JD, Branscum AJ: Bayesian approach to average power
calculations for binary regression models with misclassified outcomes.
Stat Med 2009, 28(5):848–863.

14. Hanson TE, Johnson WO, Gastwirth JL: Bayesian inference for prevalence
and diagnostic test accuracy based on dual-pooled screening.
Biostatistics 2006, 7(1):41–57.

15. Stamey JD, Young DM, Seaman JW Jr: A Bayesian approach to adjust for
diagnostic misclassification between two mortality causes in Poisson
regression. Stat Med 2008, 27(13):2440–2452.

16. Suess EA, Gardner IA, Johnson WO: Hierarchical Bayesian model for
prevalence inferences and determination of a country’s status for an
animal pathogen. Prev Vet Med 2002, 55(3):155–171.

17. Xia M, Gustafson P: A Bayesian method for estimating prevalence in the
presence of a hidden sub-population. Stat Med 2012, 31(21):2386–2398.

18. Black MA, Craig BA: Estimating disease prevalence in the absence of a
gold standard. Stat Med 2002, 21(18):2653–2669.

19. Erkanli A, Soyer R, Stangl D: Bayesian inference in two-phase prevalence
studies. Stat Med 1997, 16(10):1121–1133.

20. Dendukuri N, Joseph L: Bayesian approaches to modeling the conditional
dependence between multiple diagnostic tests. Biometrics 2001,
57(1):158–167.

21. Spiegelhalter DJ, Best NG, Carlin BP: Bayesian measures of model
complexity and fit (with discussion). J R Stat Soc Ser B 2002, 64:583–640.

22. Su CL, Gardner IA, Johnson WO: Diagnostic test accuracy and prevalence
inferences based on joint and sequential testing with finite population
sampling. Stat Med 2004, 23(14):2237–2255.

http://www.biomedcentral.com/content/supplementary/1471-2288-14-110-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2288-14-110-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2288-14-110-S3.docx


Liu et al. BMC Medical Research Methodology 2014, 14:110 Page 11 of 11
http://www.biomedcentral.com/1471-2288/14/110
23. Berry SM, Carlin BP, Lee JJ, Muller P: Bayesian adaptive methods for
clinical trials. CRC press; 2010: 72.

24. Lu Y, Dendukuri N, Schiller I, Joseph L: A Bayesian approach to
simultaneously adjusting for verification and reference standard bias in
diagnostic test studies. Stat Med 2010, 29(24):2532–2543.

25. Joseph L, Gyorkos TW, Coupal L: Bayesian estimation of disease
prevalence and the parameters of diagnostic tests in the absence of a
gold standard. Am J Epidemiol 1995, 141(3):263–272.

26. Mao SS: Bayesian Statistics. Beijing: China Statistics Press; 2005:105–110.
27. Spiegelhalter DJ, Thomas A, Best NG, Lunn D: WinBUGS Version 1.4.3 user

manual. [http://www.mrc-bsu.cam.ac.uk/bugs]
28. Gelman A, Rubin DB: Inference from iterative simulation using multiple

sequences. Stat Sci 1992, 7:457–511.
29. Ntzoufras I: Bayesian Modeling Using WinBUGS. John Wiley & Sons, Inc:

Hoboken, New Jersey; 2009.
30. Castiglione G, Zappa M, Grazzini G, Sani C, Mazzotta A, Mantellini P, Ciatto S:

Cost analysis in a population based screening programme for colorectal
cancer: comparison of immunochemical and guaiac faecal occult blood
testing. J Med Screen 1997, 4(3):142–146.

31. Liu P, Yang HT, Qiang LY, Xiao S, Shi ZX: Estimation of the sensitivity and
specificity of assays for screening antibodies to HIV: a comparison
between the frequentist and Bayesian approaches. J Virol Met 2012,
186:89–93.

doi:10.1186/1471-2288-14-110
Cite this article as: Liu et al.: A two-stage Bayesian method for
estimating accuracy and disease prevalence for two dependent
dichotomous screening tests when the status of individuals who are
negative on both tests is unverified. BMC Medical Research Methodology
2014 14:110.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.mrc-bsu.cam.ac.uk/bugs

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Two-stage Bayesian modeling
	Data structure and estimated parameters
	Bayesian modeling for stage one
	Bayesian modeling for stage two
	Prior distributions
	Calculation of the posteriors of parameter distributions

	Model evaluation and checking

	Results and discussion
	Results
	Screening study for colorectal cancers
	Simulation studies


	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

