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Abstract
Background Biotechnology in genomics, such as sequencing devices and gene quantification software, has 
proliferated and been applied to clinical settings. However, the lack of standards applicable to it poses practical 
problems in interoperability and reusability of the technology across various application domains. This study aims to 
visualize and identify the standard trends in clinical genomics and to suggest areas on which standardization efforts 
must focus.

Methods Of 16,538 articles retrieved from PubMed, published from 1975 to 2020, using search keywords “genomics 
and standard” and “clinical genomic sequence and standard”, terms were extracted from the abstracts and titles 
of 15,855 articles. Our analysis includes (1) network analysis of full phases (2) period analysis with five phases; (3) 
statistical analysis; (4) content analysis.

Results Our research trend showed an increasing trend from 2003, years marked by the completion of the human 
genome project (2003). The content analysis showed that keywords related to such concepts as gene types for 
analysis, and analysis techniques were increased in phase 3 when US-FDA first approved the next-generation 
sequencer. During 2017–2019, oncology-relevant terms were clustered and contributed to the increasing trend in 
phase 4 of the content analysis. In the statistical analysis, all the categories showed high regression values (R2 > 0.586) 
throughout the whole analysis period and phase-based statistical analysis showed significance only in the Genetics 
terminology category (P = .039*) at phase 4.

Conclusions Through comprehensive trend analysis from our study, we provided the trend shifts and high-demand 
items in standardization for clinical genetics.
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Introduction
The dawn of the 20th century saw the rise of medi-
cal genetics research on humans due to the discovery 
of Mendelian inheritance disorders [1, 2]. Remarkable 
progress in medical genetics has been made in the latter 
part of the 20th century, notably in cancer genetics [3]. 
Especially, research on disease diagnosis using genomic 
sequencing technologies has gained momentum, thanks 
to the wide availability of next-generation sequencing 
(NGS) methods. To use this advanced genetic analysis 
technology in medical institutions or clinical settings, it 
is essential to develop a standard procedure that could 
be commonly used. Various standard guidelines are 
being developed by industry and international stan-
dards development organizations for clinical examina-
tion and diagnosis of diseases, such as cancer, leukemia, 
and tuberculosis [4–7]. These standards, from such orga-
nizations as the American College of Medical Genet-
ics (ACMG), Association of Molecular Pathology, and 
Microarray Quality Control Consortium [4, 7–9], have 
enabled the active use of various sequencing technologies 
and methods in the clinic [7].

However, extant standards and their coverage could not 
be claimed to be sufficient to meet the standardization 
demand from the market, notably evident in the clinical 
applications of NGS to disease diagnosis [4–7]. For the 
use of newly developed genetic technology to thrive, it is 
of significant import for standard research to be able to 
scan the clinical environment of genomics and the recent 
status/ trend of analysis technology and gather necessary 
technical resources for standardization, to refine priori-
ties for genomics standardization.

One way to help scan the genomics environment is to 
apply network analysis on the artifacts of research arti-
cles to reveal environmental changes that can be used as 
guidance for standardization. To explore specific research 
trends, network analysis using bibliometric data has been 
widely used and applied to various research domains, 
for example, genomics [10], public health [11, 12], and 
medicine [13]. Network analysis in this study is used to 
divulge research trend changes. The identification of such 
trend changes can enable the research of standards devel-
opment to construct a strategy to meet the standardiza-
tion demand from genetic research and clinical practice. 
In detail, this study uses network analysis (1) to suggest 
recent genomics trends and narrowed range of topics to 
keywords showing strong relation in standardization, (2) 
to examine temporal trends and related critical develop-
ment which drives changes in trend. Through this study, 
we intend to derive all development that acts as major 
factors and indicators to which standards development 
should be considered.

Methods
Study flow
The overall study procedure is shown in [Supplementary 
file, Figure S1] and summarized as follows: (1) search 
articles with two Medical Subject Heading (MeSH) terms 
(“genomics and standard” and “clinical genomic sequence 
and standard”) in PubMed; (2) export PMID numbers; 
(3) extract keywords from the abstracts and titles of the 
articles; (4) keyword preparation; (5) development of the 
network analysis with the keyword frequency matrix; 
(6) development of the period analysis with the keyword 
frequency matrix; and (7) categorization of keywords for 
statistical analysis.

Data source
The MEDLINE database is provided by the US National 
Library of Medicine and contains various types of sci-
entific literature in biomedical and life science fields 
[14]. We have used PubMed to freely access to MED-
LINE database, and it provides links to the abstracts. To 
explore research trends of standardization in genomics, 
we searched two MeSH terms, “genomics and standard” 
and “clinical genomic sequence and standard”, published 
between 1975 and September 2020. The search returned 
16,550 articles that contained various types of research 
papers, such as reviews, original articles, and perspec-
tives. Of the articles, 10,000 articles were indexed with 
the search term “Genomics and standard”, and 6,550 
articles with “Clinical genomic sequence and standard”. 
Of the 16,550 articles, we used 15,855 articles whose 
abstracts and titles were accessible and written in English.

Keyword preparation
The data preparation was summarized in [Supplemen-
tary file, Figure S1]. A total of 36,275 frequency of 5,639 
keywords was extracted from 15,855 articles. The key-
words were extracted using the TextRank algorithm 
[15] using Corpus 16,000 from the abstracts and titles 
of the articles. TextRank algorithm is commonly used to 
extract single terms from literature, so we used TextRank 
to extract semantic keywords. By four experts, the key-
words were manually screened and reviewed following a 
set of exclusion criteria referring to previous studies. The 
exclusion criteria are 1) non-technical terms with three 
conditions: (a) everyday term which is used in daily life, 
such as “she”, and “others”. (b) terms that are not related 
to or specialized science and technical knowledge, such 
as “abc”, “scientist”, “concept” and “consensus”. (c) adjec-
tives and adverbs, such as “happy”, “firstly”, “lastly”, and 
“furthermore”; 2) temporal terms such as months, week-
days, as well as other temporal terms that do not pro-
vide precise a point of time and period, such as “April” 
without year (instead of “April 2004”) or “Monday” with-
out year and month; and 3) compound nouns with two 
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conditions: (a) frequencies of a compound noun of whose 
constituent terms have been already counted individually, 
such as “genomics proteomics”, and “protein gene” AND 
(b) the compound noun does not constitute a meaningful 
term, such as “furthermore genes” and “statistically dis-
ease”. After the manual cleansing, 1,024 keywords were 
left.

For the synonyms with different spells and the syn-
onyms expressed with different capital or small character, 
we merged these terms into one abbreviation of capital 
instead of a spell-out term. All the plural terms were cor-
rected and merged into a singular form.

Because many duplicated compound nouns, such as 
“HBV HBC” “proteomics proteomics” and “CpG CpG”, 
and meaningless compound nouns with more than three 
words, such as “genorm bestkeeper normfinder” and 
“genetics genomics acmg”, were automatically generated 
under 12 frequencies, we set further exclusion criteria 
for keywords less than 12 frequencies. As we removed 
keywords following this exclusion criteria, most of the 
unuseful compound nouns were deleted and it resulted in 
330 keywords with a total frequency of N = 16,213.

Network analysis
The overall network analysis was performed following 
previous studies [16, 17]. In network analysis of research 
articles, a higher frequency of keywords indicates a 
higher number of relevant research in a particular year. 
For network analysis, weighted Jaccard similarity value 
obtained between two keywords was commonly used to 
evaluate the closeness between the keywords. A network 
consists of lots of nodes and edges. A node represents 
a keyword, and an edge represents relatedness between 
two keywords.

The weighted Jaccard similarity provides edge weight 0 
to 1. For example, if the edge weight is 1, two keywords 
were always used in the same sentence. In this study, we 
calculated edge, the relatedness between two keywords, 
by weighted Jaccard similarity using frequencies of the 
keywords [16, 17]. For network analysis, we used key-
words frequency data in the full phase. The weight of a 
node in the network was determined by the PageRank 
algorithm [18], and a community detection algorithm 
[19] were used to cluster keywords. When PageRank 
calculates node sizes, it considers edge weights. In this 
study, the PageRank, and the community detection algo-
rithm based on the modularity of optimization were 
conducted via Gephi 0.8.2. The node size was displayed 
by the PageRank score, and the color of an edge was pre-
sented by the modularity value. According to the derived 
values, the network model of the relationships between 
keywords was visualized via Gephi.

The similarity between keywords and between publica-
tion year.

The relatedness between keywords is represented by 
the similarity obtained via the weighted Jaccard similarity 
equation shown below.

 
J (S, T ) =

∑
Kmin (SK, TK)∑
Kmax(SK, TK)

First, a two-dimensional annual frequency matrix (Sup-
plementary file 1, Figure S1) was generated with a fre-
quency of each term by publication years - a matrix 
of 330 (the number of keywords) x 46 (the number of 
publication years, from 1975 to 2020). In the following 
equation, for the network analysis, S and T represent 
two keywords, and Krepresents the ordinal number of 
keywords S and T. Based on the matrix, we calculated 
the similarity value between the two keywords using fre-
quency data in a row. For example, when we calculate 
similarity between keywords “AAV (S)” and “Abi (T)”, the 
frequency data for the keywords are: S = {0, …, 1, 0} and 
T = {1, …, 1, 0}. Using these input data, we obtained the 
similarity value of J (S, T) = (0 + … + 1 + 0)/(1 + … + 1 + 0). 
For the period analysis, we used frequency data in a col-
umn of each publication year to calculate the similarity 
between publication years. For example, the similarity 
between 2019:2020 is calculated with the frequency of 
2019 (S) and 2020 (T): S = {1, 1, 0, 1, 8, 2, 4, 0, …} and T = 
{0, 0, 1, 1, 2, 0, 0, 0, …}. Thus, the similarity value between 
2019:2020 is J (S, T) = (1 + 1 + 0 + 1 + 8 + 2 + 4 + 0 + …)/
(0 + 0 + 1 + 1 + 2 + 0 + 0 + 0 + …). The maximum similarity 
value is 1.0, and as the similarity is increasing, two key-
words in the network analysis or two publication years in 
the period analysis present a high match.

Period analysis
To observe when the research trend changed, a similarity 
analysis was performed between years. Through period 
analysis, we identified the change point when the simi-
larity graph was steeply curved. This will aid in explor-
ing the social events that affect research trends. We 
calculated the differences between the year of similarities 
to identify the local minimum and the local maximum 
points. Before and after of the relatively larger difference 
value [red color in Supplementary file 2], the local mini-
mum and maximum points were identified [Supplemen-
tary file 2, green colored].

To be more precise about the local minimum and max-
imum points, we analyzed three types of similarity analy-
sis for the period analysis:

1) The similarity between two publication years (e.g., 
years 2000 and 2001 presented as 2000:2001).

2) The similarity between two similarity values with 
1-year of interval (e.g., similarity between similar-
ity values of 2000:2001 and 2001:2002 presented as 
2000:2001:2001: 2002).
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3) The similarity between two similarity values with 
2-year of interval (e.g., similarity between similarity val-
ues of 2000:2002 and 2001:2003).

Please note that phase 0 (1975–1999) was not included 
in the analysis, due to the low-frequency values (fre-
quency of 10 to 72).

We submit that a local minimum and maximum point 
in similarity provides an indicator that there has been a 
significant development or event that deserves the atten-
tion of standards development communities.

Content analysis
Through content analysis, we reviewed terms following 
our previous research [16, 17], and additionally, in this 
study, we classified keywords into a related research area. 
First, the 330 keywords were classified into academic 
categories, and further, the same 330 keywords were 
classified into other subcategories [Supplementary file 
2, Content analysis sheet]: 1) The keywords were sorted 
into six academic categories: Biology, General, Genet-
ics, Medicine, Proteomics, and Statistics. For example, 
“Escherichia”, “animal”, and “Arabidopsis” were sorted 
into the Biology, “Illumina”, “allele”, and “rRNA” were in 
the Genetics, “precision”, “therapy”, and “diagnosis” were 
in the Medicine, “peptide” “omics”, and “QconCAT” were 
in the Proteomics, “Bayesian”, “algorithm”, and “Gaussian” 
were in the Statistics. The keywords in the General cat-
egory can be used in other academic fields. For example, 
“database” “knowledge” and “measurement” could be 
used in any other field in Biology, Genetics, and Medi-
cine. So in this case, keywords were classified into the 
General category.

2) Further, those 330 keywords were divided into the 
12 science subcategories: Biologicals/Metabolics, Clini-
cal, Company/Consortium, Database/ Software, Disease, 
Gene, Genetics term, Methods, Organism, Pathogen, 
Proteomics, and Statistics.

All the keywords category lists were in [Supplementary 
file 2, Content analysis sheet].

Statistical analysis
To evaluate statistically linear trends, the generalized 
linear model has been commonly used in review and 
research articles [20, 21]. In our study, a linear regression 
analysis was performed with keyword frequencies and 
publication years for each category to examine the rela-
tionship between phases. The sum of the publication year 
within a phase was calculated in the five phases, includ-
ing phase 0 to derive phase-frequency data. The academy 
categories and subcategories were represented as fixed 
factors. And the five phase-frequency lists were used as 
the dependent variables. Using these variables, we per-
formed a univariate generalized linear model (GLM) to 
statistically estimate the research trends of each phase. 

For the GLM, we conducted a parameter estimation in 
each of the 6 academy categories and 12 subcategories 
within each phase. SPSS Statistics ver.26, IBM was used 
for the statistical analysis.

Results
The network analysis
The network is displayed in Fig. 1 with keywords derived 
from studies published from 1975 to 2020, using eight 
colors following a modularity of 0 to 7. According to the 
modularity value, full-phase keywords were clustered in 
different colors (Fig. 1; Table 1).

In the modularity 0 (M0), terms related to genetic 
materials (e.g., “genome”, “SNP”, and “allele”), clini-
cal related terminology (e.g., “disease”, “clinician”, “Illu-
mina”), and bioinformatics technology (e.g., “Bayesian”, 
“bioinformatics”) are clustered. M0 is implied that bio-
informatics and its technology are applied in clinics for 
the detection and examination of various types of genes. 
In M1, object of genetic analysis and its techniques are 
clustered; The analysis subjects including genetic mate-
rials were “gene”, “mRNA”, “Arabidopsis”, “cDNA” and 
“miRNA”.) and gene analysis terms were “qPCR”, “micro-
array”, “GeNorm”, “gene normalization”, and “Norm-
Finder”). In M2, top ranked keywords are used most in 
clinics to diagnose and treat tumor diseases; The histo-
technical terms to detect tumor genes from tumor cell 
and tissue, such as “nano gram”, “EGFR”, “IHC”, and 
“KRAS”, tumor related keywords (“tumor”, “NSCLC” and 
“tumor DNA”), and treatment keywords (“therapy”, and 
“targeted therapy”) are grouped together. In M3, strong 
relations are shown among gene database (“MLST” and 
“NCBI”), genetic analysis (“WGS” and “MiSeq”) and 
pathogens (“Escherichia”, “bacteria”, “pathogen”, “Myco-
bacterium”, “Psudomonas”, and “Streptococcus”). In M4, 
The DNA methylation-related disease and its specific 
genetic analysis terminology are clustered; DNA meth-
ylation-related term (“CpG”, “DNA methylation”, “meth-
ylation”, “MGMT”), DNA methylation disease (“AML”), 
and the specific terms (“TMZ”, “IDH”) regarding glio-
blastoma which is one of the DNA methylation diseases. 
In M5, gene-related terms (“rRNA”, “nucleotide”, “Gen-
Bank”, “codon”, “genotyping” “RNA”) are shown in the 
cluster including genes for phylogenetics (“mitochon-
drial genome”, “mtDNA”, “phylogenetic”, and “tRNA”). 
In M6, proteomics (“protein”, “proteomics”, and “pep-
tide”) and its analytical terms (“biomarker”, “algorithm”, 
“database”, “knowledge”, “reproducibility”, “FDR”, “mea-
surement”) are clustered. The keywords in M7 are con-
sidered that these are related to the subjects of genetic 
analysis in clinical laboratory; clinical laboratory tech-
niques (“diagnosis”, “genomic hybridization” “aCGH”, and 
“MLPA”), and the subjects of analysis (“CNV”, “genomic 
DNA”, “STR”, “Chromosome”, “BAC”, “aCGH”, “MLPA”, 
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and “haplotype”). From the network analysis, it was pos-
sible to explore keywords related standards and a field of 
genetics research where standardization is mentioned.

Period analysis based on publication years
For period analysis, we selected three local minimum 
/ maximum points using a large difference between the 
similarities of publication year [Supplementary file 2] to 
define the patterns of the keyword appearance. Based on 
the local minimum and maximum points, four phases 
were defined for the different similarity patterns shown 
in the keyword research. For example, the local minimum 
points (Similarity = 0.294) were identified in 2003:2004 in 
Fig. 2 A, S = 0.518 in 2002:2003:2003:2004 in Fig. 2B, and 
S = 0.612 in 2001:2003:2002:2004 in Fig. 2 C. So, phase 1 

was set from 2000 to 2003 based on the local minimum 
points near the large difference (-0.102, in Fig. 2 A).

Following the procedure, in Fig. 2 A, the local minimum 
/ maximum points emerged in 2003:2004, 2012:2013 
(S = 0.485), and 2017:2018 (S = 0.541) where the trend has 
started to plateau (Table 2). In the same way, the phase 
criteria of Fig.  2B were defined as 2002:2003:2003:2004 
(S = 0.518); 2011:2012:2012:2013 (S = 0.684); and 
2016:2017:2017: 2018 (S = 0.736), and Fig.  2  C were 
2001:2003:2002:2004 (S = 0.612); 2010:2012:2011: 2013 
(S = 0.770); and 2015:2017:2016:2018 (S = 0.798). The 
similarity scores for each period analysis are shown in 
Table 2. From above the periodic analysis, we identified 
the main three points, where the critical issues regarding 
standardization in genomics occurred.

Fig. 1 Network connectivity between keywords for the total period (1975–2020). In the network, the total frequency of 338 keywords is 16,213. The color 
of an edge represents the same similarity value and represents the cluster. Each keyword has one node and a keyword, and it may have many edges to 
and from other keywords. A node size was determined by a PageRank score. The edge is displayed over 0.5 threshold of modularity
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Table 1 The top keyword lists and the PageRank scores by the modularity number of the cluster
Modularity 0 M1 M2 M3
Keyword PageRank Keyword PageRank Keyword PageRank Keyword PageRank
genome 0.0167 Gene 0.0244 nano gram 0.0159 WGS 0.0087

SNP 0.0148 mRNA 0.0067 tumor 0.0105 Escherichia 0.0084

disease 0.0128 qPCR 0.0066 therapy 0.0076 bacteria 0.0061

allele 0.0119 microarray 0.0052 EGFR 0.0056 pathogen 0.0053

clinician 0.0097 Arabidopsis 0.0048 IHC 0.0043 Mycobacterium 0.0051

genomics 0.0084 geNorm 0.0048 KRAS 0.0041 MLST 0.0047

Illumina 0.0075 gene normalization 0.0047 NSCLC 0.0041 NCBI 0.0039

Bayesian 0.0072 NormFinder 0.0045 targeted therapy 0.0040 MiSeq 0.0038

genetics 0.0058 cDNA 0.0042 amplicon 0.0037 Pseudomonas 0.0038

bioinformatics 0.0058 miRNA 0.0035 tumor DNA 0.0037 Streptococcus 0.0037

M4 M5 M6 M7
Keyword PageRank Keyword PageRank Keyword PageRank Keyword PageRank
CpG 0.0053 rRNA 0.0042 protein 0.0152 diagnosis 0.0077

WHO 0.0051 nucleotide 0.0038 biomarker 0.0095 CNV 0.0056

DNA methylation 0.0040 GenBank 0.0037 proteomics 0.0087 genomic hybridization 0.0054

methylation 0.0037 codon 0.0036 Algorithm 0.0075 genomic DNA 0.0047

MGMT 0.0036 genotyping 0.0033 Peptide 0.0063 STR 0.0032

inhibitor 0.0036 mitochondrial genome 0.0031 Database 0.0060 chromosome 0.0031

AML 0.0036 mtDNA 0.0031 knowledge 0.0047 BAC 0.0030

ROC 0.0034 phylogenetic 0.0031 reproducibility 0.0046 aCGH 0.0029

TMZ 0.0032 tRNA 0.0031 FDR 0.0040 MLPA 0.0028

IDH 0.0031 RNA 0.0029 measurement 0.0040 Haplotype 0.0028

Fig. 2 Period analysis. (A) The similarity between 1-year; (B) similarity between a 1-year interval of similarities; (C) similarity between a 2-year interval of 
similarities.
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Content analysis
The combined frequencies of keywords belonging to 
each category of the academic categories and subcat-
egories are computed. Each keyword belongs to only one 
category.

Genetics in academic category has the highest fre-
quency (n = 8,777, 54.1%) in the academic categories, 
followed by. Medicine (n = 2,856, 17.6%), Proteomics 
(n = 2,257, 13.9%), General (n = 992, 6.1%), Biology 
(n = 707, 4.3%), and Statistics (n = 624, 3.81%).

Gene in subcategories has the highest frequency 
(n = 3276, 20.2%), followed by Genetics terminology 
(n = 3019, 18.6%), Methods (n = 1725, 10.6%), Database/
Software (n = 1393, 8.59%), Disease (n = 1204, 7.42%), 
Clinical (n = 1103, 6.8%), Proteomics (n = 1034, 6.37%), 
Pathogen (n = 1006, 6.2%), Statistics (n = 720, 4.44%), Bio-
logicals (n = 707, 4.36%), Company/Consortium (n = 536, 
3.3%), and Organism (n = 490, 3.02%).

We examined the trend of each term from phase 0 to 
phase 4 in subcategories as follows:

Table 2 Similarity results based on different year ranges
Similarity (1 year) Similarity (1-year interval) Similarity (2-year interval)
Year Similarity Year Similarity Year Similarity
2000 : 2001 0.267 2000:2001 : 2001:2002 0.515 2000:2002 : 2001:2003 0.649

2001 : 2002 0.274 2001:2002 : 2002:2003 0.572 2001:2003 : 2002:2004 0.612

2002 : 2003 0.298 2002:2003 : 2003:2004 0.518 2002:2004 : 2003:2005 0.652

2003 : 2004 0.294 2003:2004 : 2004:2005 0.566 2003:2005 : 2004:2006 0.695

2004 : 2005 0.396 2004:2005 : 2005:2006 0.622 2004:2006 : 2005:2007 0.735

2005 : 2006 0.377 2005:2006 : 2006:2007 0.624 2005:2007 : 2006:2008 0.710

2006 : 2007 0.389 2006:2007 : 2007:2008 0.605 2006:2008 : 2007:2009 0.717

2007 : 2008 0.387 2007:2008 : 2008:2009 0.628 2007:2009 : 2008:2010 0.732

2008 : 2009 0.393 2008:2009 : 2009:2010 0.651 2008:2010 : 2009:2011 0.745

2009 : 2010 0.434 2009:2010 : 2010:2011 0.640 2009:2011 : 2010:2012 0.708

2010 : 2011 0.439 2010:2011 : 2011:2012 0.624 2010:2012 : 2011:2013 0.770

2011 : 2012 0.397 2011:2012 : 2012:2013 0.684 2011:2013 : 2012:2014 0.761

2012 : 2013 0.485 2012:2013 : 2013:2014 0.692 2012:2014 : 2013:2015 0.757

2013 : 2014 0.486 2013:2014 : 2014:2015 0.682 2013:2015 : 2014:2016 0.766

2014 : 2015 0.480 2014:2015 : 2015:2016 0.689 2014:2016 : 2015:2017 0.775

2015 : 2016 0.491 2015:2016 : 2016:2017 0.716 2015:2017 : 2016:2018 0.798

2016 : 2017 0.503 2016:2017 : 2017:2018 0.736 2016:2018 : 2017:2019 0.796

2017 : 2018 0.541 2017:2018 : 2018:2019 0.737 2017:2019 : 2018:2020 0.774

2018 : 2019 0.544 2018:2019 : 2019:2020 0.675

2019–2020 0.349

Fig. 3 Keyword frequency trend results. (A) publication frequencies’ trend of the academic categories; (B) publication frequencies’ trend of subcategories
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In [Supplementary file 1, Figure S2], “Escherichia” 
showed the highest frequency in phase 2, and “Myco-
bacterium” in phase 4. In Statistics, “Bayesian” and “algo-
rithm” were of the highest frequency in phase 2, while the 
frequency of the latter steadily decreased until phase 4. 
The frequency of “Bayesian” increased from phase 3 to 4.

In the Company/Consortium graph, “Illumina,” “Taq-
man” were of the highest frequency at phase 4, and “Illu-
mina” and “ACMG” showed an increasing trend during 
the whole period. In Database, the term “bioinformatics” 
showed the highest frequency at phase 4. In Gene, the 
terms “gene”, “genome”, “allele”, “codon”, “cDNA”, “chromo-
some”, “DNA”, and “mtDNA” exhibited the highest fre-
quencies at phase 2 and started to decrease in frequency 
from phase 3 to phase 4.

Terms denoting relatively smaller gene fragments, such 
as “RNA”, “miRNA”, “rRNA”, “exome”, “tRNA”, showed an 
increasing trend from phase 3 to 4. In Software, terms 
referring to gene quantification software, “NormFinder”, 
“geNorm”, and “BestKeeper”, were highest in frequency at 
phase 3 and “ClinGen” showed an increasing trend from 
phase 3 to 4. In Methods, “WGS”, “GWAS”, and “MiSeq” 
exhibited an increasing trend from phase 2 and peaked in 
frequency at phase 4.

On the other hand, “microarray,” “genomic hybridiza-
tion,” and “gene microarray” showed the highest fre-
quency in phase 2, and “qPCR” peaked in frequency in 
phase 3. In Clinical, “Clinician”, “therapy”, “diagnosis”, 
“precision”, “targeted therapy”, and “biopsy” all showed 
an increasing trend until phase 4; and in Disease, the 
term “disease” and oncology-related terms, such as 
“tumor”, “NSCLC”, “AML”, “GBM”, “tumor DNA”, and 

“adenocarcinoma” showed an increasing trend through-
out the phases.

Statistical analysis
The linear regression over the period
To evaluate linear trends, linear regression was con-
ducted with keyword frequencies for publication years 
from 1975 to 2020. Although 2020 showed a decreasing 
trend in the academic categories and subcategories, all 
the categories showed high regression values (from 0.586 
(Company/Consortium) to 0.764 (Biology)) as shown in 
Table  3; Fig.  2. All the categories showed an increasing 
linear correlation between keyword frequencies and pub-
lication years.

The generalized linear model within a phase
Because the linear regression analysis without phase 
demonstrated a high correlation (R2 > 0.585) in all cat-
egories, we conducted linear regression within a phase 
in each category. To analyze phase-based linear analy-
sis for each category, we performed GLM evaluation 
based on phases (Fig.  3; Table  4). There was no signifi-
cant linear correlation found in the academic categories 
(Supplementary file 1, Table S1) while significant lin-
ear correlations were observed in several subcategories 
(Table 4): Gene (P = .003) and Pathogen (P = .030) showed 
a significant in phase 0, and Gene (P = .004) and Pro-
teomics (P = .044) showed a significant phase 1. In phase 
2, only Proteomics (P = .001) was significant, in phase 3, 
Proteomics (P = .045) and Software (P = .004) were signifi-
cant, and in phase 4, only Genetics terminology was sig-
nificantly fitted with the linear model (P = .039).

Discussion
In this study, we have investigated the trends in clinical 
genetics from 1975 to 2020. Through the network analy-
sis, we have obtained clusters with a strong relationship 
between terminology from M0 to M7 as follows, respec-
tively: M0) clinical use of bioinformatics and analysis 
technology; M1) gene analysis objects, methods, and 
software; M2) oncology regarding diagnosis, treatment, 
and tumor disease; M3) gene database and analysis tools 
regarding pathogens; M4) The DNA methylation-related 
disease and gene analysis; M5) gene-related terms includ-
ing phylogenetics; M6) proteomics and its analytical 
terms; M7) gene analysis objects in clinical laboratory. 
As the clinical application of cutting-edge technology 
increases, research items with high requirements for 
standardization are being revealed, and the scope seems 
to be narrowing down to gene analysis, genetic materi-
als, living organisms (i.e., biological objects), bioinfor-
matics, and proteomics. Interestingly, diseases in which 
standardization is often mentioned or is showing high 
demands for standards are prominent in clinical practice 

Table 3 Linear regression based on keyword frequency in the 
academic categories and subcategories

Name of the category R2

Academic
Category

Biology 0.764

General 0.587

Genetics 0.717

Medicine 0.653

Proteomics 0.673

Statistics 0.666

Subcategory Clinical 0.657

Company/Consortium 0.586

Database/software 0.684

Disease 0.625

Gene 0.664

Genetics terminology 0.740

Metabolite/Biologicals 0.652

Methods 0.736

Organism 0.741

Pathogen 0.737

Proteomics 0.678

Statistics 0.648
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have been discovered, such as oncological diseases such 
as tumors and cancer, and DNA methylation diseases 
such as acute myeloid leukemia (AML) and glioblastoma.

Through period analysis, it was possible to know at 
which point the standard trend in the field of clinical 
genetics changed, and through content analysis, it was 
possible to find out which keywords increased at the 
point revealed through period analysis.

For instance, in April 2003, the Human Genome Proj-
ect, the world’s largest collaborative biological project 
from 1990, was completed [22], ramifications of which 
seemed to have been reflected in the trend shift at phase 
2. In a comprehensive review of the content analysis and 
network analysis results, an increasing appearance of 
genetic analysis terms such as “qPCR”, “microarray”, “elec-
trophoresis”, and “Taqman” were observed at the point.

Another example may be gleaned from an event in 
2013, the approval of Illumina’s sequencer by US-FDA 
[23] in 2013. An increasing trend shift was observed at 
phase 3 in the form of increased frequencies of sequenc-
ing-related terms (“miRNA”, “rRNA”), devices (“Illumina”, 

“MiSeq”), and analysis technique/software (“WGS”, 
“GWAS”, “geNorm”, “NormFinder”). Although the events 
in which MiSeq of Illumina was launched in 2011 and 
HiSeq 2500 of Illumina sequencer was launched in 2012, 
the social influence of FDA approval has seemed more 
affect the standardization of research in genomics than 
the launching of device.

Other shifts of note are: 1) In phase 4, the keywords, 
such as “nano gram”, “genetics”, “genomics”, “methylation”, 
“MLST”, and “metagenomics”, in Genetics terminology 
category showed a significantly increased linear trend 
(p = .039, Table 4).

From content analysis, we identified the drastic increas-
ing trends in the clinical terminology, such as “clinician”, 
“therapy”, “diagnosis”, “precision”, and “pathogen”, and 
especially related to the oncology-related terminology, 
such as “tumor”, “NSCLC”, “AML”, “GBM”, and “tumor 
DNA”. 2) From phase 1 to phase 3, there was a trend shift 
in terms related to gene analysis technology and target 
genes, with an increasing appearance of terms for smaller 
size genes from the large ones (e.g., from “genomic DNA”, 

Fig. 4 The generalized linear model results represented each phase from phase 0 to phase 4
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Phase Category B SE t Sig. 95% Confidence Interval
Lower Upper

Phase 0 Biologicals 0.647 0.911 0.710 0.478 -1.146 2.439

Clinical 0.004 0.875 0.005 0.996 -1.717 1.726

Company/Institute 0.022 1.078 0.020 0.984 -2.100 2.143

Data related 0.089 0.991 0.090 0.928 -1.861 2.040

Disease 0.739 0.868 0.851 0.395 -0.969 2.446

Gene 2.347 0.781 3.007 0.003** 0.812 3.883

Genetics terminology 0.299 0.783 0.382 0.703 -1.242 1.841

Methods 0.504 0.763 0.661 0.509 -0.996 2.005

Organism 2.338 1.226 1.907 0.057 -0.074 4.749

Pathogen 2.036 0.933 2.182 0.030* 0.200 3.873

Proteomics 1.160 1.180 0.983 0.326 -1.161 3.481

Software -0.315 1.281 -0.246 0.806 -2.835 2.205

Phase 1 Biologicals 0.146 1.305 0.112 0.911 -2.422 2.714

Clinical 0.876 1.254 0.698 0.485 -1.591 3.342

Company/Institute 0.935 1.544 0.606 0.545 -2.103 3.974

Data related 0.849 1.420 0.598 0.550 -1.944 3.643

Disease 1.320 1.243 1.062 0.289 -1.125 3.765

Gene 3.256 1.118 2.912 0.004** 1.056 5.456

Genetics terminology 0.798 1.122 0.711 0.477 -1.410 3.006

Methods 0.487 1.093 0.445 0.656 -1.663 2.636

Organism 2.653 1.756 1.511 0.132 -0.801 6.108

Pathogen 2.320 1.337 1.735 0.084 -0.311 4.951

Proteomics 3.420 1.690 2.024 0.044* 0.095 6.745

Software -0.555 1.835 -0.303 0.762 -4.165 3.055

Phase 2 Biologicals -0.318 8.863 -0.036 0.971 -17.757 17.120

Clinical -1.951 8.514 -0.229 0.819 -18.704 14.801

Company/Institute 3.622 10.490 0.345 0.730 -17.017 24.260

Data related 3.631 9.644 0.376 0.707 -15.343 22.605

Disease 1.089 8.441 0.129 0.897 -15.519 17.697

Gene 13.437 7.594 1.769 0.078 -1.504 28.377

Genetics terminology 8.486 7.622 1.113 0.266 -6.511 23.483

Methods 1.530 7.421 0.206 0.837 -13.070 16.131

Organism 8.160 11.925 0.684 0.494 -15.303 31.623

Pathogen 3.541 9.080 0.390 0.697 -14.325 21.407

Proteomics 38.460 11.478 3.351 0.001** 15.877 61.043

Software 11.910 12.461 0.956 0.340 -12.607 36.427

Phase 3 Biologicals 0.421 7.619 0.055 0.956 -14.570 15.412

Clinical 1.493 7.319 0.204 0.838 -12.908 15.894

Company/Institute 3.468 9.017 0.385 0.701 -14.274 21.209

Data related 1.631 8.290 0.197 0.844 -14.680 17.941

Disease 3.874 7.256 0.534 0.594 -10.403 18.151

Gene 11.117 6.528 1.703 0.090 -1.726 23.961

Genetics terminology 11.921 6.552 1.819 0.070 -0.971 24.813

Methods -0.081 6.379 -0.013 0.990 -12.632 12.471

Organism 4.938 10.251 0.482 0.630 -15.232 25.107

Pathogen 4.255 7.806 0.545 0.586 -11.103 19.614

Proteomics 19.860 9.867 2.013 0.045* 0.446 39.274

Software 30.785 10.712 2.874 0.004** 9.709 51.861

Table 4 Generalized linear model results of subcategories from phase 0 to phase 4
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“DNA” and “chromosomes” to “RNA”, “miRNA”, “rRNA”, 
“exome”, “tRNA”).

Taking the content analysis and statistical analysis 
results together, we suggest that these genetics termi-
nologies, especially gene analysis technology including 
biological objects highly to increase in future trends and 
could be promising standard research topics in clini-
cal genomics. Plus, considering the results of this study, 
when selecting standard items with a ramification in clin-
ical genetics, we suggest considering the FDA approval 
that can increase their use in clinics to prioritize genetic 
technologies.

Limitations
As the title says, this study was mainly conducted with 
network analysis and periodic analysis. And we per-
formed the content analysis and statistical analysis to 
give scientifically supportive results for the main analy-
sis results. The limitations of each analysis are as follow: 
(1) For the network analysis results, we reviewed only 
ten keywords in each modularity. For a more precise 
interpretation of the results, all the keywords should be 
reviewed in each cluster in future research. (2) A more 
objective basis for the relation between period analysis 
and social events should be provided. (3) For content 
analysis and statistical analysis, it could be more appro-
priate to use modularity values rather than keywords 
characteristics of categories. In future research, if we 
conduct keyword analysis research considering the limi-
tations, we will be able to improve the quality of research.

Conclusion
Despite the steep decreasing number of keyword fre-
quency in 2020 caused by the downturn of genom-
ics research because of the pandemic status of 
COVID-19, the overall research field related to the stan-
dard of genomics showed a significantly positive trend 
from 1975 to September 2020 (R2 > 0.585, Table 3; Fig. 2). 

In the GLM analysis within a phase, Genomics termi-
nology keywords regarding methylation terminology are 
showing a significantly increasing trend (P = .039) with 
clinical terminologies of DNA methylation diseases, such 
as AML and GBM. Also, from the period analysis results, 
we revealed other influential issues of genetics, such as 
the completion of the human genome project in 2003, the 
approval of NGS by the US-FDA in 2013, the outbreak of 
the COVID-19 pandemic in 2020, and these social events 
seem to have considerably influenced the standardiza-
tion research in genomics. Through this comprehensive 
network analysis study with a period, contents, and sta-
tistical analysis, we could provide various types of infor-
mation such as the relationship between terminologies, 
the most influential social issues in a standard of genom-
ics field, and trend shifts in genomics terminology fields. 
Moreover, we statistically estimated and suggested future 
trends and provided high-demanding items in interna-
tional standardization for clinical genetics. Therefore, the 
genomics trend analysis results of this study can be used 
as a guidance for directing future standards development 
efforts in clinical genomics.
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