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Abstract

Background: Estimating statistical power is an important component of the design of both randomized controlled
trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described
and can be implemented simply. In observational studies, statistical methods must be used to remove the effects
of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting
(IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational
data. However, sample size and power calculations have not been adequately described for these methods.

Methods: We used an extensive series of Monte Carlo simulations to compare the statistical power of an
IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured
RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence
of treatment, the marginal hazard ratio, and the strength of the treatment-selection process.

Results: We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a
similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection
model increased.

Conclusions: The statistical power of an IPTW analysis tended to be lower than the statistical power of a
similarly-structured RCT.
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Background
Randomized controlled trials (RCTs) are considered the
gold-standard for estimating the effects of treatments,
interventions, and exposures. The primary advantage of
well-designed and conducted RCTs is that they result in
unbiased estimation of treatment effects, since treatment
assignment is not confounded with patient prognosis.
However, there is an increasing interest in using non-
randomized or observational data to estimate these effects.
There are multiple reasons for the increasing interest

in using observational data to estimate the effects of
treatments, interventions, and exposures. First, due to
the use of restrictive inclusion and exclusion criteria, pa-
tients included in some RCTs may not be reflective of
the patient population in which the treatment or inter-
vention will ultimately be used. In contrast to this, ob-
servational studies permit the estimation of treatment
effects in patient populations reflective of those in which
the treatment is currently applied. Second, the compre-
hensive care and thorough follow-up provided to pa-
tients in some RCTs may not be reflective of the
standard of care that is provided to patients outside of
the tightly controlled confines of an RCT. In contrast,
observational studies permit the estimation of treatment
effects in settings reflective of how the interventions and
treatments are used in current practice. Third, observa-
tional studies permit the estimation of the effects of inter-
ventions for which it would be unethical to randomize
patients to treatment (e.g. smoking or radon exposure).
Fourth, the growing number of large health care databases
providing population coverage at the state, provincial, or
national level permit observational studies to be con-
ducted relatively quickly and inexpensively compared with
the time and cost required to conduct a comparable RCT.
The primary limitation of observational studies is that
treatment allocation can be confounded with patient char-
acteristics: treated patients often differ systematically from
control patients. Failure to account for this confounding
will result in biased estimates of treatment effects.
Statistical methods to account for confounding in ob-

servational studies are essential to obtaining unbiased
estimates of treatment effects. There is increasing inter-
est in using propensity score methods to reduce or
minimize the effects of confounding due to measured
covariates when using non-randomized data to estimate
the effects of treatments and interventions. The propen-
sity score is the probability of receiving the treatment
conditional on measured baseline covariates [1–3]. There
are four different methods in which the propensity score
can be used to minimize the effects of measured con-
founding: covariate adjustment using the propensity score,
stratification on the propensity score, matching on the
propensity score, and inverse probability of treatment
weighting (IPTW) using the propensity score [1–5]. The

latter method has been used with increasing frequency
in the epidemiological and medical literature in recent
years [6].
In an IPTW analysis in a setting with a binary point-

exposure applied at baseline, subjects are weighted by
the inverse of the probability of receiving the treatment
that was actually received (as estimated using the pro-
pensity score). In this synthetic, weighted sample, treat-
ment assignment is not confounded with measured
baseline covariates if the propensity score model has
been specified correctly [4, 7]. Therefore, the effect of
treatment can be estimated by comparing outcomes dir-
ectly between treatment groups, similar to the analyses
that would be conducted in an RCT. Thus, the analysis
conducted in the weighted sample can often replicate
the analysis that would be conducted in an RCT if all
potential confounders were considered in the propensity
score model.
A marginal treatment effect refers to the difference in

average outcomes between two populations, such that
the only systematic difference between the two popula-
tions is that the treatment was applied to all subjects in
the first population and withheld from all subjects in the
second population. Alternatively, the marginal effect can
be thought of as the change in average outcome, at the
population level, of moving an entire population from
control to treatment conditions. Marginal effects can be
contrasted with conditional effects, which are the aver-
age effect of treatment at the individual level [8, 9].
From the definition of marginal effects, it is readily
apparent that RCTs permit the estimation of marginal
treatment effects. Due to the use of randomization, the
treated and control arms are not expected to systematic-
ally differ from one another in baseline characteristics.
Similarly, an IPTW analysis allows for estimation of
marginal effects: the use of weights results in a synthetic
sample in which treatment assignment is not confounded
with measured baseline covariates. Thus, one is comparing
outcomes between two populations in which measured sys-
tematic differences between treatment and control groups
have been eliminated. Accordingly, a strength of an IPTW
analysis is that it permits estimation of the marginal effect,
which is of primary interest in RCTs. This is in con-
trast to conventional regression adjustment, in which
one is estimating a conditional effect, which is of
secondary interest in RCTs.
An important issue in designing RCTs and observa-

tional studies is the statistical power of the study design.
Statistical power is the probability of detecting, as statis-
tical significant, a true non-null treatment effect. An
assessment of statistical power prior to conducting a
study is important for several reasons. First, it allows the
investigator to assess whether the expenditure of re-
sources is warranted given the likelihood of detecting a

Austin et al. BMC Medical Research Methodology  (2015) 15:87 Page 2 of 12



clinically-meaningful effect size as statistically significant.
Second, it provides both the investigator and readers with
information to help interpret potentially null conclusions
once the study has been completed. Conducting statistical
power and sample size calculations is a routine aspect of
the design of RCTs. Furthermore, methods for determin-
ing power and sample size in conventional RCTs have
been well described and can be conducted easily [10, 11].
Methods for estimating statistical power have been de-
scribed for observational cohort designs and case–control
studies [12]. However, these methods are often overly sim-
ple or require information that may not be readily avail-
able to study investigators (e.g. correlations between the
primary exposure variable and the other study covariates).
Furthermore, these methods are designed for use with
conditional effects (i.e. estimates obtained from adjusted
regression models), rather than for use with marginal ef-
fects. It is our subjective assessment that statistical power
calculations are presented less frequently in the reports of
observational studies than they are in the reports of RCTs.
Furthermore, sample size and power calculations can be
much more difficult in observational studies that use
IPTW using the propensity score. In such studies, the
weights are functions of the observed data, and are not
known prior to conducting the study analyses. Thus, esti-
mates of standard errors that require knowledge of these
weights cannot be obtained prior to conducting the study.
Similarly, for other analyses (e.g., Cox regression in the
weighted sample), closed-form expressions for the stand-
ard errors do not exist. Thus, when conducting an IPTW
analysis, important quantities that are necessary to esti-
mate statistical power are unavailable prior to the analysis
being conducted. It is unknown whether the statistical
power of an observational study using an IPTW analysis
can be approximated by the statistical power of a
similarly-structured RCT.
The objective of the current study was to compare the

statistical power to detect a non-null hazard ratio in an
observational study that used an IPTW analysis with the
statistical power to detect a non-null hazard ratio in a
similarly-structured RCT with the same number of ob-
served events. This is an important issue as it will allow
investigators designing observational studies to decide
whether they can use the estimate of statistical power
from a comparable RCT as an approximation to the stat-
istical power in an observational study. Since absence of
non-compliance in RCTs is a necessary condition in
order to interpret effect estimates as marginal effects, we
consider in the following the ideal case of RCTs without
non-compliance. In particular, 100 % compliance (in all
treatment arms) is a necessary condition to interpret
effect estimates based on RCTs as marginal effects.
Furthermore, we restrict our attention to the simplest
case of a point-exposure RCT (i.e., an RCT in which

exposure is applied and fixed at baseline). Monte Carlo
simulations were used to obtain empirical estimates of
statistical power in each of the two study designs. The
paper is structured as follows: In Section 2, we describe
the extensive set of Monte Carlo simulations that were
used to obtain empirical estimates of statistical power. In
Section 3, we report the results of these simulations.
Finally, in Section 4, we summarize our findings and
place them in the context of the existing literature.

Methods
We used an extensive series of Monte Carlo simulations
to compare the statistical power of an analysis of obser-
vational data that used IPTW using the propensity score
with the statistical power of an RCT that had an equal
number of subjects. The focus of the current simulations
was on studies with a survival or time-to-event outcome,
as these occur frequently in the medical literature [13].
In the subsequent two sub-sections, we describe how
data were simulated to replicate an observational study
and to replicate a randomized study.

Simulating observational study data
The design of our Monte Carlo simulations was based
on a recently-published study that used Monte Carlo
simulations to compare the performance of different
propensity score methods for estimating marginal hazard
ratios [14]. The simulations in the current study were
designed to examine the impact of the following four
factors on the statistical power of an IPTW analysis: (i)
the number of observed events; (ii) the magnitude of the
true marginal hazard ratio; (iii) the proportion of sub-
jects who were exposed to the treatment (i.e. prevalence
of treatment/exposure); and (iv) the strength of the
treatment-selection process (i.e. the degree of confound-
ing). The strength of the treatment-selection process
was quantified using the c-statistic (equivalent to the
area under the receiver operating characteristic (ROC)
curve) of the treatment-selection model. We allowed the
number of observed events to take on the following
values: 200 to 1000 in increments of 100, then 1000 to
5000 in increments of 1000; the marginal hazard ratio
took on the following values: 1.10, 1.25, and 1.50; the
prevalence of treatment took on the following values: 10,
25 and 50 %; finally the c-statistic of the treatment-
selection model took on five values: 0.5, 0.6, 0.7, 0.8, and
0.9. Our simulations used a full factorial design. We thus
considered 585 = 13 × 3 × 3 × 5 different scenarios.
For a given scenario, as in the prior Monte Carlo sim-

ulations, we simulated 10 baseline covariates for each of
N subjects from independent standard normal distribu-
tions [14]. Of these ten covariates, seven affected treat-
ment selection (X1 - X7), while seven affected the
outcome (X4 - X10). For each subject, the probability of
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treatment selection was determined from the following
logistic model:

logit pið Þ ¼ α0;treat þ αWx1 þ αMx2 þ αSx3−αWx4
þ αMx5−αSx6 þ αAUCx7 ð1Þ

The strength of the treatment-selection process was
measured using the c-statistic, which measures the
degree to which the model separates or discriminates
between treated and control subjects. When the c-
statistic of the treatment-selection model was chosen
to be 0.5, all of the regression coefficients were set to
zero (i.e. none of the baseline covariates affected
treatment selection). When the c-statistic of the
treatment-selection model was chosen to be greater
than 0.5, the regression coefficients αW, αM, and αS
were set to log(1.05), log(1.10), and log(1.25) respect-
ively. These were intended to denote weak, moderate,
and strong treatment-assignment affects. The final re-
gression coefficient, αAUC, was chosen so that the
treatment-selection model would have a specified c-
statistic. The value of αAUC was selected based on
previously published results that relate the c-statistic
of a univariate logistic regression model to the vari-
ance of the predictor variable and the odds ratio re-
lating the predictor variable to the outcome [15]:

αAUC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Φ AUCð Þð Þ2−α2W−α2W−α2M−α2M−α

2
S−α

2
S

q
, where

Φ() denotes the standard normal quantile function and
AUC denotes the desired c-statistic of the treatment-
selection model. The intercept of the treatment-selection
model (α0,treat) was selected so that the proportion of sub-
jects in the simulated sample that were treated was fixed
at the desired proportion (0.10 vs. 0.25 vs. 0.50). The value
of α0,treat ranged from −3.23 to 0.002, with a median
of −1.22. For each subject, treatment status (Z) was
generated from a Bernoulli distribution with subject-
specific parameter pi: Z ~ Be(pi).
We then generated a time-to-event outcome for each

subject using a data-generating process for time-to-
event outcomes described by Bender et al. [16]. For each
subject, the linear predictor was defined as

LP ¼ βtreatZ þ βWx4 þ βMx5 þ βSx6 þ βVSx7
þ βWx8 þ βMx9 þ βSx10 ð2Þ

The regression coefficients βW, βM, βS, and βVS were
set to log(1.25), log(1.5), log(1.75) and log(2), respect-
ively. These were intended to denote weak, moderate,
strong, and very strong effects on the hazard of the out-
come. Note that there were two covariates (X4 and X6)
that had a negative effect on treatment selection and a
positive effect on outcomes. This was done to reflect set-
tings with a treatment-risk paradox, in which higher risk
patients are less likely to receive treatment [17]. The

regression coefficient βtreat was set equal to 0.164156,
0.3945684, and 0.721035, to induce a marginal hazard
ratio of 1.1, 1.25, and 1.5, respectively. For each subject,
we generated a random number from a standard Uniform
distribution: u ~U(0,1). A survival or event time was gen-

erated for each subjects as follows: − log uð Þ
λeLP

� �1=η

. We set λ

and η to be equal to 0.00002 and 2, respectively. The use
of this data-generating process results in a conditional
treatment effect, with a conditional hazard ratio of
exp(βtreat). However, we wanted to generate data in which
there was a specified marginal hazard ratio (since propen-
sity score methods and RCTs permit estimation of
marginal, rather than conditional effects). To do so, we
modified a previously described data-generating processes
for generating data with a specified marginal odds ratio or
risk difference [18, 19]. We used an iterative process that
is described in greater detail elsewhere, to determine the
value of βtreat (the conditional log-hazard ratio) that in-
duced the desired marginal hazard ratio [14]. This process
was used as we were unaware of a formula that relates the
marginal hazard ratio to the conditional hazard ratio for
treatment, characteristics of the distribution of the covari-
ates in the population, and the hazard ratios relating the
covariates to the hazard of the occurrence of the outcome.
Once a simulated dataset had been created, we esti-

mated the propensity score using a logistic regression
model to regress the indicator variable denoting treat-
ment status on the seven variables that affect the hazard
of the outcome (X4 - X10),. We used this set of seven
variables, rather than the variables that affect treatment
assignment (X1 – X7), as using the predictors of the out-
come has been shown to result in superior inferences
[20, 21]. The conventional inverse probability of treat-
ment weights (IPTWs) are defined as Z

e þ 1−Z
1−e [22], where

e denotes the propensity score and Z denotes treatment
assignment (Z = 1 treated vs. Z = 0 control). Instead of
using the conventional IPTWs, we used stabilized weights,
which are defined as Z�Pr Z¼1ð Þ

e þ 1−Zð Þ�Pr Z¼0ð Þ
1−e [23, 24], as

these weights are less susceptible to extreme weights. The
quantities Pr(Z = 1) and Pr(Z = 0) denote the marginal
probabilities of receiving the active treatment and the con-
trol treatment in the sample. In the simulations, the true
value of the propensity score was replaced by its sample
estimate, ê (it has been shown that using the estimated
propensity score performs better than using the true pro-
pensity score [4, 25]).
In the weighted sample, we used a Cox regression

model to regress survival on an indicator variable denot-
ing treatment status and used a robust variance estima-
tor [26, 27]. The statistical significance of the null
hypothesis test for the treatment effect was derived from
the fitted Cox regression model. This process was re-
peated 1000 times for each of the 585 scenarios. The
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empirical estimate of the statistical power to detect a
non-null marginal hazard ratio was the proportion of
simulated datasets with a true non-null hazard ratio, in
which the statistical significance of the estimated hazard
ratio was less than or equal to 0.05 (i.e. the proportion
of simulated datasets in which the estimated marginal
hazard ratio was statistically significantly different from
the null with a p-value of less than or equal to 0.05).
All simulations and statistical analyses were conducted

using the R statistical programming language (version
3.1.2) (The R Foundation for Statistical Computing,
Vienna, Austria) including the coxph function in the
‘survival’ package (version 2.38.2).

Simulating RCT data
The statistical power to detect a non-null marginal haz-
ards ratio using IPTW in an observational study was
compared with the statistical power to detect a non-null
hazards ratio in an RCT with the same number of ob-
served events and similar characteristics. As above, we
allowed the following factors to vary: the sample size of
the RCT, the prevalence of treatment (Ptreat - the pro-
portion of subjects randomly assigned to the active treat-
ment arm of the RCT), and the magnitude of the effect
of treatment on the hazard of the outcome (βtreat - the
marginal log-hazard ratio).
For each of N subjects, we simulated ten baseline

covariates as described in Section 2.1. We then simu-
lated a treatment status from a Bernoulli distribution
with parameter Ptreat: treatment was assigned at ran-
dom and was not influenced by the baseline covari-
ates. We then generated a time-to-event outcome for
each subject using expression (2) and the methods
described in Section 2.1. For each subject, we gener-
ated a random number from a standard Uniform dis-
tribution: u ~ U(0,1). A survival time was generated

for each subject as follows: − log uð Þ
λeLP

� �1=η

. As above, λ

and η were set to be equal to 0.00002 and 2, respect-
ively. Thus, as above, survival is affected by both
treatment and a subset of the baseline covariates.
However, treatment assignment was at random, and
was not affected by baseline covariates.
Once a simulated dataset had been constructed, a univar-

iate Cox proportional hazards regression model was used
to regress survival time on an indicator variable denoting
treatment status. The statistical significance of the esti-
mated hazard ratio was estimated using the model-based
standard errors from the fitted Cox model. This process
was repeated 1000 times for each scenario. As above, the
empirical estimate of statistical power was estimated as the
proportion of simulated datasets in which the estimated
log-hazard ratio was statistically significantly different from
zero (with a significance level of less than 0.05).

We report the empirical estimates of statistical power
for the RCT design so that our methods are consistent
with those used in estimating the power of an IPTW
analysis. However, for RCTs, explicit formulas exist to
estimate statistical power when using a Cox proportional
hazards model to estimate the effect of treatment on the
hazard of an outcome [11]. We compared our empirical
estimates of statistical power in RCTs with the theoretical
derivations provided by Schoenfeld [11]. The empirical
estimates and the theoretical derivations were virtually
identical across the large majority of scenarios (data
not shown).
Finally, we would note that one of the factors in our

Monte Carlo simulations is the number of observed
events, rather than the sample size. The reason for this
choice is that statistical power in survival analysis in
general is related to the number of observed events,
rather than to the total sample size [11]. Due to our
simulating data in which subjects were not subject to
censoring (i.e., subjects were followed until the event
was observed to occur for all subjects), the number of
observed events is equal to the number of subjects in
the simulated sample.

Results
To provide an understanding of the degree of confounding
induced by the different treatment-selection models, we
computed the relative bias in the crude estimate of the
marginal hazard ratio in the observational data in each of
the 9 scenarios with 5000 observed events. The minimum,
median, and maximum relative biases are reported in
Table 1. The magnitude of the bias in the estimated crude
hazard ratio in the observational data increased with the c-
statistic of the treatment-selection model.
The Monte Carlo estimates of statistical power of

an analysis of observational data using IPTW and the
statistical power of an RCT are reported in Figs. 1, 2,
3, 4 and 5. There is one figure for each of the five
different c-statistics of the treatment-selection model
(0.5, 0.6, 0.7, 0.8, and 0.9). Within each of the five figures
there is one panel for each of the nine combinations of
the true marginal hazard ratio (1.1 vs. 1.25 vs. 1.5) and the
prevalence of treatment (10 % vs. 25 % vs. 50 %). Several
findings merit comment.

Table 1 Relative bias in crude marginal hazard ratio

c-statistic Minimum
relative bias (%)

Median relative
bias (%)

Maximum
relative bias (%)

0.5 −0.7 0.4 0.6

0.6 1.9 2.7 2.9

0.7 −23.8 −20.4 −18.7

0.8 −47.4 −39.1 −35.1

0.9 −75.6 −59.6 −51.6
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First, when focused on RCTs, statistical power increased
with increasing number of events, with increasing under-
lying hazard ratio, and with increasing prevalence of treat-
ment. Of these three factors, the latter factor had the
smallest impact on statistical power. None of these obser-
vations are surprising. We highlight these observations
primarily to provide context for subsequent findings and
observations.
Second, the results from the setting of an observa-

tional study in which treatment-selection was random
(i.e. the c-statistic of the treatment-selection model was
0.5, indicating an absence of confounding because none
of the covariates influenced treatment selection) are re-
ported in Fig. 1. In this setting, one observes that the
use of IPTW in an observational study gives slightly
lower statistical power than an RCT in the scenario with
both a low prevalence of treatment (10 %) and a low ef-
fect size (hazard ratio = 1.1). When the hazard ratio was
moderate (1.25) or large (1.5), then the two designs had
approximately equivalent statistical power. When the
hazard ratio was low (1.1) and treatment prevalence was

moderate or high (25 % or 50 %), then an RCT design
had slightly higher statistical power when the number of
events was less than 2000 or 3000. An important conclu-
sion to draw from these results is that, in most settings,
in the absence of confounding, the use of an IPTW ana-
lysis (instead of a crude or unadjusted analysis) does not
result in a meaningful decrease in statistical power.
Third, for a fixed treatment prevalence and underlying

marginal hazard ratio, the differences in statistical power
between RCTs and observational studies tended to in-
crease as the strength of the treatment-selection process
increased (i.e. with increasing c-statistic of the treatment-
selection model).
Fourth, as noted above, when there was no confound-

ing, an RCT design tended to have an equal, or marginally
greater, statistical power than an observational design ana-
lyzed using IPTW. However, as the degree of confounding
increased (as measured using the c-statistic of the
treatment-selection process), the number of scenarios in
which an IPTW analysis had greater statistical power than
the RCT tended to increase. This inversion in statistical
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power was evident primarily at lower sample sizes. The
sample sizes for which this inversion existed increased as
the degree of confounding increased. Scenarios in which
the IPTW analysis had greater statistical power than the
RCT analysis tended to be restricted to scenarios in which
the true marginal hazard ratio was low (1.1) or moderate
(1.25). When the true hazard ratio was large (1.5), then
the RCT tended to have statistical power that was at least
as great as that of the observational design.
In Fig. 6 we report marginal (or average) estimates of

statistical power across the different values of each of
three factors (c-statistic, prevalence of treatment, and
marginal hazard ratio). There is one panel for each of
these three factors. Each panel reports the marginal (or
average) estimate of statistical power for an IPTW ana-
lysis and for an RCT design. In examining marginal esti-
mates of statistical power, we note the following: (i) the
average estimate of power was greater for the RCT de-
sign than for the IPTW analysis; (ii) differences in power
between the two designs were amplified as the strength
of the treatment-selection model increased (left panel);

(iii) average estimates of power for each design increased
with increasing prevalence of treatment (middle panel)
and with increasing hazard ratio (right panel). The latter
observation is unsurprising, and the focus should be on
the first two observations.

Discussion
We conducted an extensive series of Monte Carlo simu-
lations to compare the statistical power to detect a non-
null hazard ratio using IPTW using the propensity score
in an observational study with the statistical power to
detect a non-null hazard ratio in an RCT of the sample
size. The primary motivation of these simulations was to
provide applied researchers using observational data to
estimate treatment effects with insight into the statistical
power of their analyses. In particular, we were interested
in whether the statistical power of an RCT, which can be
easily estimated, provides a reasonable approximation to
the statistical power of an observational study analyzed
using IPTW. This is an important question, as the power
of an RCT can be readily estimated prior to the
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implementation of the trial. In contrast, an IPTW ana-
lysis requires the use of the IPT weights, which can only
be estimated once the data have been collected. Thus, it
is not readily feasible to estimate directly the power of
an observational study employing IPTW prior to the
data being collected. We sought to determine whether
the power of a similarly-structured RCT can provide an
adequate approximation to the power of an observa-
tional study that employs IPTW.
Stürmer et al. report on a systematic review that exam-

ined articles published in the medical literature between
1997 and 2003 that used propensity score methods [28].
Seventy-three articles reported the exact c-statistic of the
propensity-score model. The 25th, 50th, and 75th percen-
tiles of the reported c-statistics were 0.71, 0.80, and 0.84,
respectively. The minimum and maximum reported c-
statistics were 0.56 and 0.94, respectively. Thus, the large
majority of published observational studies had reported
c-statistics that fell within the range of c-statistics that we
examined in our simulations. Furthermore, half of the
published studies had c-statistics that fell between 0.71
and 0.80. When examining our findings when the c-

statistic was 0.7 (Fig. 3) and 0.8 (Fig. 4), we make some
additional observations. First, when the true marginal haz-
ard ratio was low and the c-statistic was 0.7, then the
power of the IPTW analysis tended to be less than that of
the RCT design. Second, when the c-statistic was 0.8 and
the marginal hazard ratio was low to moderate, then the
power of the IPTW analysis tended to be less than that of
the RCT design. In some cases, the difference in statistical
power was substantial. Thus, in settings typical to that
seen in many observational studies in the medical lit-
erature (i.e. c-statistics of 0.7 or 0.8), the statistical
power of an RCT with equivalent sample size may not
provide a good approximation of the statistical power
of an observational analysis using IPTW. In order to
appreciate the degree of confounding associated with
c-statistics of these magnitudes, we refer the reader to
Table 1 of the current paper. In our simulations, a c-
statistic of 0.7 was associated with a relative bias in
the estimated crude hazard ratio of between −23.8 %
and −18.7 %, while a c-statistic of 0.8 was associated
with a relative bias in the crude hazard ratio of be-
tween −47.4 % and −35.1 %.
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In some settings in which there was a very strong
treatment-selection process (i.e., a very high c-statistic
for the treatment-selection model), we observed that the
IPTW design had greater statistical power than the RCT
design. This was evident particularly when the number
of events was low and the prevalence of treatment was
low to moderate. There are several possible explanations
for this somewhat surprising observation. First, it is pos-
sible that in some iterations of the Monte Carlo simula-
tions, large stabilized weights resulted in inflated estimates
of the regression coefficient, leading to rejection of the
null hypothesis. Second, one observes that some of these
power curves are not monotone increasing (e.g., top left
panel of Fig. 5). This may indicate that the standard error
estimates for the IPTW analysis are too liberal (for poten-
tially inflated effect estimates), at least for a lower num-
bers of events. This issue requires further exploration in
subsequent research. Third, Rosenbaum has stated that
using the estimated propensity scores induces better bal-
ance in measured baseline covariates compared to when
the true propensity scores is used [4]. It is possible that

this effect is more pronounced in the settings with a low
number of events and that it resulted in an artificially high
statistical power for the IPTW design. Fourth, in a set of
exploratory analyses, we examined the empirical type I
error rates of the two designs in a set of scenarios in which
there was a true null treatment effect. As expected, the
RCT design tended to have empirical type I error rates
that were not statistically significantly different from the
advertised rate of 0.05. However, the empirical type I error
rate of the IPTW design was often significantly different
from the advertised rate of 0.05 (data not shown). If the
IPTW design does not, in some settings, maintain the an-
ticipated alpha level, this can be an issue when comparing
power curves, because such comparisons require the same
alpha levels of the estimators being compared. This issue
requires further exploration in subsequent research.
There are certain limitations to the current study that

warrant mention. First, we acknowledge that RCTs are
considered the gold standard for estimating the effects
of treatments and interventions since treatment assign-
ment is not confounded with subject characteristics. We
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are not suggesting that observational studies are never
subject to unmeasured confounding. Our primary object-
ive was to compare the statistical power of observational
studies in which there is no unmeasured confounding
with the statistical power of RCTs. Depending on the na-
ture of the data used in the observational study, unmeas-
ured confounding may be an issue [29]. If the assumption
of no unmeasured confounding does not hold, however,
any inference from an observational study is invalid, and
the issue of power should not be relevant. Second, our
analyses relied upon Monte Carlo simulations due to the
inability to derive closed-form expression for the statistical
power of analyses that use IPTW using the propensity
score with time-to-event outcomes. Due to our use of
simulations, we were only able to examine a limited num-
ber of scenarios. However, we did examine 585 scenarios
that reflected a wide range of scenarios, and that included
hazard ratios that reflect meaningful effect sizes in the
medical literature. Furthermore, by allowing the discrim-
ination of the treatment-selection model vary from 0.5 to
0.9, we considered situations with a wide range of

confounding, reflective of scenarios encountered in obser-
vational research [28]. Third, we want to emphasize that
our simulation studies considering time-to-event out-
comes did not incorporate censored observations. How-
ever, since statistical power in survival analysis relies on
the number of observed events and not directly on overall
sample sizes, our results should be readily generalizable to
common settings of RCTs and observational studies in-
cluding censored data. We would highlight that our ob-
jective was not to determine the statistical power of each
method in isolation. Instead, it was to compare the statis-
tical power of an IPTW design with that of a similarly-
structured RCT. We can think of no rationale for why the
effect of censoring on statistical power would differ be-
tween the two designs. Fourth, we used the c-statistic to
quantify the strength of the treatment-selection process.
However, the c-statistic does not take the number of
model covariates into account. Thus, we did not examine
the sensitivity of the power of the IPTW approach to the
number of covariates in the treatment-selection model.
However, the current study examined 585 scenarios, and
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it would have been computationally burdensome to
expand the simulations to add an additional factor,
the number of covariates in the treatment-selection
model. However, this merits examination in a subse-
quent study.

Conclusion
Conducting an a priori power calculation for an observa-
tional study that uses IPTW is difficult since such a cal-
culation would rely on the IPT weights, which are only
known after the analysis has been conducted. It would
be attractive to be able to use the power of similarly-
structured RCT as an approximation of the power of an
IPTW analysis. However, analyses of observational data
with time-to-event outcomes using IPTW methods had,
on average, lower statistical power than did analyses of
similarly-structured RCTs. The magnitude of the differ-
ence in statistical power increased as the strength of the
treatment-selection model increased. The statistical
power of an RCT does not necessarily provide an accur-
ate estimate of that for an IPTW analysis.
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