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Subgroup identification for treatment
selection in biomarker adaptive design
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Abstract

Background: Advances in molecular technology have shifted new drug development toward targeted therapy for
treatments expected to benefit subpopulations of patients. Adaptive signature design (ASD) has been proposed to
identify the most suitable target patient subgroup to enhance efficacy of treatment effect. There are two essential
aspects in the development of biomarker adaptive designs: 1) an accurate classifier to identify the most appropriate
treatment for patients, and 2) statistical tests to detect treatment effect in the relevant population and subpopulations.
We propose utilization of classification methods to identity patient subgroups and present a statistical testing strategy
to detect treatment effects.

Methods: The diagonal linear discriminant analysis (DLDA) is used to identify targeted and non-targeted subgroups.
For binary endpoints, DLDA is directly applied to classify patient into two subgroups; for continuous endpoints, a
two-step procedure involving model fitting and determination of a cutoff-point is used for subgroup classification.
The proposed strategy includes tests for treatment effect in all patients and in a marker-positive subgroup, with a
possible follow-up estimation of treatment effect in the marker-negative subgroup. The proposed method is
compared to the ASD classification method using simulated datasets and two publically available cancer datasets.

Results: The DLDA-based classifier performs well in terms of sensitivity, specificity, positive and negative predictive
values, and accuracy in the simulation data and the two cancer datasets, with superior accuracy compared to the
ASD method. The subgroup testing strategy is shown to be useful in detecting treatment effect in terms of power
and control of study-wise error.

Conclusion: Accuracy of a classifier is essential for adaptive designs. A poor classifier not only assigns patients to
inappropriate treatments, but also reduces the power of the test, resulting in incorrect conclusions. The proposed
procedure provides an effective approach for subgroup identification and subgroup analysis.

Keywords: Adaptive signature design, Classification, Personalized medicine, Predictive classifier, Subgroup analysis,
Subgroup selection

Background
Development of the right drugs for the right patients has
been the central goal of personalized medicine. Advance-
ment of molecular technologies provides powerful tools to
identify appropriate subpopulations of patients able to
benefit from particular treatments. This notion is particu-
larly important for cancer treatments that are currently

being developed as targeted therapies [1–3] expected to
benefit only a subpopulation of patients. Recently, the
FDA addressed “the development of therapeutic products
that depend on the use of a diagnostic test to meet their
labeled safety and effectiveness claims” as “In Vitro (IVD)
Companion Diagnostic Devices” [4–6]. A Breakthrough
Therapy [7] has also been discussed allowing targeted
therapies with promising treatment effects to be pre-
scribed to specific patient subpopulations.
Considerable research has been conducted to develop

predictive biomarkers for treatment selection [8–10].
Predictive biomarkers define subpopulations of a patient
population as biomarker-positive (g+) and biomarker-
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negative (g−) based on genomic profiles and/or disease
characteristics. It is generally assumed that the g+ patients
are good candidates for a particular treatment and g
−patients are poor candidates. The predictive biomarkers
are identified and incorporated into randomized Phase III
(or II) trial designs, such as enrichment designs and
biomarker-stratified designs. Ideally, these biomarkers
have been well studied and various performance charac-
teristics well established before the start of a Phase III
trial. However, biomarkers that have been completely
validated during Phase II for use in Phase III trials are
often unavailable [11, 12]. Clinical trials for targeted drugs
can be designed for drug-diagnostic co-development by
combining a “trial” for treatment effect with a diagnostic
“trial” for patient identification [4, 5, 13]. Furthermore,
biomarker adaptive designs can be applied in one clinical
study to identify the most suitable target subgroup, based
on clinical observations or known biomarkers, and to
evaluate the effectiveness of the treatment in the patient
subgroup [11–15].
Freidlin et al. [11] proposed a cross-validated “adaptive

signature design” (ASD), which consisted of two compo-
nents: 1) development of a binary classifier to select the
g+ and g− subgroups for treatment optimization, and
2) a subgroup analysis of treatment effect in the selected
g+ patients likely to respond to the treatment. This ap-
proach provided a substantial improvement by increasing
the power of detecting a treatment effect in the targeted
patients [11, 14]. The ASD approach offers a novel em-
pirical strategy that efficiently establishes treatment effect
in the enriched g+ patients. Consequently, the method
has been discussed extensively for use in Phase III clinical
trials [8, 11–17].
The classifier developed to select the target subgroup

has a crucial role in the effectiveness of an adaptive
design. A classifier identifys enriched patients for effi-
cacy assessment in the current study and also selects
patients for treatment assignment in future studies. In
the current study, patients are either assigned to the
control or the treatment arm. A classifier with less than
100 % accuracy rate results in misclassification, either
false positive and/or false negative errors. False positive
error inappropriately assigns the g− patients to an inef-
fective treatment. False negative error assigns some g+

patients to the control arm, excluding them from an
effective treatment. Furthermore, in the subsequent sub-
group analysis, the estimated differences between treat-
ment and control arms (and between the selected g+ and
g− subgroups) will be attenuated and the conclusion
could be incorrect. A classifier that can accurately assign
patients to correct treatment subgroups is the most
important consideration of an adaptive design. A clear
understanding of the classifier characteristics and the
impact of misclassification are essential. However, the

issue of classifier performance has seldom been addressed
in the development of biomarker-based designs.
The ASD approach was proposed as a supplementary

test when the test for all patients is not significant [14].
When the all patient hypothesis is significant, no further
tests will be performed. Table 1 of Freidlin et al. [14]
showed empirical power when the treatment response
rates were 70 % for the g+ patients and 25 % for the
g− patients. The empirical power for the all patient
test was 0.955 if the patient population consisted of
40 % g+ patients. That is, 60 % of the patients would
receive an unnecessary treatment. Several important
issues regarding studies of patients in the g− subgroup
(non-responders) are discussed extensively in the FDA
enrichment guidance [18]. A test for g− patients will
provide useful information for assessment of treatment
effects in all patients. Furthermore, the ASD method of
Freidlin et al. [11, 14] required two pre-specified tuning
parameters to clasify patients into subgroups. The per-
formance of the method depends on the choice of these
tuning parameters (details are described below).
This article presents an adaptive design based on the

framework of the ASD approach such that the identifica-
tion of biomarkers and selection of the g+ subgroup are
planned prospectively in one study. We propose utilizing
the diagonal linear discriminant analysis (DLDA) algo-
rithm to classify patients into g+ and g− subgroups
(Methods). We focus on the performance assessment of
classifiers with two aspects: 1) “accuracy” of a classifier to
select g+ and g− patients, and 2) statistical tests to detect
treatment effect in the patient population and subpopula-
tions. The methods are evaluated using simulated data
and compared with the ASD method; two public lung
cancer datasets are used for illustrative analyses.

Methods
Consider a randomized clinical trial to compare an
untreated control arm with a new treatment arm. To
simplify the presentation, we use the term “genomic vari-
ables”, including gene expression variables and clinical
phenotypic variables. It is assumed that the genomic data
are collected before the treatment. Therefore, the treat-
ment should not have effects on these genomic variables.
Assume that the sampled patients consist of two sub-
groups: g+ and g−. The g+ subgroup represents those
patients who can benefit from the study treatment.
Let π be the proportion of g+ patients in the sampled
population and (1-π) be the proportion of g− patients,
where 0 ≤ π ≤ 1. The primary goal is to identify the g+

patients for whom the new treatment is effective and
the g− of patients for whom the new treatment is relatively
ineffective. Let uit denote the response probability for the
i-th subgroup (i = 0 for g− and i = 1 for g+) in the t-th
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treatment (t = 0 for control and t = 1 for treatment), where
0 ≤ u00, u01, u10 ≤ u11 ≤ 1.
For a given patient, let zk denote the measurement for

the k-th genomic variable (k = 1,…, m), and ykt denote
the observed outcome from the predictor zk and treat-
ment t. The gene expression values zk were assumed to
be normally distributed with different mean values for
predictive biomarker probes between two subgroups
and/or between two arms. The response can be binary
outcomes, such as “response” or “not-response”, or con-
tinuous outcomes, such as disease-free survival time.
Following the approach given in Freidlin and Simon
[11], the (potential) predictive biomarkers can be identi-
fied by fitting a generalized linear regression model [19]:

h ykt
� � ¼ β0k þ β2kt þ β3k zk�tð Þ þ εkt ð1Þ

where h (y) is a link function. For example, h (.) is
the logit link for binary endpoints, identity link for
continuous endpoints, and the Cox proportional hazards
function [20] for survival endpoints. The interaction
coefficient β3k measures differential treatment effects for
the g+ patients compared to the g− patients; a significant
interaction β3k implies differential treatment responses
for the predictor zk. Let U denote the set of significant
genomic variables, denoted as x’s, where the estimated
interaction coefficients β3k’s were significant at a prede-
termined level. The set U is composed of the true pre-
dictive biomarkers showing different expression values
between g+ and g−patients and false-positive probes due
to random variation. The set U is used to develop a bin-
ary classifier to distinguish g+ and g− patients based on
the analysis of the response y and significant variables x’s
in U.
In the case of a binary response y, the distinction

between the two subgroups is self-evident. Numerous
classification algorithms have been proposed for subgroup
classification [21–25]. We use the DLDA algorithm [24]
to classify patients into g+ and g− subgroups. The DLDA
algorithm has been shown to perform well for high-
dimensional data [26], and is robust against imbalanced
data [27, 28], a common problem encountered in sub-
group classification where the numbers of patients in the
g+ and g− subgroups differ substantially. Other classifiers,
such as random forests [21] and support vector machine
[22, 23], may not perform as well if the number of g+-
patients is much smaller than the number of g− patients.
The DLDA algorithm is briefly described below.
DLDA is a variant of Fisher’s linear discriminant analysis

(LDA) and quadratic discriminant analysis (QDA) [29]
which separate samples of distinct groups by maximizing
their between-class separability while minimizing their
within-class variability. Both LDA and QDA require ma-
tric inversion; neither method is directly applicable when

the number of predictors is larger than the number of
samples. DLDA uses a simple maximum likelihood dis-
criminant rule for a diagonal class covariance matrix with
a linear discriminant function; thus, it does not involve
matrix inversion. DLDA is robust against imbalanced
class-size because the decision boundary for DLDA is
based on the sample means and variances of the two
classes which are independent of the ratio of class sizes.
An R package, sda, is employed for DLDA with the default
options.
For continuous response variables, the distinction be-

tween the two subgroups is more challenging. Subgroup
selection procedures can generally be divided into two
steps. The first step is to develop a model to establish
the relationship between the response variable y and the
predictive variables x’s in U. Specifically, the first step is
to develop a model to convert the multiple predictive
variables x1,…,xL in U to a univariate predictive score to
order each patient’s response, where L is the total num-
ber of x’s in U. The second step is to find a cutoff-point
for the predictive scores to divide the patients into two
subgroups.
For survival or disease-free survival, the first step is to

fit a Cox proportional hazards model using all variables
x’s in U as predictors when the number L in U is not
large. The estimated regression coefficients bl’s of the
fitted model are the weights of the biomarker variables
xl’s, l(x) = Σ bl xl. Alternatively, the bl’s can be estimated
using the principal components or standardized test
statistics of the variables xl’s [30]. In the second step,
various methods have been proposed for determining
the threshold cutoff-point to divide the predictive scores
into g+ and g− subgroups, such as percentiles of the
predictive scores or predictive outcomes [31]. In the
analysis of the GSE14814 dataset, estimated survival
probability of at least 5 years is considered the univariate
predictive score, and probability of 0.5 is used as the
cutoff (Results). The DLDA algorithm is subsequently
applied to evaluate predictive performance.
For comparison purposes, ASD analysis was conducted

using the same data. The ASD method computes the odds
ratio of the predicted treatment over control for each pre-
dictor variable xi in U; for binary responses, the odds ratio
is exp{β2i + β3i xi}. The ASD method uses a machine learn-
ing voting method based on two pre-specified tuning
parameters R and G. Specifically, a patient is classified as
g+ subgroup if the odds ratio exceeds a specified threshold
R for at least G predictors in U, that is, exp{β2i + β3i xi} > R
or β2i + β3i xi > ln(R), xi є U.
An important consideration in the development of a

class prediction model is evaluation of its performance.
The cross validation approach is commonly used to
evaluate a classifier’s performance. Typically, the data
are divided into training and test sets. The training set is
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used to select predictive biomarkers and develop the
prediction model, and the test set is used to evaluate its
performance, including sensitivity, specificity, positive
and negative predictive values, and accuracy, in the selec-
tion of the g+ and g− subgroups. Details of the evaluation
of predictive classifiers were given in Baek et al. [26].
Once the g+ and g− subgroups are identified, the fol-

lowing comparisons may be carried out: 1) control
versus treatment in all patients, 2) control versus treat-
ment in the g+ patients, 3) control versus treatment in
the g− patients, 4) g+ patients versus g− patients within
the treatment arm, and 5) g+ patients versus g− patients
within the control arm. Note that the ASD test strategy
[11] started with Comparison 1, and Comparison 2 was
only conducted if Comparison 1 was not significant.
This can result in unnecessary treatment for g− patients.
The two primary hypotheses are for treatment effect

in all patients, Comparisons 1, and in the g+ subgroup,
Comparison 2. Let α be the pre-specified study-wise
error rate. To account for multiple comparisons, the
significance levels are set at α1 for the overall effect and
α2 = (α − α1) for the subgroup effect. Statistical signifi-
cance of Comparisons 1 and 2 can conclude that treat-
ment is effective in all patients and in the g+ subgroup,
respectively. Statistical significance of the treatment
effect in the g− subgroup can be directly assessed using
Comparison 3. However, in tailoring clinical trials, Com-
parison 3 is generally statistically insignificant.
Clinical validation/qualification of a biomarker signature

and classifier requires prospectively randomized clinical
trials to demonstrate treatment efficacy in the classifier
identified targeted patients. Thus, Comparisons 2 and 3
are relevant. Comparison 4 addresses the clinical question
“Does treatment effect differ between the g+ and g− sub-
groups?” However, this analysis is not a randomized study;
also, the observed difference between the two subgroups
may be associated with a baseline difference in the control
arm, Comparison 5. In many clinical retrospective oncol-
ogy studies, patients’ allocations to treatments are not
random; in these cases, Comparisons 1–5 may not be
useful or directly interpretable. However, they are useful
for exploratory analysis of treatment effects in the sub-
groups and between subgroup effects.
In general, candidate predictive biomarkers are often

identified initially by multiple retrospective analyses of
clinical trials, and a predictive signature is subsequently
developed and evaluated in Phase II trials to be used in
Phase III trials. Comparisons 4 and 5 are useful for
retrospective analysis of non-randomized studies to dem-
onstrate that the biomarkers are “prognostic” with respect
to treatment and control patients, respectively. In the
control arm, g+ patients can be regarded as low-risk
and g− patients as high-risk subgroups. When both
Comparisons 4 and 5 are of primary interest, the test

strategy is to conduct Comparison 4 at the significance
level of α in the first step; Comparison 5 is conducted at
the significance level of α only if Comparison 4 is signifi-
cant. Alternatively, type I error allocation of α1 and α2 can
be used for the two comparisons. In addition, the mean or
median estimates are useful to evaluate subgroup effect
and treatment effect between g+ and g− subgroups. Note
that Comparison 5 is commonly used in assessment of
prognostic biomarkers [30–32].
Simulation experiments were conducted to evaluate

the proposed classification procedure and compare it to
the ASD classifier. Binary responses are particularly
useful for determination of classifier performance since
predictive performance is well-measured by sensitivity,
specificity, positive and negative predictive values, and
accuracy. The evaluation focused on two aspects: 1) the
statistical diagnostic test values of the classifiers, and
2) the power of the subgroup tests. The levels of sig-
nificance were 2 % (one-sided) for the overall test and
3 % for the subgroup test [8]. Evaluation of the ASD
classifier requires preselecting a list of plausible sets of
tuning parameters to be used to search for “optimal”
tuning parameters. We have reported the best perfor-
mances for two parameters, R and G, denoted as ASD
(ln(R),G).
The number of patients in each group was 200. For

simplicity, the response probabilities for the g+ patients
in the control group and for the g− patients in the treat-
ment group were assumed to be equal (u10 = u01). Eight
scenarios were considered based on the 5 parameters:
(π, u00, u01 = u10, u11, number of significant biomarker
variables): A = (0.1, 0.2, 0.2, 0.6, 10), B = (0.1, 0.2, 0.2,
0.6, 15), C = (0.1, 0.2, 0.2, 0.6, 20), D = (0.1, 0.1, 0.2,
0.6, 10), E = (0.1, 0.2, 0.2, 0.8, 10), F = (0.1, 0.2, 0.4,
0.8, 10), G = (0.3, 0.4, 0.4, 0.8, 10), and H = (0.3, 0.4,
0.4, 0.8, 15). Two major themes were simulated, including
equal response probabilities between g+ and g− subgroups
in the control (u00 = u10 = u01), and different response
probabilities between them (u00 ≠ u10 = u01). The g+ pa-
tients in the treatment arm were generated from a
Bernoulli random variable with probability u11, and the g−

patients in the control group were generated with prob-
ability u00. Other patients were generated with probability
(u01 = u10). The expression variable was generated from
a normal distribution with the mean of each probe
generated using the formula: ex/(1 + ex) = u. The non-
interacting genes were generated using the criteria: no
mean difference between g+ and g− patients in both con-
trol and treatment groups. The standard deviation was set
at 0.3 for all variables. The total number of probes was
5,000 with three different numbers of predictive bio-
markers (10, 15, and 20). The level of significance for the
interaction test (Eq. 1) was set at 0.001. The DLDA
algorithm was used to identify the g+ subgroup using the
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10-fold cross validated ASD. For the ASD classifiers,
we considered ln (R) = 1, 2 and G = 1, 2, denoted as
(ln (R),G). These four cases represented the best per-
formances for the two parameters R and G. This simula-
tion was repeated 1,000 times.
All datasets analyzed in this study were published

studies [32, 33] (Project id 182 in the ArrayExpress
website [32] and GSE14814 in the Gene Expression
Omnibus [33]).

Results
Simulation study
The DLDA algorithm showed the best predictive accur-
acy in all scenarios with reasonably good sensitivity and
specificity, as well as positive and negative predictive
values (Table 1). The one exception was a slightly lower
accuracy value of 0.897 for DLDA than the value of

0.901 for ASD (2,2) in the scenario F = (0.1, 0.2, 0.4, 0.8,
10). For the ASD classifiers, small R or G is less restrict-
ive in the selection of g+ patients resulting in high sensi-
tivity and low specificity; conversely, large R and G will
have low sensitivity and high specificity. Furthermore,
the parameters R and G show that predictive accuracy
varies for different scenarios; ASD (1,2) gives the highest
accuracy for scenarios G and H, while ASD (2,2) gives
the highest accuracy for scenarios A-F. This suggests
that the selection of R and G parameters may depend
on the prevalence proportion of the subgroup g+ (π).
However, the proportion is usually unknown in prac-
tice, making it difficult to determine the optimal R
and G parameters.
In scenario F, poorer prediction performances of all

algorithms were observed due to the higher probabilities
set for u10 = u01 in scenario 6. Higher values of u10 and

Table 1 Predictive performance of the five classifiers for eight scenarios (A-H). Each value is the average of 1,000 trials

Scenario A B C D E F G H

Predictive biomarkers 10 15 20 10 10 10 10 15

Significances 7.025 9.27 11.761 7.432 12.426 5.274 12.313 17.039

True positives 4.147 6.443 8.865 4.487 9.495 2.202 9.267 14.002

DLDA Sensitivity 0.598 0.651 0.694 0.626 0.979 0.507 0.985 0.99

Specificity 0.991 0.993 0.993 0.995 0.999 0.94 0.983 0.99

PPV 0.745 0.788 0.809 0.791 0.993 0.475 0.97 0.981

NPV 0.958 0.963 0.968 0.96 0.998 0.946 0.992 0.995

Accuracy 0.952 0.959 0.964 0.958 0.997 0.897 0.984 0.99

ASD (1,1) Sensitivity 0.784 0.808 0.841 0.943 0.991 0.953 0.989 0.991

Specificity 0.691 0.689 0.686 0.142 0.644 0.083 0.551 0.533

PPV 0.253 0.256 0.268 0.112 0.283 0.104 0.51 0.5

NPV 0.967 0.97 0.976 0.824 0.999 0.849 0.992 0.994

Accuracy 0.7 0.7 0.702 0.222 0.679 0.169 0.682 0.671

ASD (1,2) Sensitivity 0.635 0.683 0.723 0.831 0.982 0.807 0.977 0.982

Specificity 0.931 0.927 0.923 0.357 0.899 0.284 0.853 0.838

PPV 0.537 0.56 0.579 0.148 0.647 0.117 0.774 0.762

NPV 0.959 0.964 0.97 0.903 0.998 0.904 0.991 0.993

Accuracy 0.902 0.903 0.903 0.404 0.907 0.336 0.89 0.882

ASD (2,1) Sensitivity 0.464 0.533 0.573 0.766 0.953 0.654 0.581 0.649

Specificity 0.982 0.982 0.982 0.767 0.976 0.754 0.973 0.972

PPV 0.623 0.656 0.685 0.32 0.839 0.27 0.846 0.868

NPV 0.944 0.951 0.956 0.968 0.995 0.952 0.86 0.882

Accuracy 0.93 0.937 0.941 0.767 0.974 0.744 0.856 0.875

ASD (2,2) Sensitivity 0.331 0.408 0.453 0.64 0.926 0.445 0.424 0.511

Specificity 1 1 1 0.95 0.999 0.951 0.999 0.999

PPV 0.673 0.719 0.761 0.635 0.987 0.509 0.864 0.904

NPV 0.932 0.939 0.945 0.96 0.993 0.941 0.816 0.843

Accuracy 0.933 0.941 0.945 0.919 0.992 0.901 0.827 0.853

PPV positive prediction value, NPV negative prediction value
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u01 represent more noise in the response data. Similarly,
dramatic changes in the accuracy values of ASD (1,1),
ASD (1,2), and ASD (2,1) were observed in scenarios A
and D, but the DLDA algorithm and ASD (2,2) showed
similar or slightly lower accuracy values. These results
suggest that the DLDA algorithm is less sensitive to
changes at the population level, and that the ASD
approach requires good selection of R and G parameters.
It is not surprising that the DLDA algorithm showed
higher accuracy values in scenarios A-C and G-H as the
number of significant probes increased. However, this
phenomenon was not observed in ASD (1,1) and ASD
(1,2) in scenarios A-C and G-H. The reason may be that
the ASD approach uses the voting method to classify
patients; a higher number of identified probes cannot
provide more information if the parameter G is not
appropriate. In general, the DLDA algorithm shows high
predictive accuracy in all scenarios, even though there
are approximately 3 non-predictive probes in the model
on average (data not shown). In scenario F, the number
of predictive probes identified is less than 5 from Eq. 1,
resulting in poor sensitivity. Notably, ASD (1,1) is the
least restrictive classifier and has sensitivity equal to
0.953, the highest value, although specificity is only
0.083 in scenario F.
Empirical power of the overall and subgroup tests from

five classifiers is summarized in Table 2. The overall power

calculation was based on the original ASD paper pub-
lished in 2005 [11] by summing the power of the overall
test (Comparison 1 ≤ 0.02) and the power of the subgroup
test (Comparison 2 ≤ 0.03 and Comparison 1 > 0.02). The
power for DLDA to detect treatment effect in the g+ pa-
tients (Comparison 2) ranged from 0.3 to 0.5 in scenarios
A-D and was greater than 0.9 in scenarios E and G-H
when the overall test was not significant. Almost all 1,000
trials in scenario F were significant in the overall test
(insignificant tests N = 3). In general, values for overall
power demonstrated superior performance for the DLDA
classifier compared to the ASD classifiers in all scenarios.
Poor power in scenarios A-D resulted from low sensitivity
in the selection of the g+ patients (Table 1); many g+ pa-
tients were misclassified into the g− subgroup. For ex-
ample, the ASD (1,1) classifier was the least restrictive in
selecting g+ patients. Larger values of R or G will decrease
the sensitivity and increase the specificity. In scenario E
using ASD (1,1), sensitivity = 0.991 and specificity = 0.644,
which implies that 0.356×180 = 64 g− patients were classi-
fied as g+ patients in each group, where 13 would be
responders and 51 would not. On average, the control
group would be classified as having 17 responders and 67
non-responders and the treatment group would have 29
responders and 55 non-responders. The odds ratio for
identifying treatment effect in the g+ patients was reduced
to 2.08 from 16. Conversely, low sensitivity, as observed
with ASD (2,2), would misclassify g+ patients as g− pa-
tients. Either case can result in inadequate power to
detect treatment effect in the g+ subgroup. In addition,
PPV = 0.979 and NPV = 0.991 for the DLDA classifier in
scenario E. Because PPV for the DLDA classifier was
0.979, only two g- patients would be misclassified as g +
patients. Therefore, the DLDA algorithm indicated 20
responders in the control group and 79 responders in the
treatment group. The odds ratio for identifying treatment
effect in the g + patients was decreased to 15 from 16,
which was substantially larger than 2.08 using the ASD
(1.1) classifier. In summary, the DLDA classifier appeared
to consistently perform better than the ASD classifiers.

Analysis of GSE14814 dataset
A total of 133 microarrays from GSE14814 [33] were
downloaded from the GEO database. The data were
from non-small-cell lung cancer patients; 62 patients
received OBS alone and 71 patients received ACT. Be-
cause huge differences have been reported in distinct
lung cancer subtypes, we divided the samples into two
major subtypes, adenocarcinoma (AD, N = 71) and squa-
mous cell carcinoma (SQ, N = 52). The logrank test
between two treatment groups was performed for the
cancer subtype. No significant survival differences were
observed in either AD (p = 0.91) or SQ (p = 0.14) sub-
type. Since the AD patients showed almost no survival

Table 2 Power analysis for the overall test and subgroup tests
of the five binary classifiers for eight scenarios (A-H). The overall
power was calculated as the original reference [11], which is the
sum of the number of overall test < 0.02 and the number of
significance in comparison 2 of overall test > 0.02

Scenario A B C D E F G H

Overall Test < 0.02 64 70 69 924 159 997 463 487

Comparison 2_DLDA 26 35 33 483 153 503 455 481

ASD (1,1) 33 34 32 822 115 951 436 455

ASD (1,2) 20 25 25 682 116 859 451 476

ASD (2,1) 24 33 33 587 146 665 350 392

ASD (2,2) 23 33 31 488 153 411 286 352

Overall Test > 0.02 936 930 931 76 841 3 537 513

Comparison 2_DLDA 319 355 401 24 771 2 510 488

ASD (1,1) 130 131 115 11 298 0 388 361

ASD (1,2) 247 266 308 18 676 2 492 475

ASD (2,1) 216 260 280 20 709 2 226 237

ASD (2,2) 174 219 255 23 717 1 142 160

Overall power_DLDA 383 425 470 948 930 999 973 975

ASD (1,1) 194 201 184 935 457 997 851 848

ASD (1,2) 311 336 377 942 835 999 955 962

ASD (2,1) 280 330 349 944 868 999 689 724

ASD (2,2) 238 289 324 947 876 998 605 647
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benefit from receiving the treatment, the 52 SQ patients
were chosen for our analysis. There were 26 ACT pa-
tients and 26 OBS patients. For each gene, the Cox
hazard regression model with an interaction term (Eq. 1)
was tested. Because of small sample size, only the top 5
significant genes were selected as predictive biomarkers
to develop the prediction model. The leave-one-out
(LOO) cross validation was used in the analysis since
some patients might have different subgroup assign-
ments from different 10-fold partitions. The Cox regres-
sion model was fit to 51 training samples using all 5
significant genes to develop the prediction model. Subse-
quently, the pec library [34] in the R software was
utilized to estimate the survival probability of at least 5
five years for the test patient. Probability of 0.5 was used
as cut-off to select g+ and g− patients. The procedure
was repeated 52 times so that each patient was classified
as either g+ or g−. For the ASD classifier, we considered
the four best parameter settings: ln (R) = −1, −2, and
G = 1, 2. Negative R values reflected reduced risk for
the treatment group. For illustrative purpose, all five
comparisons are reported in Table 3. Comparison 2
was not significant for all five classifiers. The number
of patients and the median survival for each of the
four groups are listed in the last four rows. Note that
the median survival times for OBS and ACT were 5.34
and 6.69, respectively. The p-values from Comparison 4
are also shown. The performances of DLDA and ASD
(−1,1) were very similar. Both analyses showed that the
patients in the control arms had longer median survival
time than the patients in the treatment arm for the g
−patients identified.

Retrospective analysis of Shedden’s lung adenocarcinoma
dataset
We analyzed a well-known lung AD dataset [32]. In this
study, a favorable survival difference was observed in the

control group (p = 1.14*10−5). For illustrative purposes,
this dataset was analyzed as a binary outcome, based on
two year survival time. Comparisons 4 and 5 were con-
ducted to identify potential predictive biomarkers and
potential predictive-prognostic biomarkers. Two hundred
thirty-two (232) patients with clear “death” status were
analyzed. Patients were dichotomized into two groups
based on whether or not their survival was greater than
2 years. There were 80 patients in the control group
and 152 patients in the treatment group. Similar to
the analysis performed in the GSE14814 dataset, a
LOO cross-validation analysis was performed.
The DLDA and four ASD classifiers, ASD (−0.5,1),

ASD (−0.5,2), ASD (−1,1), and ASD (−1,2), were devel-
oped to identify g + patients. All five comparisons are
reported in Table 4. The DLDA algorithm showed a
significant survival difference between g+ and g− patients
in the treatment group (Comparison 4) and no differ-
ence in the control group (Comparison 5). Among the
four ASD classifiers, only ASD (−0.5,1) showed a sur-
vival difference in Comparison 4 close to borderline
significance (p = 0.049). The survival difference between
the g+ and g− subgroups in DLDA was 1.04, while the
difference in ASD (−0.5,1) was 0.97. ASD (−0.5,2) also
showed an obvious survival difference between g+ and
g− patients in the treatment group (Comparison 4).
However, the g− subgroup for the control group con-
tained no patients. For ASD (−1,1) and ASD (−1,2),
no patients had an ln (R) smaller than −1.

Discussion
Both the ASD and the proposed classifier used the same
predictor biomarker set to develop a classifier. The ASD
classifier consisted of a set of base-classifiers, and each
base-classifier used only a single biomarker to select g+

patients. The base-classifiers used the same cutoff for all
biomarkers which may not be an optimal strategy.

Table 3 Subgroup identification and analysis of 52 squamous cell carcinoma patients using a leave-one-out cross validation for five
classification methods. There were 26 patients in ACT and 26 patients in OBS

DLDA ASD (−1,1) ASD (−1,2) ASD (−2,1) ASD (−2,2)

Comparison 1 0.138 0.138 0.138 0.138 0.138

Comparison 2 0.07 0.125 0.149 0.428 0.114

Comparison 3 0.039 0.083 0.847 0.125 0.008

Comparison 4 1.25E-08 0.001 0.689 0.267 0.143

Comparison 5 0.697 0.697 0.938 0.791 0.034

g+ (T)a 6.79 (24) 6.71 (25) 6.71 (23) 6.71 (17) 5.21 (6)

g+ (C) 5.68 (23) 5.68 (23) 5.44 (22) 3.00 (15) 6.59 (8)

g− (T) 1.21 (2) 1.32 (1) 6.54 (3) 6.54 (9) 6.79 (20)

g− (C) 3.17 (3) 3.17 (3) 4.43 (4) 5.68 (11) 3.09 (18)

Each method classified patients into 4 subgroups: g+ (T), g+ (C) g− (T) and g− (C)
aMedian survival time (year) in the subgroup and the number of patients in the subgroup in parentheses
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Furthermore, the classifier may be sensitive to a “super”
predictor which may classify all patients as g+. The
proposed classifiers combined all predictors by finding
the best weights to develop a prediction model and de-
termine a cutoff to classify g+ and g− patients. The
proposed classifiers are developed by learning the rela-
tionship between the predictors and subgroup member-
ships. When there are several potential predictors, using
all predictors to develop a classifier is the standard and
effective approach. The proposed classifier is expected to
have better performance than the ASD classifier (Tables 1
and 2).
Eight simulation scenarios with different parameters

were considered in this study. It is not surprising to
observe different accuracy and power values under dis-
tinct settings. One limitation in the simulation scenarios
is that the g+ patients were assumed to be homogeneous.
That is, only one g+ subgroup was simulated, which may
not be applicable in the real world since patients are very
heterogeneous. Further research and simulation study
may be conducted to evaluate the predictive performances
with more than one g+ subgroup.
Subgroup analysis in clinical trials commonly refers to

Comparisons 1 and 2, where there are beneficial effects
in all patients and in a subgroup [35, 36], given that the
subgroups have been well-defined and correctly classi-
fied. The analysis strategy starts with an interaction test
for differential treatment effect between subgroups [37],
and subsequently performs subgroup identification and
analysis. It is generally expected that the prevalence for
the g+ subgroup is less than 50 %. Therefore, a significant
outcome of Comparison 2 often implies a significant out-
come for Comparison 3, provided that the classifier
has a high specificity (Table 1). Comparison 3 provides
additional information regarding the labeling effect in
the g− subgroup when Comparison 1 is significant.
Prospectively planned biomarker adaptive design pro-

vides a useful tool to assess a new treatment effect in

all patients and in biomarker defined targeted patients.
It assumes two underlying subgroups in the patient popu-
lations with greater treatment efficacy in the biomarker
targeted subgroup. The designs combine subgroup identi-
fication and subgroup analysis in one study. Accurate
identification of subgroups is critical to the success of
the study. For continuous survival data, subgroup iden-
tification involves estimation of predictive scores and se-
lection of a threshold for subgroup classification. Recently,
tree-based methods of directly finding treatment–covari-
ate interactions have been proposed [38–45]. Tree-based
methods identify biomarkers while classifying patients
into subgroups; many such methods were exploratory
analysis to identify predictive biomarkers that showed
treatment effects in subgroups; on the other hand, the
ASD framework was proposed for confirmatory analysis
to make inferences about a target subgroup. Various
methods have been proposed to estimate predictive scores
and select a threshold. The determination of optimal
weights to estimate predictive scores and the threshold
cut-point for subgroup classification remains a significant
challenge. Further research in prediction models for classi-
fication of survival response data is warranted [11].
Another major challenge is the allocation of α1 and α2

that significantly impact the interpretation and conclusion
of the trial. An optimal allocation depends on the charac-
teristics of the two subpopulations and on the treatment
effect sizes for the two subpopulations. Research to
develop testing strategies for the three populations (all
population, targeted population, and non-targeted popula-
tion) and to determine sample size will help in the
decision strategy for subgroup-specific treatment effects
in the context of biomarker adaptive design.

Conclusion
In this study, we presented new procedures to classify
patients into different subgroups to detect their treatment
effects based on gene expression values. A simulation

Table 4 Retrospective analysis of 232 lung adenocarcinoma patients by five binary classifiers. There were 80 patients in the control
and 152 patients in the treatment

DLDA ASD (−0.5,1) ASD (−0.5,2) ASD (−1,1) ASD (−1,2)

Comparison 1 0.014 0.014 0.014 0.014 0.014

Comparison 4 0.018 0.049 0.014 NA NA

Comparison 5 0.86 0.024 NA NA NA

Comparison 2 0.578 0.739 NA NA NA

Comparison 3 0.432 0.061 0.024 0.014 0.014

g+ (T) 3.40 (55)a 2.95 (118) 2.80 (146) 1.84 (152) 1.84 (152)

g+ (C) 2.36 (97) 1.98 (34) 1.16 (6) NA (0) NA (0)

g− (T) 3.82 (73) 3.89 (75) 3.46 (80) 3.46 (80) 3.46 (80)

g− (C) 3.35 (7) 2.02 (5) NA (0) NA (0) NA (0)
aMedian survival time (year) in the subgroup and the number of patients in the subgroup in parentheses
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study and two real datasets were analyzed to demonstrate
superior performance and accuracy when being compared
with a published method. In summary, the results showed
that the proposed design is an effective approach to iden-
tify subgroups of patients and to determine their ability to
benefit from a treatment.
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