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Single time point comparisons in
longitudinal randomized controlled
trials: power and bias in the presence
of missing data
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Abstract

Background: The primary analysis in a longitudinal randomized controlled trial is sometimes a comparison of arms
at a single time point. While a two-sample t-test is often used, missing data are common in longitudinal studies
and decreases power by reducing sample size. Mixed models for repeated measures (MMRM) can test treatment
effects at specific time points, have been shown to give unbiased estimates in certain missing data contexts, and
may be more powerful than a two sample t-test.

Methods: We conducted a simulation study to compare the performance of a complete-case t-test to a MMRM in
terms of power and bias under different missing data mechanisms. Impact of within- and between-person variance,
dropout mechanism, and variance-covariance structure were all considered.

Results: While both complete-case t-test and MMRM provided unbiased estimation of treatment differences when
data were missing completely at random, MMRM yielded an absolute power gain of up to 12 %. The MMRM
provided up to 25 % absolute increased power over the t-test when data were missing at random, as well as
unbiased estimation.

Conclusions: Investigators interested in single time point comparisons should use a MMRM with a contrast to gain
power and unbiased estimation of treatment effects instead of a complete-case two sample t-test.

Keywords: Complete-case, Longitudinal, Mean response profile, Missing data, Mixed model, Power, Repeated
measures, T-test

Background
Randomized controlled trials with longitudinal data are
sometimes analyzed by comparing an outcome at a sin-
gle measurement occasion by treatment group, using an
independent two-sample t-test [1, 2]. When data are
complete, the resulting estimated treatment effect and
p-value would be the same as if the investigators had
used a mixed model for repeated measures (MMRM) to
estimate the difference in means (for a continuous out-
come) between groups at a given time point [3]. How-
ever, if data are missing, results from an MMRM and a
t-test can differ, as explained below. Missing data in

longitudinal trials is common; in a recent review of top
medical journals, 95 % of randomized controlled trial
publications reported some level of missing data.
Though the outcome was collected repeatedly in 79 % of
trials, most did not use a model which used all the data,
such as a mixed model, opting instead to use only the
data available at that time point (e.g., by using a t-test)
[1]. The implications of this type of analysis may include
biased estimation and lower power.
Three missing data mechanisms are described by

Rubin [4]. Briefly, when the probability of an observation
being missing is not influenced by the values of prior
observations, the value of the missing observation, nor
other variables, the data are said to be missing com-
pletely at random (MCAR). When the probability of a
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missing observation depends on the value of prior obser-
vations but not the value of the missing observation, the
data are considered missing at random (MAR). When
the probability of missingness depends on the value of
the missing (unobserved) value, even after conditioning
on observed values, the data are said to be missing not
at random (MNAR).
The validity of a t-test in a complete-case analysis

relies on the assumption that the missing observa-
tions are MCAR [5]. It has already been established
that in the presence of MCAR or MAR data, an ap-
propriate mixed model will yield unbiased treatment
effects on average, as the available data is leveraged
in implicit imputation [6].
Baron et al. reported improved power and decreased

bias comparing a linear mixed-effects model to
complete-case t-test analysis of absolute change since
baseline, under a single missing data mechanism, in
the context of comparing complete-case, last observa-
tion carried forward, and multiple imputation [7].
However, to our knowledge, no investigation of power
expressly comparing an MMRM to a t-test under dif-
ferent missing data mechanisms and missing data
types has been published.
Briefly, a MMRM is a means model, also known as a

mean response profile analysis, and estimates the mean
outcome at each measurement occasion by treatment
arm. When an unstructured variance-covariance matrix
is specified for the model, the variance of the outcome
measure at each observed time and the covariances be-
tween each of the repeated measures are all estimated
based on the data, without assumption. When a com-
pound symmetric matrix is specified, the variance of the
outcome at each observed time is assumed to be equal,
and the covariance between any two repeated measures
is assumed equal. There is no assumption for the re-
sponse trajectory over time, thus the risk of bias due
to model misspecification is minimal [8]. Further
Mallinckrodt et al. reported that MMRM is an appro-
priate primary analysis for assessing response profiles
in a regulatory setting [3, 9].
The primary objective of the simulation study was to

compare the power of a mixed model for repeated
measures to a complete-case t-test, comparing treat-
ment groups at a single time point, in the presence
of missing data. The impact of within-person variance
and direction of dropout mechanism are considered.
The covariance structure used in the analysis was also var-
ied to assess potential power loss under unstructured vari-
ance-covariance estimation. The secondary objective was
to examine the influence of these factors on estimated
treatment effect bias. We show an example using the SF-
36 from the Health Evaluation and Linkage to Primary
Care (HELP) study, a randomized trial designed to

assess the impact of primary medical care on addic-
tion severity [10].

Methods
Simulation study
A simulation experiment based on a parallel two-group
randomized trial was conducted to investigate power to
reject the null hypothesis of no treatment effect, using a
complete-case two sample t-test and a MMRM at a
single time point in a longitudinal study, under differ-
ent missing data mechanisms, and with different
within-person variance, as well as bias of the esti-
mated treatment effect. We used the final time point
for analysis.
The outcome was simulated to mimic the Short

Form (36) Health Survey (SF-36) norm-based scoring
(mean = 50, standard deviation = 10). The SF-36 is a
widely used questionnaire that measures health status,
consisting of eight scaled scores, each ranging from 0
to 100, where lower scores are indicative of more
disability [11].

Simulation model
Ten thousand datasets were simulated for three different
between- and within-person variance scenarios, under a
parallel two-group, longitudinal design of four time
points, with 100 participants in each arm:

Yij ¼ β1t1 þ β2t2 þ β3t3 þ β4t4 þ β5treati x t1
þ β6treati x t2 þ β7treati x t3 þ β8treati x t4
þ βi þ eij

where Yij = the outcome for the ith subject at the jth time,
i = 1,…,n = 200,
j = 1, 2, 3, 4,
t1 is an indicator variable for time 1 (baseline), and t2

for time 2, t3 for time 3, and t4 is the end-of-study,
treati = 0 (control), treati = 1 (treatment),
bi ~ N(0, σb

2) between-person effects, with σb
2

between-person variance,
eij ~ N(0, σe

2) within-person effects, with σe
2 within-

person variance.
The mean baseline SF-36 normed score was set to 50

for both the treatment and control groups. With a sam-
ple size of 100 per group, a two sample t-test has 80 %
power to detect a 4.18 difference between groups,
assuming a standard deviation of √110 ≈ 10.4881 in each
group (two-sided α = 0.05). The standard deviation was
chosen to be similar to the observed standard deviation
of the SF-36 Physical Component Summary score from
the Health Evaluation and Linkage to Primary Care
(HELP) study, a randomized trial designed to assess the
impact of primary medical care on addiction severity
[10]. The simulations induced an end-of-study treatment
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difference of 4.18. Two trajectory scenarios were con-
sidered, including a treatment effect characterized by
a linear trajectory from 50 to 54.18, with no change
in the control group, and a non-linear trajectory in
both the treatment and control groups, where the
treatment effect is initially large and attenuates over
time, and the control group experiences a temporary
effect (Fig. 1).
A total variance of 110 was assumed for all simulated

datasets. Since the between- and within-person variance
had the potential to influence comparative performance
of the two sample t-test and the MMRM, three scenarios
were considered. With the total variance fixed at 110
(σb

2 + σe
2 = σ2 = 110) and assuming compound symmet-

ric variance-covariance structure [12], the first scenario
considered was with equal between- and within-person
variance of 55, giving ρ = σb

2/(σb
2 + σe

2) = 0.5, based on
observed variance components in commonly used psy-
chosocial measures with similar total variance [13].
The second simulated scenario was with between-per-
son variance of 77 and within-person variance of 33, thus
ρ = 0.7, which reflects the intuition that repeated observa-
tions from a given participant would be more similar than
observations from different participants. And finally, in
order to consider σb

2 < σe
2, a between-person variance of

33 and within-person variance of 77, ρ = 0.3, was simu-
lated. While it may seem counterintuitive that repeated
observations from the same participant would have
greater variance than observations across participants, it
has been reported in practice, and is thus not without
precedent [13].

Missingness type and mechanism
Initially 10,000 complete datasets were simulated under
each value of ρ (0.3, 0.5, 0.7), with treatment effect,
trajectory, between- and within-person variance as de-
scribed above. Since the impact of differential dropout
on bias has been shown to depend on the directions
of dropout mechanisms, ie: different reasons for drop-
out in each arm [14], we varied the mechanisms as
well as considered different scenarios of equal and
unequal dropout. We assumed that baseline observa-
tions were all complete, and that missing data was
monotone (i.e.: participants do not return to the
study after dropout). Different missing mechanisms
were considered by deleting observations according to
the following scenarios

1. MCAR with equal dropout of 40 % in each group:
Dropout does not depend on health status (Y) at the
prior observation or current observation and does
not depend on treatment group. [Probability of
missingness for participant i at time j (P(Mij = 1)) is
based on random sampling].

2. MAR with unequal dropout of 30 and 50 % in
each group: Participants in the treatment group
have a dropout rate of 30 %, while participants in
the control group have a dropout rate of 50 %.
[P(Mij = 1) = f(Yi(j-1)), i.e.: missingness at observation j
depends on the value of observation j-1].
a. One reason for dropout: This scenario would arise

if participants are more likely to dropout when
feeling particularly poorly (they stay home), and
since the treatment is assumed to have a beneficial
effect on health status in these simulations,
participants in the control group are more
likely to dropout.

b. Different reasons for dropout: This scenario would
arise if participants are more likely to dropout
when feeling particularly poorly (they stay home)
or feeling particularly well (take a vacation).

3. MAR with equal dropout of 40 % in each group:
This scenario could potentially arise via the same
mechanism as 2b, where participants drop out for
two different reasons, feeling particularly poorly or
particularly well, but the dropout rate happens to be
the same in each group. [P(Mij = 1) = f(Yi(j-1))].

4. MNAR with unequal dropout of 30 and 50 % in
each group: Same as 2, except P(Mij = 1) = f(Yij),
i.e.: missingness at observation j is dependent on
the value of observation j.
a. One reason for dropout.
b. Different reasons for dropout.

5. MNAR with equal dropout of 40 % in each group:
Same as 3, except P(Mij = 1) = f(Yij).

Analysis of simulated data
For each sample, subjected to each of the missing mech-
anisms described above, three analyses were conducted.
First, a complete-case two-sample t-test was conducted
to test the null hypothesis that there is no difference be-
tween the group means, using only participants with a
non-missing observation at the final time point. The
treatment effect was estimated by calculating the differ-
ence in group means at the final observation in the
complete-case analysis. Second, a mixed model for re-
peated measures (MMRM) with a contrast was used to
estimate the difference between group means at the final
time point and test the null hypothesis, assuming a com-
pound symmetric variance-covariance (CS) structure.
Additionally, a MMRM was applied similarly, though
with unstructured variance-covariance matrix (UN), in
order to gauge the potential power loss sustained by es-
timating more covariance parameters.

Evaluation of analytical approaches
For each of the three analyses, under the five different
missing mechanisms, separately for ρ = 0.3, 0.5, and 0.7,
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Fig. 1 Simulated trajectories of SF-36 Physical Component Summary score. a. Linear trajectory. b. Non-linear trajectory
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the performance of the analysis was evaluated in terms of
power and bias. Specifically, the power of the test was cal-
culated by computing the percentage of p-values < 0.05,
i.e.: [(Number of p-values <0.05)/10,000] × 100 %.
The bias of the estimated difference in group means
was assessed based on percent bias, using the simu-
lated treatment effect of 4.18, i.e.: [(estimated difference in
group means – 4.18)/4.18] × 100 %. The analyses were
initially evaluated in the complete 10,000 datasets (no
missing data) in order to confirm the performance and
comparability of the analyses in the absence of missing
data.

Example
The HELP study randomized patients with no primary
care physician, recruited from a detoxification unit, to
multidisciplinary assessment and motivational interven-
tion or usual care, with the goal of linking the patients
to primary medical care. The SF-36 was administered at
baseline, 6, 12, 18 and 24 months, with substantial miss-
ing data due to loss to follow-up. A secondary analysis
was conducted to estimate the treatment effect on men-
tal health, assessed with the SF-36 Mental Composite
Score (MCS), and compare the estimated treatment dif-
ference and corresponding p-value at the 24 month fol-
low-up, using the t-test, the MMRM with CS
covariance, and the MMRM with UN covariance.
Data from the HELP study are publically available
(https://www3.amherst.edu/~nhorton/r2/datasets.php).

Results
Simulation study
The power and bias estimates were similar for both the
linear and non-linear trajectory scenarios, thus only the
results for the linear trajectory simulations are described
here (Table 1). Results of the non-linear trajectory
simulations appear in the supplement (Additional file 1:
Table S1). Analysis of the 10,000 complete datasets
under each value of ρ confirmed the 80 % planned
power, as well as unbiased estimation of the treatment
difference at the final time point, using the t-test, the
MMRM with compound symmetric variance-covariance
assumption, and the MMRM with unstructured variance-
covariance (Table 1).
When the data were MCAR with equal dropout of

40 % in each group (scenario 1) the MMRM-CS
achieved higher power than the t-test, particularly when
ρ was higher. As ρ decreased, the power advantage of
the MMRM-CS diminished substantially, with a 12 %
absolute increase in power when ρ = 0.7, and a 3 %
increase in power when ρ = 0.3. Observed loss of power
using MMRM-UN was zero or unremarkable. As ex-
pected, the estimated treatment difference was unbiased
on average.

Under MAR simulation with one reason for dropout
(scenario 2a), specifically low value of y at the prior ob-
servation, and 30 and 50 % dropout rates by the final
time point in the treatment and control groups, respect-
ively, the advantage of the MMRM over the t-test be-
came apparent in terms of both power and treatment
effect estimation. The power advantage was most pro-
nounced under ρ = 0.7 with a 25 % absolute differ-
ence, though the gain was only 9 % under ρ = 0.3.
The difference in group means had a -15 % bias
under ρ = 0.7, -11 % under ρ = 0.5, and -6 % bias
under ρ = 0.3. When data were MAR with unequal
dropout, and with two different reasons (scenario 2b)
including low or high value of y at the prior observa-
tion, a 15 % difference in power gain was observed
under ρ = 0.7, though reduced to 5 % under ρ = 0.3.
The bias was -5 % for the t-test, smaller than when
participants dropped out only due to low values of y,
while the MMRM continued to provide unbiased esti-
mation of the treatment difference.
While data MNAR is known to present a challenge for

estimation even when a MMRM is used, we wanted to
evaluate the magnitude of bias and potential power gain
under the current missing mechanism scenarios. The
difference in bias percent between the complete-case
t-test and the MMRM was notable when ρ = 0.7 and there
was one reason for dropout (scenario 4a), with -18 % bias
for the complete-case t-test and -6 % for the MMRM,
with substantial power gain from 42 to 64 %, though
any advantage of the MMRM reduced to a negligible
difference under ρ = 0.3. Biased estimation limits the
utility of the MMRM in the presence of MNAR data,
despite the power gain. More detailed reporting of
bias is provided in Additional file 1: Table S2 and S3.
Since most investigators make efforts to minimize

missing data, particularly for the primary endpoint, we
conducted additional simulations for scenarios 1, 2a, and
4a to evaluate comparative performance with only
10–15 % missing data. The results demonstrated a
sustained, though modest, advantage of the MMRM
when 10–15 % of the data are missing (Additional file 1:
Table S4).

Example
SF-36 MCS data were missing for 46 % (105/228) of par-
ticipants randomized to usual care, and 36 % (82/225) of
participants randomized to intervention at the 24 month
follow-up. The mean SF-36 MCS was 2.28 higher in the
treatment group than the usual care group, when con-
sidering only those participants who completed the
study and the two sample t-test produced a p-value of
0.1785. The MMRM with CS variance-covariance matrix
estimated a treatment effect size of 2.63 and p-value of
0.0911, while the MMRM with UN variance-covariance
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matrix estimated a treatment effect of 2.69 and p-value
of 0.0946. While the difference in mean SF-36 MCS was
not significantly different between treatment groups
under any of these analyses, the magnitude of the differ-
ence in the estimated effect size and p-value between
the complete case t-test and MMRM could conceivably
distinguish a positive vs. negative trial outcome based

on the minimally important difference and/or statis-
tical significance.

Discussion
Our results demonstrate that a substantial gain in power
can be achieved by using a MMRM with a contrast to
make a single time point comparison, as compared to an

Table 1 Comparison of t-test, mixed model for repeated measures with compound symmetric variance-covariance, and mixed
model for repeated measures with unstructured variance-covariance, with respect to bias percent and power; simulation results for
linear trajectory

ρ = 0.7 ρ = 0.5 ρ = 0.3

(N = 10,000) (N = 10,000) (N = 10,000)

Bias % Power Bias % Power Bias % Power

Complete

t-testa 0 80 0 80 0 80

MMRM-CSb 0 80 0 81 0 80

MMRM-UNc 0 80 0 80 0 80

MCAR with equal dropout of 40 % in each group

t-test 0 58 0 58 0 58

MMRM-CS 0 70 0 65 0 61

MMRM-UN 0 70 0 65 0 60

MAR with unequal dropout of 30 % and 50 % in each group, one reason

t-test −15 44 −11 48 −6 51

MMRM-CS 0 69 0 64 0 60

MMRM-UN 0 69 0 64 0 59

MAR with unequal dropout of 30 % and 50 % in each group, two reasons

t-test −5 53 −3 53 −2 54

MMRM-CS 0 68 0 63 0 59

MMRM-UN 0 68 0 62 0 59

MAR with equal dropout of 40 % in each group

t-test −1 57 0 57 −1 56

MMRM-CS 0 69 0 64 0 59

MMRM-UN 0 69 0 64 0 59

MNAR with unequal dropout of 30 % and 50 % in each group, one reason

t-test −18 42 −16 43 −15 44

MMRM-CS −6 64 −9 56 −13 49

MMRM-UN −6 64 −9 56 −13 49

MNAR with unequal dropout of 30 % and 50 % in each group, two reasons

t-test −7 52 −6 51 −6 51

MMRM-CS −2 67 −4 60 −5 54

MMRM-UN −2 67 −4 60 −5 55

MNAR with equal dropout of 40 % in each group

t-test −3 55 −3 55 −3 55

MMRM-CS −1 69 −2 63 −2 58

MMRM-UN −1 69 −2 63 −2 58
aIndependent two-sample t-test for the difference between group means at the final time point
bMixed model for repeated measures, compound symmetric variance-covariance matrix, contrast between group means at the final time point
cMixed model for repeated measures, unstructured variance-covariance matrix, contrast between group means at the final time point
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independent two-sample t-test. The magnitude of the
power gain is influenced by the correlation (ρ) among
repeated measures within an individual, equivalently
characterized by within-person variance and between-
person variance, as higher correlation among repeated
measures within an individual provides richer informa-
tion to be leveraged by the MMRM for implicit imput-
ation of missing observations. While the estimated
treatment effect at a single time point calculated by tak-
ing the difference in the group means is unbiased when
data are MCAR, even with modest correlation (ρ = 0.5)
among repeated measures, the improved power warrants
use of the MMRM over the complete-case t-test when
data are MCAR.
The estimation advantage of the MMRM when data

are MAR has been previously established, as the MMRM
provides unbiased estimation when missingness depends
on the values of prior observations, while the complete-
case t-test does not [8]. Further, our simulation study
demonstrates the potential power advantage of the
MMRM, also contingent on the magnitude of the
within-person variance. Biased estimation continues to
limit enthusiasm for use of either the MMRM or t-test
under MNAR mechanisms.
While we anticipated that estimation of an unstruc-

tured variance-covariance matrix would lead to decreased
power in the MMRM, as compared to estimation of a
compound symmetric variance-covariance structure, our
simulations did not support our expectation. The two
MMRM generally performed identically in terms of power,
at least to the reported level of precision in the table.
However, the data were simulated under a compound
symmetric variance-covariance structure, and neither of
the models we considered represented a misspecification
of the true structure. Further, a limitation of our ob-
servation is that it cannot be generalized to longitu-
dinal studies with more time points, as the number
of parameters to be estimated increases quickly with
increasing number of time points, with the number of
covariance parameters = n x (n + 1)/2, where n is the
number of time points [8]. Since all of our simulations in-
volved four measures, we cannot draw conclusions re-
garding the magnitude of the power differential between
MMRM-CS and MMRM-UN when the study involves
more occasions for measurement. An additional limitation
is that we only simulated two trajectory scenarios, and
more complex trajectories might yield different results
with respect to the comparative performance of the
MMRM and the complete-case t-test. As is always the
case with simulation studies, the generalizability of the re-
sults beyond the specific induced scenarios is uncertain,
and varying all potential factors is impossible.
While Baron et al. reported on the bias and power

advantage of a linear mixed-effects model over a

complete-case t-test of change since baseline, they did
not consider the impact of between- and within-person
variance, or different directions of dropout, both of which
we found to have considerable influence on the compara-
tive performance, an important strength of our simulation
study.

Conclusions
Much has been written about the problems of underpow-
ered studies. If a research question cannot be answered
due to underpowering time, effort and resources are
wasted, and study participants may be exposed to the po-
tential harms of research [15]. Additionally, underpowered
studies contribute to a lack of reproducibility (reliability)
in research [16]. Using an MMRM instead of a two sample
t-test should be considered a relatively simple way to gain
power. Investigators who consider a single time point
comparison to be the primary scientific question of inter-
est should use a MMRM with a contrast to gain power
when data are MCAR, and to gain power and unbiased
estimation when data are MAR.
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