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Abstract

Background: The discriminative ability of a risk model is often measured by Harrell’s concordance-index (c-index).
The c-index estimates for two randomly chosen subjects the probability that the model predicts a higher risk for
the subject with poorer outcome (concordance probability). When data are clustered, as in multicenter data, two
types of concordance are distinguished: concordance in subjects from the same cluster (within-cluster concordance
probability) and concordance in subjects from different clusters (between-cluster concordance probability). We
argue that the within-cluster concordance probability is most relevant when a risk model supports decisions within
clusters (e.g. who should be treated in a particular center). We aimed to explore different approaches to estimate
the within-cluster concordance probability in clustered data.

Methods: We used data of the CRASH trial (2,081 patients clustered in 35 centers) to develop a risk model for
mortality after traumatic brain injury. To assess the discriminative ability of the risk model within centers we first
calculated cluster-specific c-indexes. We then pooled the cluster-specific c-indexes into a summary estimate with
different meta-analytical techniques. We considered fixed effect meta-analysis with different weights (equal; inverse
variance; number of subjects, events or pairs) and random effects meta-analysis. We reflected on pooling the
estimates on the log-odds scale rather than the probability scale.

Results: The cluster-specific c-index varied substantially across centers (IQR = 0.70-0.81; I2 = 0.76 with 95%
confidence interval 0.66 to 0.82). Summary estimates resulting from fixed effect meta-analysis ranged from 0.75
(equal weights) to 0.84 (inverse variance weights). With random effects meta-analysis – accounting for the observed
heterogeneity in c-indexes across clusters – we estimated a mean of 0.77, a between-cluster variance of 0.0072 and
a 95% prediction interval of 0.60 to 0.95. The normality assumptions for derivation of a prediction interval were
better met on the probability than on the log-odds scale.

Conclusion: When assessing the discriminative ability of risk models used to support decisions at cluster level we
recommend meta-analysis of cluster-specific c-indexes. Particularly, random effects meta-analysis should be
considered.
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Background
Assessing the performance of a risk model is of great
practical importance. An essential aspect of model per-
formance is separating subjects with good outcome from
subjects with poor outcome (discrimination) [1]. The
concordance probability is a commonly used measure of
discrimination reflecting the association between model
predictions and true outcomes [2,3]. For binary outcome
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data it is the probability that a randomly chosen subject
from the event group has a higher predicted probability
of having an event than a randomly chosen subject from
the non-event group. For time-to-event outcome data it
is the probability that, for a randomly chosen pair of
subjects, the subject who experiences the event of interest
earlier in time has a lower predicted value of the time to
the occurrence of the event. For both kinds of outcome
data the concordance probability is often estimated with
Harrell’s concordance (c)-index [2].
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In risk modelling, clustered data are frequently used.
A typical example is multicenter patient data, i.e. data of
patients who are treated in different centers with similar
inclusion criteria across the centers. Patients treated in the
same center are nevertheless more alike than patients
from different centers. A comparable type of clustering
may occur in patients treated in different countries or in
patients treated by different caregivers in the same center.
Similarly, in public health research the study population
is often clustered in geographical regions like countries,
municipalities or neighbourhoods. It has been suggested
that clustering should be taken into account in the devel-
opment of risk models to obtain unbiased estimates of
predictor effects [4]. This can be done by using a multi-
level logistic regression model for binary outcomes or a
frailty model for time-to-event outcomes [5,6].
It would be natural to take clustering also into account

when measuring the performance of a risk model. For
multilevel models, it has been proposed to consider the
concordance probability of subjects within the same clus-
ter (within-cluster concordance probability) separately
from the concordance probability of subjects in different
clusters (between-cluster concordance probability) [7,8].
We propose using the within-cluster concordance prob-
ability when risk models are used to support decisions
within clusters, e.g. in clinical practice where decisions on
interventions are commonly taken within centers. A valu-
able risk model should then be able to separate subjects
within the same cluster into those with good outcome
and poor outcome. We consider the within-cluster con-
cordance probability more relevant in this context than
the between-cluster or overall concordance probability.
Here, we aimed to estimate the within-cluster concord-

ance probability from clustered data. We explored different
meta-analytic methods for pooling cluster-specific concord-
ance probability estimates with an illustration in predicting
mortality among patients suffering from traumatic brain
injury.

Methods
Mortality in traumatic brain injury patients
We present a case study of predicting mortality after
Traumatic Brain Injury (TBI). Risk models using baseline
characteristics provide adequate discrimination between
patients with good and poor 6-month outcomes after TBI
[9,10]. We used patients enrolled in the Medical Research
Council Corticosteroid Randomisation after Significant
Head Injury [11] trial (registration ISRCTN74459797,
http://www.controlled-trials.com/), who were recruited
between 1999 and 2004. This was a large international
double-blind, randomized placebo-controlled trial of
the effect of early administration of a 48-h infusion of
methylprednisolone on outcome after head injury. The
trial included 10,008 adults clustered in 239 centers
with Glasgow Coma Scale (GCS) [12] Total Score ≤ 14,
who were enrolled within 8 hours after injury. By design
the patient inclusion criteria were equal in all 239
centers.
We considered patients with moderate or severe brain

injury (GCS Total Score ≤ 12) and observed 6-month
Glasgow Outcome Scale (GOS) [13]. Patients who were
treated in one of 35 European centers with more than 5
patients experiencing the event (n = 2,081), were used to
assess the discriminative ability of a prediction model
developed with data from 35 centers. Patients who were
treated in one of 21 Asian centers with more than 5
patients experiencing the event (n = 1,421) were used
to assess the discriminative ability at external validation.
We used a Cox proportional hazards model with age,

GCS Motor Score and pupil reactivity as covariates similar
to previously developed risk models [9,10]. We modelled
center with a Gamma frailty (random effect) to account
for heterogeneity in mortality among centers. We esti-
mated parameters on the European selection of patients
with the R package survival [14,15]. As center effect
estimates are unavailable when using a risk model in
new centers, we calculated individual risk predictions
applying the Gamma frailty mean of 1 for each patient.

Cluster-specific concordance probabilities
We estimated the concordance probability within each
cluster by Harrell’s c-index [2], i.e. the proportion of all
usable pairs of subjects in which the predictions are con-
cordant with the outcomes. A pair of subjects is usable
if we can determine the ordering of their outcomes. For
binary outcomes, pairs of subjects are usable if one of
the subjects had an event and the other did not. For
time-to-event outcomes, pairs of subjects are usable if
their failure times are not equal and at least the smallest
failure time is uncensored. For a usable subject pair the
predictions are concordant with the outcomes if the or-
dering of the predictions is equal to the ordering of the
outcomes. Values of the c-index close to 0.5 indicate that
the model does not perform much better than a coin-
flip in predicting which subject of a randomly chosen
pair will have a better outcome. Values of the c-index
near 1 indicate that the model is almost perfectly able to
predict which subject of a randomly chosen pair will
have a favourable outcome. We estimated the variances
of the cluster-specific c-indexes with a method proposed
by Quade [16]. Formulas are provided in Appendix 1.

Pooling cluster-specific concordance probability estimates
The within-cluster concordance probability Cw can be
estimated by pooling the cluster-specific concordance
probability estimates into a weighted average. Previously,
the cluster-specific concordance probability estimates
were pooled with the number of usable subject pairs as

http://www.controlled-trials.com/
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Figure 1 Example of random effects meta-analysis of concordance
probability estimates in 7 clusters. Cluster-specific estimates are in
grey. Under the assumption of normally distributed cluster-specific
concordance probabilities, the predictive distribution resulting from
a random effects meta-analysis is in black. The mean, the mean ± one
standard deviation and the 2.5 and 97.5 percentiles of the predictive
distribution are plotted with vertical lines.
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weights [7,8]. Here, we define eight different ways for
pooling of cluster-specific estimates – both on the prob-
ability scale and on the log-odds scale – based on fixed
effect meta-analysis and random effects meta-analysis.
We consider a dataset with subjects in K clusters. Let mk

be the number of subjects and ek be the number of events in
cluster k. We denote the number of usable subject pairs –
pairs of subjects for whom we can determine the ordering
of their outcomes – in cluster k by nk. The cluster-specific
concordance probability estimate for cluster k is denoted

by Ĉ k with sampling variance estimate σ̂ 2
k .

Fixed effect meta-analysis
Fixed effect meta-analysis assumes that one common
within-cluster concordance probability CW exists that
applies to all clusters. The observed cluster-specific esti-
mates vary only because of chance created from sampling
subjects. Fixed effect meta-analysis with cluster weights wk

results in:

ĈW ¼
X

k
wkĈkX
k
wk

with σ̂ 2
ĈW

¼
X

k
w2
k σ̂

2
k�X

k
wk

�
2

ð1Þ

The simplest approach would be to apply equal weights,
wk = 1/K for each cluster (method 1). This estimator is
quite naive when the cluster size varies, because small
clusters are given the same weight as large clusters and
information about the precision of the cluster-specific
estimates is ignored. Heuristic choices of weights taking
the cluster size into account are the number of subjects,
wk = mk (method 2), or the number of events, wk = ek
(method 3). Analogous to the definition of the c-index a
fourth option is the number of usable subject pairs as
weights, wk = nk (method 4). The pooled estimate is
then equal to the proportion of all usable within-cluster
subject pairs in which the predictions and outcomes are
concordant. Another choice of meta-analysis weights
are the inverse variances, wk ¼ 1=σ̂ 2

k (method 5). These
weights express the precision of the cluster-specific esti-
mates and are commonly used in meta-analysis of study-
specific treatment effects.

Random effects meta-analysis
In our context a random effects meta-analysis considers
that the cluster-specific estimates vary not only because
of sampling variability but also because of differences in
true concordance probabilities. This is appropriate for
high values of I2 [17]. I2 measures the proportion of
variability in cluster-specific estimates that is due to
between-cluster heterogeneity rather than chance. Ran-
dom effects meta-analysis assumes that cluster-specific
concordance probabilities Ck are distributed about mean μ

with between-cluster variance τ2, with the observed Ĉ k
normally distributed about Ck with sampling variance σ2k .
The mean within-cluster concordance probability estimate
μ̂ is the average of the cluster-specific estimates with the
inverse variances as weights (method 6):

μ̂ ¼
X

k
wkĈkX
k
wk

; σ̂ 2
μ̂ ¼

X
k
w2
k σ̂ 2

k þ τ̂2
� �

X
k
wk

� �2
¼ 1X

k
wk

with wk ¼ 1= σ̂ 2
k þ τ̂2

� � ð2Þ

For estimation of the between-cluster variance τ2 we used
the DerSimonian and Laird [18] method. Alternative estima-
tors for τ2 can be found in DerSimonian and Kacker [19].
With the additional assumption of normally distributed

Ck we can derive a prediction interval for the within-
cluster concordance probability CW in a new or unspeci-

fied cluster [20]. If τ2 were known, then μ̂eN μ; σ̂ 2
μ̂

� �
and

CW~N(μ, τ2) imply (assuming independence of CW and μ̂

given μ ) that CW−μ̂eN 0; τ2 þ σ̂ 2
μ̂

� �
. Hence the within-

cluster concordance probability CW in a new cluster is
normally distributed, with mean μ̂ and variance τ2 þ σ̂ 2

μ̂

(Figure 1). Since τ2 is estimated, we assume CW−μ̂ffiffiffiffiffiffiffiffiffiffi
τ̂ 2þσ̂ 2

μ̂

p to

take a more conservative t-distribution with K - 2 degrees
of freedom instead of the standard normal distribution
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[20]. Thus, a 95% prediction interval of the within-cluster
concordance probability CW in an unspecified cluster can

be approximated by: μ̂ � t0:975K−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 þ σ̂ 2

μ̂

q
with t0:975K−2 denot-

ing the 97.5% percentile of the t-distribution with K - 2 de-
grees of freedom.

Meta-analysis scale
When calculating a prediction interval of the within-
cluster concordance probability CW, Riley et al [21] ad-
vised to perform a random effects meta-analysis on a
scale that helps meet the normality assumption for the
random effects. When the normality assumption of the
random effects model holds, the Ck are normally distrib-
uted with mean μ and variance τ2 þ σ2k . As a consequence,
the standardized residuals zk defined below should ap-
proximately have a standard normal distribution:

zk ¼ Ĉ k−μ̂
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 þ σ̂ 2

k

q
ð3Þ

To consider if the normality assumption is valid we
used a normal probability plot of zk and applied the
Shapiro-Wilk test to zk [22]. In a normal probability plot
zk is plotted against a theoretical normal distribution in
such a way that the points should form an approximate
straight line. Departures from this straight line indicate
departures from normality. The Shapiro-Wilk test returns
the probability of obtaining the test-statistic as least as ex-
treme as the observed one, under the null-hypothesis that
zk are normally distributed (p-value). When the p-value is
above significance level α, say 5%, the null hypothesis that
zk is normally distributed is not rejected.
Since the concordance probability is restricted to [0, 1]

the normality assumption of random effects meta-analysis
may be violated. We considered inverse variance weighted
meta-analysis on the log-odds scale as an alternative
Table 1 Overview of the 8 methods for pooling of cluster-spe

Fixed effect meta-analysis

Assuming the same true (logit) conc
probability within each cluste

Probability scale

Meta-analysis of cluster-specific
estimates of the concordance
probability

1. Equal weight for each cluster

2. Number of subjects in the cluster

3. Number of subjects in the cluster with
event

4. Number of usable subject pairs within
cluster

5. Inverse of the cluster-specific samplin
variance estimate

Log-odds scale

Meta-analysis of cluster-specific
estimates of the logit concordance
probability

7. Inverse of the cluster-specific samplin
variance estimate on log-odds scale
approach (methods 7 and 8 for fixed effect and random ef-
fects meta-analysis respectively). The resulting estimators
for the within-cluster concordance probability are defined
in Appendix 2. The normality assumption on log-odds
scale was again assessed by the normal probability plot
and the Shapiro-Wilk test.
Table 1 contains a summary of the eight pooling meth-

odologies described above. For all the meta-analyses we
used the R package rmeta [14,23].
Results
The European patients were slightly older in comparison
with the Asian patients (median age 36 vs. 31 years) and
were more likely to have the worst GCS Motor Score of 1,
i.e. no motor response (21% versus 4%) compared to the
Asian patients (Table 2). However, 6 month mortality was
lower in the European patients (27%) than in the Asian
patients (35%).
We found that 6-month mortality was clearly associated

with higher age, worse GCS Motor Score and less pupil
reactivity (Table 3). Heterogeneity in mortality among
European centers was substantial as indicated by the
hazard ratio of 1.7 for the 75 percentile versus the 25
percentile of the random center effect, based on the quar-
tiles of the Gamma frailty distribution with mean 1 and
variance estimate 0.146.
Among European centers (overall c-index 0.80) the c-

indexes varied substantially with an interquartile range
of 0.70 to 0.81 (Figure 2). Pooled concordance probability
estimates resulting from fixed effect meta-analysis ranged
from 0.75 (equal weights) to 0.84 (inverse variance weights).
Random effects meta-analysis (method 6) led to a mean
concordance probability estimate μ̂ ¼ 0:77, a between-
cluster variance estimate τ̂2 ¼ 0:0072 and a wide 95%
prediction interval (0.60 to 0.95) reflecting the strong
cific concordance probability estimates

Random effects meta-analysis

ordance
r

Assuming variation in true (logit) concordance
probabilities across clusters

6. Inverse of the sum of the cluster-specific sampling variance
estimate and the between-cluster variance estimate

an

the

g

g 8. Inverse of the sum of the cluster-specific sampling variance
estimate on log-odds scale and the between-cluster variance
estimate on log-odds scale



Table 2 Patient characteristics in selected European and Asian centers

Characteristic Measure or Category Europe Asia

Age (years) Median (25–75 percentile) 36 (24–53) 31 (22–43)

GCS Motor score No response (1) 445 (21%) 55 (4%)

Extension (2) 134 (6%) 96 (7%)

Abnormal flexion (3) 176 (8%) 124 (9%)

Normal flexion (4) 321 (15%) 261 (18%)

Localizes/obeys (5/6) 1,005 (48%) 885 (62%)

Pupil reactivity No pupil reacted 291 (14%) 129 (9%)

One pupil reacted 123 (6%) 117 (8%)

Both pupils reacted 1,667 (80%) 1,175 (83%)

Six-month mortality Dead 553 (27%) 495 (35%)

Patients Total 2,081 1,421

Centers Total 35 21

Patients per center Median (25–75 percentile) 33 (21–64) 34 (20–66)
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heterogeneity in the cluster-specific concordance prob-
abilities (I2 = 0.76 with 95% confidence interval 0.66 to
0.82). Random effects meta-analysis on log-odds scale
(method 8) led to similar results, but with a somewhat
smaller asymmetric prediction interval (0.58 to 0.89).
Large differences in pooling weights, together with

heterogeneity in the cluster-specific concordance prob-
abilities, led to very different pooled estimates. We ana-
lysed the pooling weights to explain the differences in
pooled estimates (Figure 3). The patient-weighted estimate
was dominated by center 2 with 494 of the 2,081 patients.
The event-weighted estimate was dominated by center 12
with 107 out of 553 events. The patient-pair-weighted esti-
mate was heavily determined by both center 2 and center
12 as the number of usable patient pairs is related to the
number of patients times the number of events. The fixed
effect inverse-variance weighted estimate was also strongly
influenced by centers with high number of patients or
Table 3 Associations between predictors and 6-month
mortality in European centers

Characteristic Level HR (95 % CI)

Age (years) 47 versus 23* 2.1 (1.9-2.4)

GCS Motor score No response (1) 3.1 (2.4-4.0)

Extension (2) 2.8 (2.0-3.8)

Abnormal flexion (3) 2.4 (1.7-3.2)

Normal flexion (4) 1.5 (1.1-2.0)

Localizes/obeys (5/6) 1.0 (ref)

Pupil reactivity No pupil reacted 2.8 (2.3-3.5)

One pupil reacted 1.7 (1.2-2.3)

Both pupils reacted 1.0 (ref)

Center random effect 75 versus 25 percentile 1.7

*Interquartile range.
events, because the standard errors of the cluster-specific
estimates depend heavily on the number of patients and
events. Furthermore, the fixed effect inverse-variance
weighted estimate was upwardly influenced by center 1
as a result of the small standard error relative to the
small number of patients and events. The random ef-
fects inverse-variance weighted estimate was much less
dominated by particular centers and close to the equally
weighted estimate because of the large amount of hetero-
geneity. The standard error on the log-odds scale in-
creased with increasing c-index according to Equation 10
in Appendix 2 and therefore put less weight on the centers
with a high concordance probability estimate resulting
in lower pooled estimates. The large standard errors for
centers with high c-index also decreased the heterogeneity
(I2 = 0.61 with 95% confidence interval 0.44 to 0.73) on
the log-odds scale resulting in more similar weights for
fixed effect and random effects meta-analysis.
To check the validity of the normality assumption in the

random effects meta-analyses, we calculated standardized
residuals (Equation 3), both on the probability and the
log-odds scale. The standardized residuals better fitted to
the standard normal distribution on the probability scale
than on the log-odds scale (Figure 4, p-values for rejection
of the normality null hypothesis of 0.666 on probability
scale and of 0.030 on log-odds scale).
To illustrate the comparison in an external validation

setting, we repeated the analysis of the within-cluster
concordance probability in Asian centers with the same
risk model (Figure 5). Among Asian clusters (overall
c-index 0.74) the c-indexes varied less (IQR 0.71-0.78),
which was reflected in a lower proportion of variation
among clusters that is due to heterogeneity rather than
chance (I2 = 0.32 with 95% confidence interval 0 to 0.60).
As a result, different pooling methodologies led to more
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Figure 2 Center-specific and pooled concordance probability
estimates with 95% confidence intervals for European centers.
For pooled estimates based on random effects meta-analysis a 95%
prediction interval for the concordance probability is presented by
a horizontal line. 1 Equal = Fixed effect meta-analysis with equal
weights; 2 Patients = Fixed effect meta-analysis with number of
patients as weights; 3 Events = Fixed effect meta-analysis with number
of events as weights; 4 Pairs = Fixed effect meta-analysis with number
of usable patient pairs as weights; 5 Inv var FE = Fixed effect meta-
analysis with inverse variance weights; 6 Inv var RE = Random effects
meta-analysis with inverse variance weights; 7 Inv var FE logit = Fixed
effect meta-analysis with inverse variance weights on log-odds scale;
8 Inv var RE logit = Random effects meta-analysis with inverse variance
weights on log-odds scale.
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similar pooled estimates, because differences in cluster
weights have less impact when cluster-specific estimates
are more alike. Based on random effects meta-analysis, es-
timates of the mean within-cluster concordance probabil-
ity and the between-cluster variance were μ̂ ¼ 0:75 and
τ̂2 ¼ 0:0013 respectively. The resulting prediction interval
(0.67 to 0.83) was much smaller than for the European
clusters. The heterogeneity disappeared on the log-odds
scale (I2 = 0) leading to equal estimates by fixed effect and
random effects meta-analysis.
Discussion
We studied how to assess the discriminative ability of risk
models in clustered data. The within-cluster concordance
probability is an important measure for risk models when
these models are used to support decisions on interven-
tions within the clusters. The within-cluster concordance
probability can be estimated by pooling cluster-specific
concordance probability estimates (e.g. c-indexes) with a
meta-analysis, similar to pooling of study-specific treat-
ment effect estimates. We considered different pooling
strategies (Table 1) and recommend random effects
meta-analysis in case of substantial variability – beyond
chance – of the concordance probability across clusters
[20,21]. To decide if the meta-analysis should be under-
taken on the probability scale or the log-odds scale we
suggest considering the normality assumptions on both
scales by normal probability plots and Shapiro-Wilk
tests of the standardized residuals.
The illustration of predicting 6-month mortality after

TBI prompted the use of random effects meta-analysis
because of the strong difference – beyond chance – in
concordance probability among centers. This was clearly
visualized by the forest plot in Figure 2. Random effects
meta-analysis results can be summarized by the mean
concordance probability and a 95% prediction interval
for possible values of the concordance probability. By
definition, these results give insight into the variation of
the discriminative ability among centers as opposed to
fixed effect meta-analysis results [20,21]. By comparing
normal probability plots and Shapiro-Wilk test results
based on the standardized residuals we concluded the
random effects meta-analysis results on probability scale
to be the most appropriate (Figure 4). Although the
methodology is illustrated with time-to-event outcomes
of traumatic brain injury patients, it is also applicable to
binary outcomes.
Even if a risk model contains regression coefficients

that are optimal for the data in each cluster, differences
in case mix may lead to different concordance probabil-
ities across clusters [24]. Furthermore, predictor effects
may vary because of cluster-specific circumstances, also
leading to different cluster-specific concordance prob-
abilities. Given the variability beyond chance in our case
study, we consider a random effects meta-analysis of
the cluster-specific c-indexes as most appropriate.
The assumption of random effects meta-analysis is that

underlying concordance probabilities among clusters are
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Figure 3 Meta-analysis pooling weights for European centers. For methods 1 to 8 the weights are represented by the height of the bars on
the right hand side of the Figure. C-indexes are printed in the bars if the cluster weight was at least equal to the average weight. 1 Equal = Fixed
effect meta-analysis with equal weights; 2 Patients = Fixed effect meta-analysis with number of patients as weights; 3 Events = Fixed effect
meta-analysis with number of events as weights; 4 Pairs = Fixed effect meta-analysis with number of usable patient pairs as weights; 5 Inv var FE
= Fixed effect meta-analysis with inverse variance weights; 6 Inv var RE = Random effects meta-analysis with inverse variance weights; 7 Inv var
FE logit = Fixed effect meta-analysis with inverse variance weights on log-odds scale; 8 Inv var RE logit = Random effects meta-analysis with
inverse variance weights on log-odds scale.
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exchangeable, i.e. cluster-specific concordance probabil-
ities are expected to be non-identical, yet identically
distributed [20]. If part of the variation can be explained
by cluster characteristics, a meta-regression – assuming
partial exchangeability – of the concordance probability
estimates with cluster characteristics as covariates is
preferable.
We chose to analyse the concordance probability as it
is the most commonly used measure of discriminative
ability of a risk model. However, the same logic of pool-
ing cluster-specific performance measure estimates can
be applied to any other performance measure, like the
discrimination slope, the explained variation (R2) or the
Brier score [25].
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We used Harrell’s c-index to estimate cluster-specific
concordance probabilities together with Quade’s formula
for the cluster-specific variances of the c-index [2,16]. The
same methodology of pooling cluster-specific performance
measure estimates can be applied to other concordance
probability estimators and its variances. Other estimators
for the concordance probability in time-to-event data can
be found in Gönen and Heller [26] and Uno et al [27].
These estimators are especially favourable when censoring
varies by cluster as they are shown to be less sensitive to
censoring distributions. Other variance estimators are de-
scribed by Hanley and McNeil [28], and DeLong et al [29]
for binary outcome data and by Nam and D'Agostino [30]
and Pencina and D'Agostino [3] for time-to-event outcome
data. The variance of the concordance probability estimate
can also be estimated with a bootstrap procedure [31].

Conclusion
We recommend meta-analysis of cluster-specific c-indexes
when assessing discriminative ability of risk models
used to support decisions at cluster level. Particularly,
random effects meta-analysis should be considered as it
allows for and provides insight into the variability of the
concordance probability among clusters.

Appendix 1
The concordance probability is defined as the probability
that a randomly chosen subject pair with different out-
comes is concordant. For a randomly chosen subject pair
(i, j) with outcomes Yi and Yj and model predictions Ŷ i

and Ŷ j the concordance probability C is:

C ¼ Pr Ŷ i < Ŷ j
� ��Y i < Y jÞ ð4Þ
Harrell’s c-index [2] estimates the concordance prob-
ability by the proportion of all usable pairs of subjects
(nu) in which the predictions and outcomes are concord-
ant (nc), with tied predictions (nt) counted as 1/2:

Ĉ ¼ nc þ nt=2
nu

ð5Þ

For binary outcomes y, pairs of subjects are usable if
one of the subjects had an event and the other did not.
The number of usable subject pairs nu, the number of
concordant subject pairs nc and the number of tied sub-
ject pairs nt are:

nu ¼
X

i

X
j
I yi < yj
� �

nc ¼
X

i

X
j
I yi < yj and ŷi < ŷj
� �

nt ¼
X

i

X
j
I yi < yj and ŷi ¼ ŷj
� � ð6Þ

For time-to-event outcomes y, pairs of subjects are us-
able if their survival times are not equal and at least the
smallest survival time is uncensored. We have to add the
restriction that the smallest observation yi of each sub-
ject pair is uncensored, denoted by δi = 1:

nu ¼
X

i

X
j
I yi < yj and δi ¼ 1
� �

nc ¼
X

i

X
j
I yi < yj and δi ¼ 1 and ŷi < ŷj
� �

nt ¼
X

i

X
j
I yi < yj and δi ¼ 1 and ŷi ¼ ŷj
� � ð7Þ

The variance of the c-index can be estimated according
to Quade [16]:



σ̂ 2
Ĉ
¼
X

n2u;i
X

nc−d;i
� �2

−2
X

nu;i
X

nc−d;i
X

nu;inc−d;i þ
X

nu;i
� �2X

n2c−d;iX
nu;i

� �4 ð8Þ
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All summations over i with nu,i and nc-d,i the number
of usable and the number of concordant minus discordant
subject pairs of which subject i is one:

nu;i ¼
X

j
I yi < yj and δi ¼ 1
� �

nc;i ¼
X

j
I yi < yj and δi ¼ 1 and ŷi < ŷj
� �

nd;i ¼
X

j
I yi < yj and δi ¼ 1 and ŷi > ŷj
� �

nc−d;i ¼ nc;i−nd;i

ð9Þ
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Figure 5 Center-specific and pooled concordance probability
estimates with 95% confidence intervals for Asian centers
(external validation). For pooled estimates based on random effects
meta-analysis (methods 6 and 8) a 95% prediction interval for the
concordance probability is presented by a horizontal line. 1 Equal =
Fixed effect meta-analysis with equal weights; 2 Patients = Fixed effect
meta-analysis with number of patients as weights; 3 Events = Fixed
effect meta-analysis with number of events as weights; 4 Pairs = Fixed
effect meta-analysis with number of usable patient pairs as weights; 5
Inv var FE = Fixed effect meta-analysis with inverse variance weights; 6
Inv var RE = Random effects meta-analysis with inverse variance
weights; 7 Inv var FE logit = Fixed effect meta-analysis with inverse
variance weights on log-odds scale; 8 Inv var RE logit = Random effects
meta-analysis with inverse variance weights on log-odds scale.
Appendix 2
Based on the delta method, a variance estimator for the
logit of the c-index is:

var logit Ĉ
� �� � ¼ var log

Ĉ

1−Ĉ

 ! !

¼ var Ĉ
� �

Ĉ 1−Ĉ
� �� �2 ð10Þ

We used this variance estimator to perform a meta-
analysis on log-odds scale. The pooling weights (method 7)
for a fixed effect inverse variance meta-analysis on log-
odds scale are:

wk ¼ σ̂ 2
k

Ĉ k 1−Ĉ k
� �� �2

" #−1
ð11Þ

The pooling weights (method 8) for a random effects
inverse variance meta-analysis on log-odds scale are:

wk ¼ σ̂ 2
k

Ĉ k 1−Ĉ k
� �� �2 þ τ̂2

" #−1
ð12Þ

The resulting pooled estimates together with confidence
and prediction intervals are transformed back to probabil-
ity scale.

Abbreviations
c-index: Concordance-index; CRASH: Corticosteroid randomisation after
significant head injury; GCS: Glasgow coma scale; GOS: Glasgow outcome
scale; IQR: Interquartile range.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DK, ES and YV designed the study. PP participated in the collection of data
and organisation of the databases from which this manuscript was
developed. DK and YV analysed the data and wrote the first draft of the
manuscript. All authors contributed to writing the manuscript and read and
approved the final manuscript.

Acknowledgements
The authors express their gratitude to all of the principal investigators of the
CRASH trial for providing the data. We thank Prof. Emmanuel Lesaffre
(Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands) for
helpful comments.

Funding
This work was supported by the Netherlands Organisation for Scientific
Research (grant 917.11.383).

Author details
1Department of Public Health, Erasmus MC, Dr. Molewaterplein 50,
Rotterdam 3015 GE, The Netherlands. 2Department of Population Health,



van Klaveren et al. BMC Medical Research Methodology 2014, 14:5 Page 10 of 10
http://www.biomedcentral.com/1471-2288/14/5
London School of Hygiene and Tropical Medicine, Keppel Street, London
WC1E 7HT, UK.

Received: 7 October 2013 Accepted: 8 January 2014
Published: 15 January 2014
References
1. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N,

Pencina MJ, Kattan MW: Assessing the performance of prediction models:
a framework for traditional and novel measures. Epidemiology 2010,
21(1):128–138.

2. Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA: Evaluating the yield of
medical tests. JAMA 1982, 247(18):2543–2546.

3. Pencina MJ, D'Agostino RB: Overall C as a measure of discrimination in
survival analysis: model specific population value and confidence
interval estimation. Stat Med 2004, 23(13):2109–2123.

4. Bouwmeester W, Twisk JW, Kappen TH, van Klei WA, Moons KG, Vergouwe
Y: Prediction models for clustered data: comparison of a random
intercept and standard regression model. BMC Med Res Methodol 2013,
13:19.

5. Gelman A, Hill J: Data analysis using regression and multilevel/hierarchical
models. Cambridge: Cambridge University Press; 2007.

6. Duchateau L, Janssen P: The Frailty Model. New York: Springer; 2008.
7. Van Oirbeek R, Lesaffre E: An application of Harrell's C-index to PH frailty

models. Stat Med 2010, 29(30):3160–3171.
8. Van Oirbeek R, Lesaffre E: Assessing the predictive ability of a multilevel

binary regression model. Comput Stat Data Anal 2012, 56(6):1966–1980.
9. Collaborators MCT, Perel P, Arango M, Clayton T, Edwards P, Komolafe E,

Poccock S, Roberts I, Shakur H, Steyerberg E, et al: Predicting outcome
after traumatic brain injury: practical prognostic models based on large
cohort of international patients. BMJ 2008, 336(7641):425–429.

10. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray
GD, Marmarou A, Roberts I, Habbema JD, et al: Predicting outcome after
traumatic brain injury: development and international validation of
prognostic scores based on admission characteristics. PLoS Med 2008,
5(8):e165.

11. Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B,
Fernandes J, Gogichaisvili T, Golden N, Hartzenberg B, et al: Final results of
MRC CRASH, a randomised placebo-controlled trial of intravenous
corticosteroid in adults with head injury-outcomes at 6 months. Lancet
2005, 365(9475):1957–1959.

12. Teasdale G, Jennett B: Assessment of coma and impaired consciousness.
A practical scale. Lancet 1974, 2(7872):81–84.

13. Jennett B, Bond M: Assessment of outcome after severe brain damage.
Lancet 1975, 1(7905):480–484.

14. R Development Core Team: R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
ISBN 3-900051-07-0, URL http://www.R-project.org/.

15. Therneau T, original Splus->R port by Lumley T: survival: Survival analysis,
including penalised likelihood. R package version 2.36-9. 2011.
http://CRAN.R-project.org/package=survival.

16. Quade D: Nonparametric partial correlation. Volume No. 526, Volume 526.
North Carolina: Institute of Statistics Mimeo; 1967.

17. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis.
Stat Med 2002, 21(11):1539–1558.

18. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials
1986, 7(3):177–188.

19. DerSimonian R, Kacker R: Random-effects model for meta-analysis of
clinical trials: an update. Contemp Clin Trials 2007, 28(2):105–114.

20. Higgins JPT, Thompson SG, Spiegelhalter DJ: A re-evaluation of random-
effects meta-analysis. J R Soc Health Series A 2009, 172(1):137–159.

21. Riley RD, Higgins JPT, Deeks JJ: Interpretation of random effects
meta-analyses. BMJ 2011, 342:d549.

22. Hardy RJ, Thompson SG: Detecting and describing heterogeneity in
meta-analysis. Stat Med 1998, 17(8):841–856.

23. Lumley T: rmeta: Meta-analysis. R package version 2.16. 2009.
http://CRAN.R-project.org/package=rmeta.

24. Vergouwe Y, Moons KG, Steyerberg EW: External validity of risk models:
use of benchmark values to disentangle a case-mix effect from incorrect
coefficients. Am J Epidemiol 2010, 172(8):971–980.
25. Steyerberg EW: Clinical Prediction Models: A Practical Approach to
Development, Validation, and Updating. New York: Springer; 2009.

26. Gönen M, Heller G: Concordance probability and discriminatory power in
proportional hazards regression. Biometrika 2005, 92(4):965–970.

27. Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ: On the C-statistics for
evaluating overall adequacy of risk prediction procedures with censored
survival data. Stat Med 2011, 30(10):1105–1117.

28. Hanley JA, McNeil BJ: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 1982, 143(1):29–36.

29. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under
two or more correlated receiver operating characteristic curves:
a nonparametric approach. Biometrics 1988, 44(3):837–845.

30. Nam BH, D'Agostino RB: Discrimination Index, the Area under the ROC
Curve. In Goodness-of-Fit Tests and Model Validity. Boston: Birkhauser;
2002:267–279.

31. Efron B, Tibshirani R: An Introduction to the Bootstrap. Boca Raton, FL: CRC
press; 1993.

doi:10.1186/1471-2288-14-5
Cite this article as: van Klaveren et al.: Assessing discriminative ability of
risk models in clustered data. BMC Medical Research Methodology
2014 14:5.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.r-project.org/
http://cran.r-project.org/package=survival
http://cran.r-project.org/package=rmeta

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Mortality in traumatic brain injury patients
	Cluster-specific concordance probabilities
	Pooling cluster-specific concordance probability estimates
	Fixed effect meta-analysis
	Random effects meta-analysis
	Meta-analysis scale


	Results
	Discussion
	Conclusion
	Appendix 1
	Appendix 2
	Abbreviations
	Competing interests
	Authors’ contributions
	Funding
	Author details
	References

