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Abstract

Background: The randomized controlled study is the gold-standard research method in biomedicine. In contrast,
the validity of a (nonrandomized) observational study is often questioned because of unknown/unmeasured factors,
which may have confounding and/or effect-modifying potential.

Methods: In this paper, the author proposes a perturbation test to detect the bias of unmeasured factors and a
perturbation adjustment to correct for such bias. The proposed method circumvents the problem of measuring
unknowns by collecting the perturbations of unmeasured factors instead. Specifically, a perturbation is a variable
that is readily available (or can be measured easily) and is potentially associated, though perhaps only very weakly,
with unmeasured factors. The author conducted extensive computer simulations to provide a proof of concept.

Results: Computer simulations show that, as the number of perturbation variables increases from data mining, the
power of the perturbation test increased progressively, up to nearly 100%. In addition, after the perturbation
adjustment, the bias decreased progressively, down to nearly 0%.

Conclusions: The data-mining perturbation analysis described here is recommended for use in detecting and
correcting the bias of unmeasured factors in observational studies.
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Background

The randomized controlled study is the gold-standard
research method in biomedicine. In contrast, the validity
of a (nonrandomized) observational study is often ques-
tioned because of factors that are not measured in the
study [1]. An unmeasured factor can produce a confound-
ing bias if it is associated with the studied exposure and
disease simultaneously. An unmeasured factor can also
exhibit effect modification; the exposure-disease relation-
ships are different depending on the presence or absence
of the unmeasured factor or on the different levels of in-
tensity. Figure 1 presents the relationships among expos-
ure (E), unmeasured factor (U), and disease (D).
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Correcting the bias of a factor with the confounding
and effect-modifying potential shown in Figure 1 pre-
sents no major challenge. Here, techniques such as
standardization should work well [1]. To perform the
correction, factors with biasing potential must be identi-
fied and measured in the study. However, this is often
not possible due to limited knowledge of what these fac-
tors might be or, if we have knowledge of them, the cost
constraint of actually measuring them.

This paper presents a novel method, termed perturb-
ation analysis, to detect and correct the bias of unmeas-
ured factors. The method circumvents the problem of
measuring unknowns by collecting the perturbations of
unmeasured factors instead. A perturbation variable (PV)
is a variable that is readily available, or can be measured
easily, and is potentially associated, though perhaps only
very weakly, with U (Figure 1). Note that a PV is
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Figure 1 Relations between exposure (E), disease/outcome (D),

unmeasured factor with confounding and/or effect modifying
potential (U), perturbation variable (PV), and collider (U’).
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associated with E and D only through U (Figure 1). If
this is not the case, then the variable by itself is a clas-
sical confounder for the E-D relationship and can be
adjusted for as such.

As an example, E is asbestos, D is lung cancer, and U is
smoking status (unmeasured in the study). Then, PV can
be anything not known to be associated with asbestos ex-
posure and lung cancer, but may be associated with smok-
ing status (causally or noncausally, directly or indirectly,
positively or negatively), such as personality traits, finger
color, breath odor, accessibility to convenience stores,
internet usage records, driving records, etc. As another
example, E is electromagnetic radiation, D is childhood
leukemia, but U is utterly unknown (or perhaps nonexis-
tent). Here, we may try virtually any variable.

However, care must be taken not to include any vari-
able that is associated with the collider of the E-D asso-
ciation. A collider, the U’ in Figure 1, is an effect/
consequence of both E and D [1]. Controlling a collider
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(or its perturbations) can aggravate the bias instead of
reducing it. To avoid this, one can collect only those
PVs measured before D occurs. If all the PVs in a study
precede D, the causal temporality principle dictates that
no PV can be associated with the colliders of the E-D
association.

The central tenet of the proposed perturbation analysis
is to collect a great number of PVs, i.e., hundreds, thou-
sands, or even more. The quickest way to obtain large
numbers of admissible PVs is to put in all the question-
naires and laboratory data that has been collected or mea-
sured before D occurs. Another possibility is through
record linkage of the study subjects to large existing data-
bases, e.g., data pertaining to health insurance, traffic vio-
lations, internet usage, etc., where a great number of
variables can be found or defined preceding the study out-
come [2]. If the subjects in one study are also taking part
in genome-wide association studies, the wealth of genomic
data (thousands or even millions of genetic markers)
could then provide yet another rich source for admissible
PVs, particularly because genes can be considered to pre-
cede any outcome studied. Essentially, the method repre-
sents a data-mining approach.

Methods

Bias of unmeasured factors

Before introducing the method of perturbation analysis, we
need a metric to quantify the bias of unmeasured factors
[3]. There are three variables involved: a binary exposure
(E), a binary disease/outcome (D), and a polytomous vari-
able (U), which represents the cross-tabulations of all un-
measured factors. Assume that U has a total of L (L >1)
levels (indexed by i). In the ith level, we let m; denote
the number of subjects, p; denote the exposure prevalence
[p;=Pr(E =1|U =1i)], q; denote the exposure odds [g; = p;/
(1-p)], r¥ denote the disease risk for an unexposed
subject [r# = Pr(D=1|E=0,U=1)], and ¢ denote
the disease risk for an exposed subject [ r¢{ = Pr
(D = 1|E = 1,U =i)]. In the population as a whole, the

Z mp;

exposure prevalence is p = ‘z:—, the exposure odds
m;

L

is g = %, the disease risk in an unexposed subject is

1
> mip
= <<, the disease risk in an exposed subject
Z m;(1-p;)
i
D mipiS
is 7= d<~——,
2 mip
i

crude RR = .

U

and the crude risk ratio is
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The standardized risk ratio (SRR) with the total popu-
lation taken as the standard is the focal point of this
paper and can be calculated as follows:

L
E m;r§
i=1

SRR = ———.

u
ir';
i=

(1)
> m

1

The numerator in [1] represents the total number of
subjects who would have contracted the disease if the
whole population were exposed, whereas the denominator
is the total number of diseased subjects if the whole popu-
lation were to be unexposed. As such, the index of SRR
represents the causal effect of the exposure in the popula-
tion at large. However, an observational study with U un-
measured does not permit a calculation of the index.

The bias of using the observed crude RR as a substitute
for the unknown SRR can be quantified using an equation.
Additional file 1: Supplementary Appendix 1 shows that the
ratio (CRR) is  CRR = S4leRR —

confounding  risk

1+p X 0EoR, DRR#
1+(1-p) X 0pop-1, pree ’
ance between the exposure odds ratios (EORs) and the dis-
ease risk ratios for the unexposed (DRR"s), and opop-t pree
is a weighted covariance between the inverse of the EORs
and the disease risk ratios for the exposed (DRR’s). Taking
a logarithm on both sides of the equation, we arrive at:

where oror prre is a weighted covari-

logSRR = logcrude RR
+ log[l + (1-p) X oo, DRR”]_lOg[l + P X OkoR, DRR"}-

(2)

If across the different levels of a U, an increase in ex-
posure prevalence is always associated with an increase
in disease risk (see left panel in Table 1), we will have:
oror, prr¢ > 0 and opop1 prpe < 0 (and also opop ppge

/ . .
> 0 and Oor!. DRRE < 0 in the next section). From [2],

we see that such a U is positively confounding, with
crude RR > SRR. On the other hand, if an increase in ex-
posure prevalence is always associated with a decrease in
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disease risk (right panel in Table 1), we will have a nega-
tively confounding U (0ror, prr+ < 0 and ogop-t prre > 0,

and also a’EOR’ pre < 0 and O';ZOR,I —— ), with

crude RR < SRR. If there is no variation in the exposure
prevalence (middle panel in Table 2) in the disease risk
(right panel in Table 2) or in both (left panel in Table 2)
across different levels of U, then OEORDRR* =

0ror, prre = O (and also U%ORT DRR* = O';ZOR,I‘ prre = 0)-
According to [2], there is no bias, and crude RR = SRR.

Note that the above analysis of bias (the presence/ab-
sence of bias and its direction, if present) is in agreement
with what was predicted from the potential-outcome
model [4,5].

Effects of the adjustment of a binary perturbation
variable

In the previous section, U is unmeasured and cannot be
standardized on in actual practice. It is tempting to ad-
just for (standardize on) a PV (Figure 1) that is readily
available. Assuming that a PV has a total of V (V>1)
levels (indexed by j), the computing formula is:

(3)

where, at the j th level of the PV, #; is the number of
subjects, s is the disease risk for an exposed subject
[sf=Pr(D=1[E=1,PV =)], and s is that for an

unexposed subject [sf = Pr(D = 1|E = 0,PV =)].

Theoretical analysis

We now examine the effects of the adjustment of a bin-
ary PV theoretically. Let ypy and o3, denote the mean
and variance of the prevalence of PV across different
levels of U, respectively. Using Taylor series expansion,
Additional file 1: Supplementary Appendix 2 shows that
the expected values of the log adjusted RR (after

Table 1 A hypothetical population with positive/negative confounding U

Level Population Positive confounding Negative confounding
o(fnU nu(mlser Exposure Disease risk among the  Relative risk Exposure Disease risk among the  Relative risk
! prevalence (p;) unexposed (r}) (re/r) prevalence (p;) unexposed (r{) (re/r)

1 2,500 0.76 0.6667 1.2632 0.24 04737 1.7593

2 2,500 0.60 0.4000 1.1667 040 03333 24000

3 2,500 040 03333 1.2000 0.60 0.2000 23333

4 2,500 0.24 0.1579 1.0556 0.76 0.1667 1.8947
Total 10,000 Crude relative risk (crude RR) = 1.75 Crude relative risk (crude RR) = 1.53

Standardized relative risk (SRR) = 1.20

Standardized relative risk (SRR) = 2.06
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Table 2 A hypothetical population without bias
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Level Population U is associated with neither E nor D U is not associated with E U is not associated with D
o(fi)U nu(n’;I.c)xer Exposure Disease risk Relative  Exposure Disease risk Relative  Exposure Disease risk Relative
! prevalence among the risk (rf/r{) prevalence among the risk (r{/r/) prevalence among the risk (r{/r{)
(p:) une)((,!:l)l;)sed (pi) unexposed (r}') (pi) unexposed (r')
i

1 3,000 040 0.30 1.50 040 040 1.54 0.80 0.30 1.50

2 2,500 040 030 1.50 040 030 152 0.60 030 1.50

3 2,500 040 0.30 1.50 040 0.25 1.45 040 0.30 1.50

4 2,000 040 0.30 1.50 040 0.20 142 0.20 0.30 1.50
Total 10,000 Crude relative risk (crude RR) = 1.50 Crude relative risk (crude RR) = 1.50 Crude relative risk (crude RR) = 1.50

Standardized relative risk (SRR) = 1.50

Standardized relative risk (SRR) = 1.50

Standardized relative risk (SRR) = 1.50

adjusting for the PV) and the log crude RR are related
through the following equation:

E(logadjusted RR)~ logcrude RR

! !
+ (“ X Tporct, pree Y X TkoR, DRR") X fovs

(4)
where U;EOR‘I,DRRE and G<EOR, prr¢  again are weighted
covariances (the primes indicate that they do not adopt
the same weights as in the previous opop1prre and

OEOR, DRR*, Tespectively), fpy is the ‘variance fraction’ of the

PV: f __ variance in the prevalence of PV across different levels of U
: pv total variance
0.2 ope
=_—" _ and a and b are two positive constants of less
ey X (1-pipy)
interest.

From [4], we see that adjusting for a PV where fpy =0
(an uninformative PV) is not useful: E(log adjusted RR)
=log crude RR. However, adjusting for a PV with fpy >0
(an informative PV) will, on average, push the log ad-
justed RR away from the log crude RR. Moreover, the
direction of this movement correctly indicates where the
unknown log SRR might be, i.e., in general we have E
(log adjusted RR) < log crude RR if SRR < crude RR (posi-
tive confounding) and E(log adjusted RR) > log crude RR
if SRR > crude RR (negative confounding). On the other
hand, if U is creating no bias from the outset (orop-1 prre

= OEOR, DRR* = OJEOR_I, DRRE — O-;EOR, DRR* = 0), there is no
need for any further adjustment because the crude RR is
already the sought-after SRR. From [4], we see that in this
case, adjusting for a PV (even if fpy > 0) will not perturb
the crude RR.

Results

Simulation studies

A binary PV for the hypothetical population in Table 1
is simulated. The prevalence of the PV in the four levels
of U is assumed to arrive from a beta distribution with
ppy =0.5 and fpy = 0.000, 0.005,0.010, ..., 0.100. A total
of 100,000 simulations were performed for each sce-
nario. Figure 2 presents the results of the adjustment of

the simulated PV for the hypothetical population in
Table 1. These data demonstrated that the Taylor approxi-
mation formula in [4] agrees quite well with the empirical
results (averages of log adjusted RRs in the simulations)
and that the adjustments are on average in the right
direction for positive confounding (SRR <crude RR,
panel A) and negative confounding (SRR >crude RR,
panel B). Note that here we are talking about the average;
Additional file 2: Tables S1 and S2 present the minimum,
Q1, Q3, and maximum of the log adjusted RR from the
100,000 rounds of simulations. Occasionally (though very
rarely), adjustment for one strong PV can go in the wrong
direction. A strong PV (a measured variable with a very
large fpv) can be considered as a misclassified surrogate
for the unmeasured confounder. Ogburn EL, 2012 [6] re-
cently also found that the adjustment for one strong surro-
gate confounder is not always beneficial. As for the
hypothetical population in Table 2 where U is not creating
a bias, we found that adjusting for the simulated PV does
not perturb the crude RR (Additional file 2: Tables S3-S5).

In situations where the prevalence of PV is distributed
as a mixture of beta distributions, the results were basic-
ally the same (Additional file 2: Tables S6-S10).

Perturbation analysis using a panel of perturbation
variables
As shown in the previous section, adjusting for an in-
formative PV will produce an adjusted RR that is a little
closer, on average, to the unknown SRR than the crude
RR is. With only one PV, such a minuscule bias reduc-
tion may be unremarkable. However, one can construct
a powerful perturbation test (described below) to test
whether the study at hand is suffering from the bias of
unmeasured factors if one can collect large numbers of
PVs. Furthermore, one can perform a perturbation ad-
justment (also described below) to significantly reduce, if
not completely eliminate, that bias.

Note that the PVs to be used can be in any measure-
ment scale. For example, for a categorical variable with a
total of five levels, one can create a total of four dummy
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Figure 2 Effects of the adjustment of a binary perturbation variable for the hypothetical population in Table 1 (A: positive
confounding; B: negative confounding; lines with big dot: simulation results; thin lines: Taylor approximation).
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variables as four separate PVs in the perturbation ana-
lysis. A continuous variable counts as one PV, but to ex-
tract more information, one can categorize and dummy-
code the variable to input more PVs. Alternatively, one
can input the variable itself, along with its square, its
cube, and so on. Furthermore, interaction terms (prod-
uct terms) of any subset of already collected PVs by
themselves also count as new PVs. It does not matter if
some of the PVs, collected or created, are correlated
with one another to some degree, as neither the perturb-
ation test nor the perturbation adjustment needs an inde-
pendence assumption. Additionally, in order to use the
method, one does not need to know anything (parameter
or function) related to U, such as L, m;, p; q;, 1, ¢,

/ / 2
TEOR™, DRR®» TEOR, DRR"» Opop-1 prre? PEOR, DRR*» HPV» Opy>
or fpy; etc.

Perturbation test
Let the panel of PVs be indexed by k=1,2,...,m. The
test statistic of the perturbation test is

2
m

T = %Z log(6k)-log crude RR | , (5)
=1

where 6 is the adjusted RR pertaining to the k th PV.
From the previous section, we know that under the null
hypothesis of no unmeasured confounding, the expected
value of the log adjusted RR should equal the log crude
RR. Under the alternative, the expected value of the log
adjusted RR will be lower (positive confounding) or higher

(negative confounding) than the crude RR. Therefore, the
value of T should tend to be larger under the alternative
hypothesis than under the null hypothesis.

Because the PVs may not be independent of one an-
other, the ordinary chi-square distribution may not be
appropriate for 7. Here, we resort to permutation ana-
lysis to find a critical value for T. To be precise, we fix
the vectors (PVy, PV,,...,PV,,) and shuffle the vectors
of (E, D) among the study subjects (or vice versa). Such
permutations are to be performed many times, with a
T value calculated each time. The critical value for a
significant level of « is then the (1 — a) x 100 percentile
of these permutated 7 values.

Perturbation adjustment
To correct the bias of unmeasured factors, one may be
tempted to adjust for the whole panel of m PVs simul-
taneously. However, in doing so, one will run into a di-
mensionality problem. For example, a panel of 20 binary
PVs taken together amounts to a super-variable S, with
1,048,676 levels, while in a typical study, the total num-
ber of subjects enrolled (n) is far less than that number.
Therefore, each subject essentially occupies a different
level of S, making adjustments of S impossible.

To cope with the problem, a hierarchical clustering al-
gorithm [7] is proposed below to group the subjects into
a manageable number of clusters.

1. Start with individual subjects. Let each subject reside
in a distinct cluster so that there are as many
clusters as subjects.
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2. Calculate the distance between any two clusters (for
example, the A and the B clusters): DA® =

LN™ (Pv4-PVE)?, where PV} (PV}) is the k th
k=1
PV of the subject in the A(B) cluster.

3. The two clusters (for example, the C and the
D clusters) with the smallest distance between
them are merged into one cluster (call this the
CD cluster).

4. The distance between the newly formed cluster and
any other cluster (for example, the E cluster) is
calculated as DPF = max(D“F, DPF), according to
the complete-linkage criterion [7].

5. Repeat Steps 3 and 4 until there are at least a
prespecified number of subjects (#,, for example
n,=20) in each cluster.
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Treating these clusters as different levels of the panel
of PVs, we then use formula [3] to calculate an adjusted
RR. Note that we assume that U itself does not contain
too many levels beyond what the sample size of a study
can handle, i.e., we assume L < nﬂc

Results

Simulation studies

To study the performances of the perturbation test and
adjustment, a panel of PVs for the hypothetical population
in Table 1 was simulated. As before, the prevalences of the
PVs in the four levels of U were assumed to arrive from
the beta distributions. The mean prevalences (across the
four levels of U), ppy , #py, ; ---s Hpy, » Were assumed to ar-
rive from a U(0.05,0.95) distribution. The variance frac-
tions, fpy s, were assumed to be constant for the panel of
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Number of Perturbation Variables

15
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Figure 3 Results of the perturbation analysis for the hypothetical population in Table 1 (A: perturbation test for positive confounding;
B: perturbation test for negative confounding; C: perturbation adjustment for positive confounding; D: perturbation adjustment for
negative confounding; solid lines: fpy = 0.05; dotted lines: fpy = 0.025; horizontal lines: standardized relative risks).
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PVs and are examined for fpv = 0.05 and 0.025. A total of  perturbation test increased for detecting hidden posi-
200 subjects (1 =200) were randomly sampled from this tive confounding (panel A) or negative confounding
population. For a given subject, the values of his/her PV},  (panel B). Collecting a few hundred PVs for fpy =0.05
PV,, ..., PV,, were assumed to be independent of one an-  (solid lines) or slightly more PVs for fpy = 0.025 (dotted
other and were generated from m Bernoulli distributions  lines), allowed hidden confounding to be consistently
according to the prevalence values of their U levels, with-  detected (operating characteristic tending towards 1.0).
out regard to their E and D statuses. One thousand simu-  As for the results of the perturbation adjustment, the
lations were performed for each scenario. The index of adjustments were in the right directions (panel C: posi-
operating characteristic was used to measure the perform-  tive confounding; panel D: negative confounding). As
ance of the perturbation test. The operating characteristic ~ the number of PVs increased, the adjusted RRs grad-
of a test is its statistical power averaged over a U(0,1)- ually tended to become the respective SRRs (horizontal
distributed a -level; it is a value between 0.5 (no power lines). With a few thousand PVs for fpy=0.05 (solid
at all) and 1.0 (highest power possible). lines), the bias of U could be removed almost com-

Figure 3 presents the simulation results for the pletely (adjusted RR ~ SRR). For less informative PVs
hypothetical population in Table 1. As the number for fpy =0.025 (dotted lines), greater numbers needed
of PVs increased, the operating characteristic of the to be collected.
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Figure 4 Results of the perturbation analysis for the hypothetical population in Table 2 (A: perturbation test when the unmeasured is
associated with neither exposure nor disease; B: perturbation test when the unmeasured is not associated with exposure but is associated
with disease; C: perturbation test when the unmeasured is not associated with disease but is associated with exposure; D: perturbation
adjustment when the unmeasured is associated with neither exposure nor disease; E: perturbation adjustment when the unmeasured is not
associated with exposure but is associated with disease; F: perturbation adjustment when the unmeasured is not associated with disease
but is associated with exposure; solid lines: fyy = 0.05; dotted lines: fp, = 0.025; horizontal lines: standardized relative risks).
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When the prevalences of PVs were distributed as a mix-
ture of beta distributions, the results were basically the
same (Additional file 3: Figure S1). Additionally, for the
situation where the values of PVy, PV,,...,PV,, within a
subject were dependent, and for the situation where the
panel of PVs contained a certain proportion of pure noise
(PVs that are not associated with U: fpy = 0), definite de-
tection of bias and/or complete removal of bias were also
possible, if with an even larger panel of PVs (Additional
file 3: Figures S2 and S3).

Figure 4 presents the simulation results for the hypo-
thetical population in Table 2, where U is not creating
bias. When U was associated with neither E nor D, the
perturbation test had an operating characteristic of 0.5,
i.e, it maintained the correct type I error rate (panel A),
and the perturbation adjustment did not perturb the
crude RR (crude RR = SRR, in this situation; panel D),
irrespective of how many PVs were used. If many PVs
were used, the perturbation test had some power (oper-
ating characteristic > 0.5) to detect a situation where U
was not associated with E, but was associated with D
(see panel B) and where U was not associated with D,
but was associated with E (see panel E). Even with such
sensitivity, the perturbation adjustments correctly
stayed at their respective SRR values (the crude RRs
themselves), irrespective of how many PVs were used
(panels E and F).
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Discussion

We will now comment on why our perturbation ana-
lysis using a panel of PVs should work. The perturb-
ation test proposed in this paper centers on the fact
that adjusting for an informative PV (a variable associ-
ated with U) will produce a value that is on average lar-
ger or lower than the crude RR as necessary to be
closer to the unknown SRR. This is true irrespective of
whether the association between U and PV is positive
or negative. Because the adjustments all point in the
same direction, we can calculate a test statistic, as in
[5], without worrying that the effects of the positively
and negatively associated PVs are being cancelled out.
Notably, the perturbation adjustment proposed in this
paper is based on distances in high dimension. Hall P,
2005 [8] and [9] studied the geometric properties of
high-dimension and low-sample-size data. They showed
that under very mild conditions, as the dimension (the
number of PVs) approaches infinity, the distance be-
tween any two subjects in the same group (at the same
level of U) will converge to a certain value, while the
distance between any two subjects in different groups
(at different levels of U) will converge to another
(larger) value. Therefore, by calculating pair-wise dis-
tances in sufficiently high dimension, the group mem-
berships of the study subjects can be resolved, and U
can be reconstructed almost perfectly.

Relative Risk

I T T T T
0 100 200 300 400
Number of Perturbation Variables

)
500

Bootstrap was done for a total of 10000 times.

Figure 5 Perturbation diagnostics for a hypothetical data (n =200) taken from Table 1 (A: perturbation adjustment for positive
confounding; B: perturbation adjustment for negative confounding). The perturbation variables have an fpy of 0.025 and are
dependent of one another through a first-order Markov chain with an odds ratio of 10.0 between successive perturbation variables.
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Figure 6 Perturbation diagnostics for a hypothetical data (n =200) taken from Table 2 (A: perturbation adjustment when the
unmeasured is associated with neither exposure nor disease; B: perturbation adjustment when the unmeasured is not associated with
exposure but is associated with disease; C: perturbation adjustment when the unmeasured is not associated with disease but is
associated with exposure). The perturbation variables have an fp, of 0.025 and are dependent of one another through a first-order Markov
chain with an odds ratio of 10.0 between successive perturbation variables. Bootstrap was done for a total of 10000 times.
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If practicality issues or cost constraints prevent expand-
ing the panel of available PVs to the thousands or more,
one can still make good use of the few hundred PVs in
one’s own study (say, a total of 500) for perturbation
diagnostics. To be precise, perturbation adjustments
can be run using bootstrapped samples (sampling with

replacement) of these 500 PVs repeatedly a set number
of times (e.g., 10000). The bootstrapped means of the
adjusted RRs can be plotted against the number of PVs
used. Figures 5 and 6 are hypothetical data from 200
subjects taken from Tables 1 and 2, respectively. The PVs
are assumed to be relatively weak (fp=0.025) and are
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Figure 7 Perturbation adjustment for the hypothetical population in Table 1 assuming that U is a composite of a measured
confounder and a true unknown (A: positive confounding; B: negative confounding). The measured confounder is treated as a confounder
(solid lines), or as a perturbation variable (dotted lines). The (additional) perturbation variables have an fp, of 0.05.
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dependent of one another through a first-order Markov
chain with an odds ratio of 10.0 between successive PVs.
The trend in the figure is indicative of unmeasured
confounding; the direction of the trend (decreasing in Fig-
ure 5A; increasing in Figure 5B) also reveals the sign of
the bias, while the flat line suggests the absence of con-
founding (Figure 6A-C).

To accommodate measured confounders and to further
adjust for residual bias, one can perform the same cluster-
ing algorithm on the panel of collected PVs as described
in this paper, but separately, for each level delineated by
the measured confounders. The final adjustment should
then be performed with respect to the total resulting clus-
ters. Assuming that the U in Table 1 is actually a compos-
ite of a measured confounder (MC) and a true unknown
(TU), both being binary variables with (MC, TU) = (1,1)
for U = 1, (0,1) for U = 2, (1,0) for U = 3, and (0,0) for
U = 4, respectively. Figure 7 shows that treating an MC
in this way (as a confounder rather than as an ordinary
PV) will speed up the convergence to the true values
(compare the solid lines in Figures 7A and 7B with
those in Figures 3C and 3D). On the other hand, if a re-
searcher mistakes the MC as a PV (a variable that is asso-
ciated with E and D only through TU) and treats it as
such, we see in Figure 7 (dotted lines) that upon addition
of a few more true PVs, the effect of the MC is diluted,
and the perturbation adjustment goes in the wrong direc-
tion. However, upon addition of more and more PVs, the
perturbation adjustment can right itself and then converge
to the true values, albeit more slowly than when the MC
is correctly specified as a confounder.

The proposed method relies on collecting as many PVs
as possible. This is in contrast to other approaches dealing
with unmeasured confounding, such as the methods of
negative control [10,11], the instrumental variable [12,13],
and the latent variable [14], where only one or a few vari-
ables are considered. The method is also completely data-
driven such that a researcher simply lets the data (consist-
ing of E, D, and a panel of PVs) speak for themselves. This
is in contrast to a sensitivity analysis of unmeasured con-
founding where one needs to specify the sensitivity pa-
rameters or assume distributions for them [1,15,16].

There is much work to be performed in order to fur-
ther validate the proposed method. First, this paper is
only a proof-of-concept study. Further studies are
needed to test the methodology with real data. Second,
additional work is needed to design an optimal coding
scheme to extract maximum information from categor-
ical/continuous PVs and a weighting system to opti-
mally combine the many different PVs in the panel in
order to maximize the efficiency of the perturbation
analysis. Third, the method is currently discussed only
on the SRR using the whole population as the target. It
will be worthwhile to develop the corresponding
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methodology for an SRR with the exposed, unexposed,
or completely external population as the target. Finally,
casting the present method in a proper regression
framework should prove useful for accommodating
more than two exposures and other confounders that
are measured in the study.

Conclusions

In summary, this study shows that, as the number of
PVs increases, the power of the perturbation test in-
creases (progressively up to nearly 100%) and the bias
after the perturbation adjustment decreases (progres-
sively down to nearly 0%). Such a data-mining approach
is recommended for use in detecting and correcting the
biases of unmeasured factors in observation studies.
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