
Somyanonthanakul et al. 
BMC Medical Research Methodology          (2022) 22:281  
https://doi.org/10.1186/s12874-022-01755-x

RESEARCH

Forecasting COVID-19 cases using time 
series modeling and association rule mining
Rachasak Somyanonthanakul1  , Kritsasith Warin2*  , Watchara Amasiri3, Karicha Mairiang4, 
Chatchai Mingmalairak4, Wararit Panichkitkosolkul5, Krittin Silanun4, Thanaruk Theeramunkong6,7  , 
Surapon Nitikraipot8 and Siriwan Suebnukarn9   

Abstracts 

Background: The aim of this study was to evaluate the most effective combination of autoregressive integrated 
moving average (ARIMA), a time series model, and association rule mining (ARM) techniques to identify meaningful 
prognostic factors and predict the number of cases for efficient COVID-19 crisis management.

Methods: The 3685 COVID-19 patients admitted at Thailand’s first university field hospital following the four waves 
of infections from March 2020 to August 2021 were analyzed using the autoregressive integrated moving average 
(ARIMA), its derivative to exogenous variables (ARIMAX), and association rule mining (ARM).

Results: The ARIMA (2, 2, 2) model with an optimized parameter set predicted the number of the COVID-19 cases 
admitted at the hospital with acceptable error scores (R2 = 0.5695, RMSE = 29.7605, MAE = 27.5102). Key features from 
ARM (symptoms, age, and underlying diseases) were selected to build an ARIMAX (1, 1, 1) model, which yielded better 
performance in predicting the number of admitted cases (R2 = 0.5695, RMSE = 27.7508, MAE = 23.4642). The associa-
tion analysis revealed that hospital stays of more than 14 days were related to the healthcare worker patients and the 
patients presented with underlying diseases. The worsening cases that required referral to the hospital ward were 
associated with the patients admitted with symptoms, pregnancy, metabolic syndrome, and age greater than 65 years 
old.

Conclusions: This study demonstrated that the ARIMAX model has the potential to predict the number of COVID-
19 cases by incorporating the most associated prognostic factors identified by ARM technique to the ARIMA model, 
which could be used for preparation and optimal management of hospital resources during pandemics.
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Background
The crisis outbreak of coronavirus disease 2019 (COVID-
19) caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, 
China in December 2019 [1]. The COVID-19 pandemic 
has required governments around the world to imple-
ment new policies under pressure from vulnerable people 

and communities [2]. Since the first outbreak, COVID-19 
has mutated into many variants including the alpha, beta 
and delta SARS-COV-2 variants, which have been asso-
ciated with new waves of infection [3]. The catastrophic 
effect across the entire world resulted in more than 
six million deaths worldwide in 2022 [4]. In addition, 
COVID-19 has caused a rapid deterioration in the condi-
tion of the disease, and the number of patients requiring 
hospitalization has increased significantly, resulting in a 
high demand for hospital resources [1].
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Data mining is an efficient analytical methodology 
to recognize and investigate a huge data set to acquire 
meaningful information [5]. In the medical field, the large 
numbers of medical records (including demographic 
information, diagnoses, clinical notes, etc.) in the health-
care information systems are ideal targets for the use 
of data mining in improving the analysis and prognosis 
prediction of various diseases [6–8]. Examples include 
using an Artificial Neural Network (ANN) and Support 
Vector Machine (SVM) algorithm to predict cardiovas-
cular disease [9], using data mining classification algo-
rithms, Decision Tree and Naive Bayes algorithms to 
identify liver disease [10] and predict the recovery out-
come of Middle East Respiratory Syndrome Coronavirus 
(MERS-CoV) [11]. With the unprecedented increase in 
COVID-19 cases worldwide, there is a need for effective 
prediction models to identify the associated prognostic 
factors and forecast the number of COVID-19 cases to 
optimally organize the hospital resources.

Time series analysis and association rule mining 
(ARM) models have been widely used to predict trends, 
structural breaks, cycles, and unobserved values, and 
have proven to be useful in the medical field [12–14]. The 
auto regressive integrated moving average (ARIMA), a 
time series analysis model, was shown to have a prom-
ising accuracy for forecasting of infectious diseases in 
medical fields [15, 16]. ARIMA was used to forecast the 
number of new COVID-19 cases, deaths, and recoveries 
based on the daily reported data from different countries 
for assessment of the future outbreak [17–20]. ARM was 
originally presented by Agrawal et  al. as an algorithm 
for marketing data analysis [21]. ARM has been used to 
extract medical health information, which is currently 
being applied for the development of classification and 
prediction models to identify and forecast the possibility 
of development and progression of a disease by consider-
ing the rules of the disease [22]. ARM was demonstrated 
to be an effective model for mining the frequent symptom 
pattern for COVID-19 patients, which could assist clini-
cians in decision making [23]. Another study used ARM 
to analyze the patterns of different non-pharmaceutical 
interventions to manage the infection growth rate in the 
United States [24]. Even though there are many advanced 
data-driven time series methods used to predict the 
future number of COVID-19 patients, a new and more 
accurate prediction model is important in the pandemic 
crisis. The associated contributing factors should be con-
sidered to improve model performance. Therefore, the 
combination of ARM and ARIMA models by selecting 
the most associated prognostic rules and integrating with 
ARIMA models could increase the accuracy of predicting 
new cases to better understand the current situation and 
the progression of COVID-19, which can be easily used 

by society, organizations, or governments to assess and 
manage the crisis during the future outbreak.

The aim of this study was to evaluate the most effective 
combination of ARM techniques and ARIMA models 
to identify prognostic factors and predict the number of 
COVID-19 patients. These models are expected to allow 
for better preparation, organizing hospital resources of 
further such units and more optimal use of medical per-
sonnel and equipment to enhance healthcare decision-
making to manage COVID-19 patients in this crisis 
situation.

Methods
Administration protocol and data collection
The study was conducted at Thailand’s first university-
based field hospital. The field hospital was transformed 
from the service apartment style 14-story building of 
the university dormitory into a 494-bed facility for non-
critical COVID-19 patients [25]. The field hospital was 
managed by the main university hospital and included 
the patients referred from the project’s five university 
hospitals and hospitals in the central area of Thailand. 
Sources of funding come mainly from the donations of 
university alumni, community groups and non-govern-
mental organizations. Upon admission, a nurse records 
patient data in the COVID-19 screening of the field hos-
pital information system; the patient undergoes a chest 
x-ray, blood tests for complete blood count (CBC), liver 
function tests (LFTs), electrolyte, balance urine nitro-
gen (BUN), and Creatinine (Cr). The doctor interprets 
the labs and chest x-ray, and records the results in the 
admission note. The patients are only admitted to the 
field hospital if they meet all of the following criteria: 
1) asymptomatic, mild or moderate symptoms; 2) nor-
mal activities of daily living; 3) no important organ dys-
function; 4) no psychiatric history; and 5) resting pulse 
oxygen saturation  (SpO2) > 95%. To avoid unnecessary 
contact between patients and medical personnel, the 
patient reports signs and symptoms, wants and needs via 
an internal field hospital application. Any consultation 
with the attending physician is done through a notifica-
tion form. If the attending physician wishes to speak to 
the patient, the patient’s telephone number is obtained 
from the respective patient’s floor. All prescriptions must 
be made using a prescription form which will then be 
processed by the attending nurse and recorded in the 
progress note in the field hospital information system 
and in the university hospital electronic medical record 
system. In this field hospital system, the laboratory and 
radiographic examination would be performed on symp-
tomatic COVID-19 patients with a history of taking 
Favipiravir and for severity assessment of symptomatic 
COVID-19 patients.
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For Favipiravir-naive patients: 1) A follow-up chest 
x-ray may be considered in patients with worsening signs 
and symptoms (body temperature (BT) > 38.0 °C, cough, 
fatigue, SpO2 < 96%, or decreased SpO2 > 3% after a stress 
test); and 2) if the chest x-ray infers pneumonia with res-
piratory signs and symptoms (as mentioned in 1), refer 
the patient to the originating hospital for continued treat-
ment with Favipiravir.

For patients previously treated with Favipiravir: 1) Fol-
low-up by chest x-ray, LFTs); 2) if LFTs increase, consider 
consulting an ID specialist to terminate/adjust medi-
cation use; and 3) if the chest x-ray infers a progression 
of the infiltration accompanied by respiratory signs and 
symptoms (cough, fatigue, SpO2 < 96% and SpO2 drop 
> 3% after a stress test), consider referring the patient to 
the hospital of origin.

Asymptomatic patients who have been hospitalized for 
at least 14 days after a positive COVID-19 testing will be 
discharged home. The patients who received Favipira-
vir should fulfil all the following criteria: 1) The patients 
signs and symptoms have improved without progression 
of infiltration on chest x-ray; 2) BT < 37.8 °C continuously 
for 24–48 hours; 3) respiratory rate (RR) < 20/min; and 
SpO2 > 96% at rest. In the event of a patient’s condition 
deteriorating, they are quickly transferred to the desig-
nated higher-level hospitals.

The criteria for transfer are 1) meeting the criterion of 
severe or critical, and 2) lung imaging showing a greater 
than 50% progression of lesions. Patients do not need 
Real-time Polymerase Chain Reaction (RT-PCR) or 
Antigen/Antibody detection for COVID-19 prior to dis-
charge. One day before discharge, the attending nurse 
informs the attending physician of the number of poten-
tial discharges, so that the physician can prepare medi-
cal certificates and insurance documents according to the 
patient’s needs. Upon discharge, the attending physician 
updates the patient’s progress and discharge summary 
in the electronic medical record system of the university 
hospital.

A total number of 3685 patient records were retrieved 
from the electronic hospital information systems of the 
referral hospitals and the field hospital information sys-
tem. In this study, we included all patients confirmed 
with asymptomatic and mild-to-moderate COVID-19 
conditions from March 2020 to August 2021 (four waves 
of COVID-19 in Thailand). Collected data included 
patient demographics, comorbidities, body mass index 
(BMI), job, place of exposure to coronavirus, symptom 
before field hospital admission, sign of pneumonia in 
chest x-ray, field hospital length of stay, and the field hos-
pital discharge destination. Table 1 shows the preliminary 
analysis of the dataset, including attributes, values, and 
frequency of each attribute-value pair.

Time‑series analysis and association analysis
In this work, we present a study to combine time 
series analysis and association analysis to forecast the 
COVID-19 admitted cases as well as to analyze their 
potential factors and characteristics. To estimate the 
number of new cases and to predict the prognosis for 
better understanding of the current situation and pro-
gression of COVID-19, we exploited the autoregres-
sive integrated moving average (ARIMA) model and 
its subclasses (i.e., AR, MA, ARMA) [12, 17, 26], and 
association rule mining (ARM) [21, 24] as tools for 
investigation (Fig. 1).

The autoregressive (AR) model
In the AR model, the predictive value at the time period 
t is modeled by the observed values at various time slots 
t − 1, t − 2,. . ., t − k. The impact of the value at each 
previous time period on the value at the current time 
is determined by the coefficient factor at that particu-
lar period of time. With this assumption, the model 
performs the regression of past time series and then 
calculates the present or future values in the series, 
commonly known as an auto regression (AR) model. It 
can be modeled as follows.

Here, yt is the value at the current time t, and yt − 1, yt − 2, 
…, yt − p are the observed values at the previous p time 
spots with their corresponding coefficients β1, β2, …, βp, 
respectively, β0 is the intercept, and εt is the residual error 
at the time t. Therefore, yt − εt is the expected value at the 
current time t. In this work, the value yt can be modeled 
as the number of inpatients, incoming patients, or outgo-
ing patients at the time period t.

The moving‑average (MA) model
Since the value of the time period t may be impacted by 
unexpected external factors, i.e., noises, we can alleviate 
such impact by means of the moving average method. 
Analogous to AR, the predicted value at the time period 
t can be modeled by the previous q lagged forecast errors 
ϵi as follows.

Here, yt is the value at the current time t and the 
lagged errors εt − 1, εt − 2, …, εt − q are residual errors of 
the q autoregressive models at time t − 1 to t − q with 
φ1, φ2, …, φq as their corresponding coefficients, φ0 is 
the intercept, and yt is the residual error at the time t. 

yt = β0 + β1yt−1 + β2yt−2 + · · · + βpyt−p + εt

yt = φ0 + φ1εt−1 + φ2εt−2 + · · · + φqεt−q + εt
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The residual error at the time points after t − 1 can be 
derived by the auto-regressive (AR) model as follows.

Although the standard AR and MA may use the auto-
correlation function (ACF), which takes into account 
all of the points, it is possible to apply the partial auto-
correlation function (PACF), which accounts for the 
values of the intervals between.

�t−1 = yt−1 −
(

�
0
+ �

1
yt−2 +⋯ + �pyt−p−1
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(
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The autoregressive moving average (ARMA) model
The Auto Regressive Moving Average Model (ARMA) 
combines the AR and MA models. In ARMA, the impact 
of previous lags along with the residuals is considered for 
forecasting the future values of the time series as follows.

Here, βi represents the coefficients of the AR model, 
φi represents the coefficients of the MA model, and εt 
is the residual error at the time t. We assume only one 
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Table 1 Preliminary analysis of the dataset: attributes, values, and frequency of each attribute-value pair

No Attribute name Attribute value Attribute code Frequency

1 Gender Male sex_male 1711

Female sex_female 1974

2 Age (year) Less than 24 age_24 1148

25–44 age_45_44 1838

45–64 age_45_64 625

More than 65 age_65 74

3 Body Mass Index Less than 25 bmi_25 2309

25–29 bmi_25_29 931

More than 30 bmi_30 445

4 Underlying None ud_none 3392

Diseases Respiratory ud_repp 82

Hypertension ud_ht 39

Metabolic ud_meta 53

Dyslipidemia ud_dlp 14

Other ud_oth 64

Diabetes mellitus ud_dm 18

Pregnant ud_preg 23

5 Job General worker job_gen 3592

Healthcare worker job_health 93

6 Source of infection Community source_com 3119

Family source_fam 475

Hospital source_hosp 91

7 Symptom Asymptomatic symp_ast 2295

Mild sym_mild 1371

Moderate sym_mode 19

8 Chest X-ray No lesion cxr_no 3213

Pneumonia cxr_pneu 472

7 Length of stay (Day) Less than 14 los_1_14 3625

More than 14 los_15 60

8 Patient Discharge Home discharge dc_home 3600

Refer to general hospital dc_hosp 85

9 Current Incidence Wave 1 (MAR-MAY 2020) wave_1 55

Wave 2 (JAN-MAR 2021) wave_2 311

Wave 3 (APR-MAY 2021) wave_3 1779

Wave 4 (JUN-JUL 2021) wave_4 1540
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significant value from the AR model and one significant 
value from the MA model, so the ARMA model will be 
obtained from the combined values of these two models, 
denoted as the order of ARMA (1,1).

The autoregressive integrated moving average (ARIMA) 
model
As a generalization of AR, MA, and ARMA, the ARIMA 
model introduced differencing (integration) into the 
ARMA model to make the series stationary exploit to fore-
cast future values under the factor of previous lag value and 
residuals errors. Besides manipulating the time lag and alle-
viating noise by smoothing, it is also possible to decompose 
a series into trend, seasonal, and residual components, by 
assuming an additive model. With this addition, the series 
can be transformed to a stationary time series. To achieve 
the transformation, the differencing method is applied. 
For example, we can subtract the t − 1 value from t values 
of time series. After applying the first differentiation, if we 
are still unable to get the stationary time series, we can 
again apply the second-order differentiation. The ARIMA 
model is an extension of the ARMA model by the fact that 
it includes one more factor known as integrated (i.e., dif-
ferentiation) which stands for I in the ARIMA model. The 
ARIMA model, denoted by ARIMA (p,d,q), can be formu-
lated as follows:

Here, p is the order of the autoregressive process, d (set 
to 1 in this case) is the degree of differentiation (the num-
ber of times the series was differenced), and q is the order 
of the moving average component. In this model, the 
first-order difference (d = 1) between consecutive obser-
vations y′i was computed and used, instead of the original 
observed value yi as shown below.

Differencing removes the changes in the level of a time 
series, eliminating trend and seasonality and, conse-
quently, stabilizing the mean of the time series.

In some situations, we may need to difference the series 
data a second time (d = 2) to obtain a stationary time series, 
which is referred to as second order differencing as follows:

A higher-order differentiation can be pursued analo-
gously in the same manner.
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Fig. 1 The summary of the time series and association analysis
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The autoregressive integrated moving average 
with exogenous covariates (ARIMAX) model
When an ARIMA model includes other time series as 
input variables, the model is referred to as an Autore-
gressive Integrated Moving Average with Exogenous 
Covariates (ARIMAX) model. An ARIMAX model 
can be viewed as a multiple regression model that 
takes the impact of covariates on the forecasting into 
account, improving the comprehensiveness and accu-
racy of the prediction. The ARIMAX(p,d,q) extends the 
ARIMA(p,d,q) model by including the linear effect that 
one or more exogenous series has on the stationary 
response series yt. This method is suitable for forecasting 
when data is stationary/non-stationary, and multi-variate 
with any type of data pattern, i.e., level/trend/seasonality/
cyclicity. The ARIMAX(p,d,q) model can be formulated 
as follows:

Here, d is set to 1, (Xi)t is the value at the time t of the 
i - th exogenous covariable (X1), θi is the corresponding 
coefficient for the covariable Xi, and m is the number of 
exogenous covariables to be considered, while p, d, and 
q indicate the same parameters as in the ARIMA model.

Association rule mining
Besides the time-series analysis, association rule min-
ing (ARM) can be used as a multivariate analysis to 
help us understand the correlation among factors [24]. 
Given a dataset containing a collection of records or 
transactions, each record comprises a set of categori-
cal attributes. An association rule can be denoted by 
A → B, where A (the antecedent or LHS) and B (the 
consequent or RHS) are sets of various attribute-value 
pairs (also called itemsets), and are disjoint. The rule 
represents the hypothesis that when variables in A 
occur in the dataset, the variables in B also occur. Asso-
ciation mining generates a large number of rules from a 
given dataset. In a dataset with m attributes n − 1 ante-
cedents and one consequent, each with n values, each 
can generate a maximum of nmn − 1 − 1 rules. However, 
not all rules are significant. The goal of this approach 
is to find rules that have high practical significance. To 
eliminate spurious rules, we use three measures: sup-
port, confidence, and lift. In addition, we also use the 
chi-squared test to measure the statistical significance 
of the association between the antecedent and the con-
sequent. Given two disjoint sets of attribute-value pairs 
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A and B, and an association rule A → B; support of the 
rule refers to the number of records where the attrib-
ute-value pairs in either set A or B appear in the data-
set relative to the total number of records (transactions 
or instances). This denotes the prevalence of the rule in 
the dataset. By definition, the support value is symmet-
ric, that is Support (A → B) = Support (B → A), and it 
equals the total numbers of records containing both A 
and B to the total number of records in the dataset. The 
confidence of the rule A → B measures the conditional 
probability of B, given A. Thus, the confidence meas-
ure for a given rule is asymmetric, that is Confidence 
(A → B) ≠ Confidence (B → A). The lift measure is the 
ratio between the observed support and the expected 
support between the independent variables A and B. 
Implicitly, lift > 1 means a greater degree of depend-
ence, lift < 1 specifies negative dependence, and lift = 1 
indicates independence between A and B. Lift is also a 
symmetric measure between the itemsets A and B, that 
is Lift (A → B) = Lift (B → A).

Here, |A| and |B| are the numbers of records that include 
A and B, respectively, while ∣A ⋂ B∣ is the number of 
records that contain both A and B. In this paper, the ante-
cedent A can be either patient demo-graphics (either male 
or female), age (< 24, 25–44, 45–64, and > 65), body mass 
index or BMI (< 25, 25–29, and > 29), underlying diseases 
(none, respiratory, hypertension, metabolic, dyslipidemia, 
diabetes mellitus, pregnant, or others), job (healthcare or 
non-healthcare patient), inflection source (community 
inflection, family inflection, or hospital inflection), symp-
toms before field hospital admission (asymptomatic, mild, 
or moderate), sign of pneumonia in chest x-ray (no lesion 
or pneumonia) or length of stay in the field hospital (14 
or > 14), and patient discharge (home discharge or refer to 
general hospital), as the contributing factors. On the other 
hand, for the consequent B we focus on (1) the length of 
stay (either 1–14 or > 14), (2) the patient discharge (either 
home discharge or hospital discharge), (3) the chest x-ray 
result, and (4) current incidence (wave 1, 2, 3 or 4). Since 
one assumption for ARM is that all the values of attributes 
are discrete, we translate the numerical data used in the 
study into discrete labels, as well as split the continuous 
data of infection growth curve into four phases.

Support(A → B) =
|A ∩ B|

N

Confidence(A → B) =
|A ∩ B|

|A|

Lift(A → B) =
|A ∩ B| × N

|A||B|
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Experiment settings
Data collection and parameter settings
The dataset includes 3685 records registered with the 
electronic hospital information systems of the field hospi-
tal during March 2020 to August 2021. It displays charac-
teristics of the dataset, including, attributes, values, and 
frequency of each attribute-value pair. Each of the nine 
attributes contains 2–8 possible values. Most attributes 
have imbalanced numbers in their values, except gender 
(Table 1). In our time series analysis, the target of predic-
tion is the number of patients in the field hospital for each 
day during the observation period, that is March 2020 to 
August 2021. We have explored the value of the three 
ARIMA parameters as p ∈ {1, 2, 3}, d ∈ {1, 2}12, q ∈ {1, 2, 3} 
due to our preliminary test. In addition, we applied asso-
ciation rule mining to find the most influential factors 
among the eleven factors, that is patient demographics, 
age, body mass index, underlying diseases, job, inflection 
source, symptom before field hospital admission, sign 
of pneumonia in chest x-ray, length of stay in the field 
hospital, patient discharge, and current incidence. As an 
ARIMAX model, we extend the ARIMA(p,d,q) model to 
include the parameters as a series that are the most influ-
ential to the prediction of the number of patients in the 
hospital. The parameters included are known as exog-
enous series that are expected to trigger the stationary 
response on the series that we are predicting.

Performance metrics and evaluation
Given a data set has n values, denoted by y1,. .., yn, each 
associated with a predicted value f1,. .., fn, the following 
three metrics can be formulated. Coefficient of deter-
mination  (R2) is the proportion of the variation in the 
dependent variable that is predictable from the inde-
pendent variable(s) as follows:

Here, SSr is the sum of squares of residuals, SSt is the 
total sum of squares, proportional to the variance of the 
data, and y is the mean of the observed data. Ranging 
from 0 to 1, it provides a measure of how well observed 
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outcomes are replicated by the model. The higher the 
coefficient value is, the closer the dependent variable and 
independent variable are.

Root mean square error (RMSE) the standard deviation 
of the prediction errors [27], which are a measure of the 
distance of the data from the regression line, indicating 
the concentration of the data around the line of best fit 
as follows:

It expresses the dispersion of these errors.
Mean absolute error (MAE) allows measurement of the 

average magnitude of the errors for a set of predictions, 
regardless of their direction.

It represents the mean of the absolute difference in the 
sample between the prediction and the actual observa-
tion, taking into account that all individual differences 
are of equal significance. Therefore, compared to RMSE, 
MAE is less sensitive to outliers.

Results
Time series analysis
This section presents a time series analysis to forecast the 
number of patients admitted to the field hospital. Figure 2 
shows the number of patients from 26 March 2020 to 22 
July 2020. Three time series represent the relationships 
among a number of residing patients that are equal to a 
cumulative difference between admitted and discharged 
patients living in the hospital. The graph presents four 
waves of pandemic following the number of patients in 
hospital. The four waves are as follows: The first wave 
(Wave 1), the emergence of SAR-CoV-2, is the smallest 
period (34 days) from 26 March 2020 to 16 May 2020. 
The second wave (Wave 2) was from 11 January 2021 to 
14 March 2020 (44 days). After that, the third wave (Wave 
3) and fourth wave (Wave 4) were the continuous periods 
from 11 April 2021 to 31 May 2021 (51 days) and 1 June 
2021 to 22 July 2021 (52 days), respectively. Finally, the 
forecasting models are validated by a test dataset from 1 
August 2021 to 30 August 2021(30 days).

In this study, the time series models were trained using 
six training datasets. The first training set (All Wave) cov-
ers all datasets Wave 1 to Wave 4 of 228 days; the sec-
ond training set, Wave 1 of 34 days; the third training 
set, Wave 2 of 45 days; the fourth training set, Wave 3 of 
51 days; the fifth training set, Wave 4 of 52 days; the sixth 
training set, Wave 3 and Wave 4 of 103 days.

(5)RMSE =
√

SSr =

√

1

2

∑

i

(

yi − fi
)2

(6)MAE =
1

n

∑

i
|yi − fi|
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In this work, we tested the estimated model using an 
autocorrelation function (ACF) and a partial autocorrela-
tion function (PACF) plots to ensure that the model fits 
the data [17]. Figure  3 presents the steady-state predic-
tion of time-series models. An estimation of the model 
explored the coefficient (Coef.), the standard error (Std 
err.) and z. An estimate of the first model was the AR 
model which gave a coefficiency of 0.3808, standard error 
of 0.243 and z of 1.565. The second model was an MA 
model which gave coefficiency of − 0.5287, standard 
error of 6.841 and z of − 0.077. The sigma value or con-
stant value was coefficiency of − 0.5287, standard error 
of 6.841 and z of − 0.077. Moreover, we further estimated 
the model with Jarque-Bera of 7.70, heteroskedasticity of 
0.57 and skew of 0.68.

For the data set, the time series method was applied 
using Python (PyFlux library) for time series analysis 
and prediction to compare the criteria of each setting. 
The ARIMAX (p,d,q) + X models were parameterized 
with X ∈ {φ, x1, x2}, p ∈ {0, 1, 2, 3}, q ∈ {0, 1, 2, 3}, d ∈ {0, 1, 2}, 
where X is additional exogenous variables, with 51 com-
binations. Moreover, we select key features from associa-
tion rule mining such as symptoms, age, and underlying 
diseases, etc. X = φ specifies no additional exogenous 
variable used. X = x1 indicates additional exogenous vari-
ables. There are 15 variables, composed of three attrib-
utes in the symptom feature, four attributes in the age 
feature, and eight attributes in the underlying diseases 
feature. X = x2 represents four variables of the selected 

attributes, that is the ‘moderate’ symptom, the ‘more-
than-65’ age, and the underlying diseases of ‘diabetes 
mellitus’ and ‘pregnant.’

The forecasting-accuracy metrics of the 51 models 
summarized on the six datasets and the evaluation of 
models with the measures of RMSE and MAE are shown 
in Table  2. The forecasts for the admitted patients with 
prediction confidential intervals (CI) between 5 and 95% 
are presented in Fig. 4 for ARIMA (2,2,2) and Fig. 5 for 
ARIMAX (1,1,1)+ x2. Overall, the most accurate estima-
tion was obtained by improving from ARIMA (2, 2, 2) 
to ARIMAX (1, 1, 1) + x2 for the training set in Wave 4, 
covering from 11 April 2021 to 31 May 2021. For the first 
setting (All-Wave), the best model is ARIMA (1,2,1) with 
the RMSE of 22.8141 and MAE of 19.4133, which was 
closer to the actual data. For Wave-1, ARIMAX (2,2,2) 
+ x2 performs the best with the RMSE of 277.9974 and 
MAE of 273.4644, which was the highest to the actual 
data of all models. For Wave-2, AR(1) + X1 model is the 
best with the smallest RMSE and MAE. Based on RMSE 
and MAE, the value of ARIMA (1,1,1) + X1 was the clos-
est to the actual data in Wave-3. The RMSE and MAE of 
ARIMAX (1,1,1)+ X2 appeared to be the best predictive 
models.

The comparisons among forecasting models are shown 
in Tables  3, 4 and 5. The models numbered 12–17 in 
Table 2 are defined to be the baseline models. The models 
with x1 are the models numbered 29–34 while the models 
with x2 are the models numbered 46–51. The compared 

Fig. 2 The number of daily data of patients in the field hospital; New patients; Admitted Patients; Discharged Patients in four waves of COVID-19 
pandemics in Thailand
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pairs were (baseline vs x1), (x1 vs x2), and (baseline vs x2). 
The comparison was done under the same parameter set-
ting. The result of R,2 RMSE and MAE (Tables 3, 4 and 
5) yielded a good result indicating that time forecasting 
models could improve correlation of determination when 
we added exogenous variables.

The predicted values, CI 5% (lower confidence inter-
val) and CI 95% (upper confidence interval), and actual 

data of the models are shown in Table 6 and Fig. 4. In 
addition, the improved predictive values of the mod-
els by adding exogenous variables are shown in Table 7 
and Fig. 5. For example, ARIMA (2, 2, 2) predicted that 
the number of cumulative confirmed cases for the next 
30 days could be 291 to 334 cases. ARIMAX (1, 1, 1) + 
x2 predicted that the number of cumulative confirmed 
cases for the next 30 days could be 293–330 cases.

Fig. 3 An autocorrelation function (ACF) and a partial autocorrelation function (PACF) are presented to confirm the steady-state prediction of 
time-series models
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Fig. 4 The ARIMA (2,2,2) forecasting value of the admitted patients with prediction confidential intervals (CI) between 5 and 95%

Fig. 5 The ARIMAX (1, 1, 1) + X2 forecasting value of the admitted patients with prediction confidential intervals (CI) between 5 and 95%

Table 3 The comparison of Coefficient of determination  (R2)

No R2 Comparison All Wave Wave 1 Wave 2 Wave 3 Wave 4 Wave 3–4

Win Loss Win Loss Win Loss Win Loss Win Loss Win Loss

1 baseline vs x1 3 3 6 0 1 5 5 1 0 6 6 0

2 x1 vs x2 2 4 3 3 2 4 2 4 4 2 3 3

3 baseline vs x2 4 2 6 0 0 6 4 2 4 2 4 2

SUM 9 9 15 3 3 15 11 7 8 10 13 5
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Association rule mining
This section explores the association analysis when asso-
ciation rule mining is applied. We present significant 
rules for the data that included four attributes’ values in 
the dataset. Table 1 shows preliminary analysis of dataset 
that was extracted for a total of 3685 patients. The patient 
data consist of eleven attributes and 35 attribute values. 
In addition, an attribute code is defined for item set name 
and frequency of each attribute code. We extract 595 sig-
nificant rules for the data.

The association rules grouped by four attributes related 
to managing hospital resources are shown in Table  8. 
Length of stay more than 14 days is related to health-
care workers and three underlying diseases other, preg-
nant, and dyslipidemia that have the same value of 1.017. 
Length of stay less than 14 give the interesting result on 
symptom mode (Lift of 6.464), three underlying diseases, 
and age more than 65 years old.

The interesting rule of discharge had two value attrib-
utes. The result showed that referral to hospitals was 
strongly related to symptom of Mode (Lift of 9.127). In 
addition, four features in this attribute showed high Lift 
values; underlying diseases (5.655), metabolic syndrome 
(4.098), length of stay more than 14 days (3.613), and 
age more than 65 years old (5.515). Chest x-ray with no 
lesion presented the same level of Lift. However, two fea-
tures which showed high numbers of patients were age 
less than 24 years old (1148) and symptom asymptomatic 
(2295). Moreover, chest x-ray with pneumonia showed 
all high interesting value Symptom of Mode (3.287), age 
more than 65 (3.271), underlying diseases diabetes melli-
tus (2.169), and underlying diseases Metabolic (2.062). In 

current incident, Wave 1 showed high interest on Length 
of stay more than 14-days and source of infection from 
hospital and healthcare worker patients. Wave 2 was also 
related to healthcare worker, asymptomatic and source of 
infection from hospital, as was Wave 3. In Wave 4, under-
lying diseases, age more than 65 and symptom mode 
showed strong relationships. Association rules selected 
key attributes of the data set to be exogenous variables of 
a time series analysis.

Discussion
The first wave of SARS-CoV-2 occurred in early 2020, 
and the second, third and fourth waves rapidly spread 
from early to mid-2021, representing an unprecedented 
phenomenon in medical services, society and the econ-
omy of Thailand. The number of COVID-19 patients 
shown in this study increased from the first wave of just 
55 patients to 311, 1779 and 1540 in the second, third 
and fourth waves, respectively, which evolved more than 
30 times of the total number of patients admitted at the 
field hospital. Most of patients were at least 44 years old 
and were predominantly female. Patients included in 
this study were mostly asymptomatic and had no sign 
of pneumonia in the chest x-ray due to the field hospital 
system’s focus on patients who did not require advanced 
treatment. But during the third and fourth waves, the 
number of mild to moderate symptoms with pneumonia 
of COVID-19 patients significantly increased because of 
the greater severity of the delta variant of SARS-COV-2. 
The huge number of patients was a burden on the lim-
ited resources of Thailand’s healthcare system. Therefore, 
this study presented the use of time series modeling and 

Table 4 The comparison of Root mean square error (RMSE)

No RMSE Comparison All Wave Wave 1 Wave 2 Wave 3 Wave 4 Wave 3–4

Win Loss Win Loss Win Loss Win Loss Win Loss Win Loss

1 baseline vs x1 3 3 4 2 4 2 6 0 6 0 2 4

2 x1 vs x2 4 2 4 2 3 3 2 4 5 1 1 5

3 baseline vs x2 3 3 6 0 6 0 6 0 5 1 2 4

SUM 10 8 14 4 13 5 14 4 16 2 5 13

Table 5 The comparison of Mean Absolute error (MAE)

No MAE Comparison All Wave Wave 1 Wave 2 Wave 3 Wave 4 Wave 3–4

Win Loss Win Loss Win Loss Win Loss Win Loss Win Loss

1 baseline vs x1 3 3 4 2 3 3 6 0 6 0 2 4

2 x1 vs x2 4 2 4 2 3 3 2 4 5 1 1 5

3 baseline vs x2 3 3 6 0 5 1 6 0 5 1 2 4

SUM 10 8 14 4 11 7 14 4 16 2 5 13
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association rule mining to forecast the COVID-19 pan-
demic outbreak as well as to analyze its associated prog-
nostic factors. The method presented a data-oriented 
approach that applies time-series analysis and association 
analysis to reveal meaningful hidden patterns for efficient 
handling of another pandemic crisis.

ARIMA models have been successfully applied for pre-
dicting the disease outbreak. Several studies have utilized 
the ARIMA model to forecast the spread of COVID-19 
in many countries including the US, Brazil, India, Rus-
sia and Spain [28, 29]. The studies using ARIMA models 
to predict COVID-19 cases relative to total confirmed 
cases presented an average RMSE of 144.81 across 6 geo-
graphic regions [28], MAE of 787 to 1506 in USA and 82 
to 570 in Italy [18], and MAE of 2967 in Indonesia [20]. 

In this work, ARIMA (2, 2, 2) was selected as the most 
accurate ARIMA model for predicting the number of 
admitted COVID-19 cases in the field hospital, which 
achieved a  R2 = 0.5695, RMSE = 29.7605, MAE = 27.5102 
(Fig. 4). The forecast results of admitted cases on August 
15 and August 30, 2021 were 335 and 294, respectively. 
In comparison with the actual values reported on the 
same dates, the forecasted values of our selected ARIMA 
model were within the upper and lower bounds at 95% 
confidence intervals. This signified an acceptable accu-
racy of this model for estimating admitted cases in the 
field hospital.

ARM is a structured method of discovering frequent 
patterns in a data set and forming noticeable rules among 
regular patterns. In the COVID-19 crisis, many nations, 

Table 6 The number of patient prediction for time-series model 
ARIMA (2, 2, 2) + X2 Training from May 1 to July 22, 2021, Prediction 
from August 1 to August 30, 2021

CI confidence interval

Date Actual data Prediction Lower CI Upper CI

August 1, 2021 334 361 327 394

August 2, 2021 339 313 279 347

August 3, 2021 347 326 292 361

August 4, 2021 361 346 311 380

August 5, 2021 387 364 330 398

August 6, 2021 404 395 361 430

August 7, 2021 393 411 377 445

August 8, 2021 384 386 351 420

August 9, 2021 381 371 337 405

August 10, 2021 391 372 338 406

August 11, 2021 386 390 356 424

August 12, 2021 382 381 348 415

August 13, 2021 376 375 342 408

August 14, 2021 350 368 335 401

August 15, 2021 340 335 302 368

August 16, 2021 328 328 295 361

August 17, 2021 296 319 286 352

August 18, 2021 301 280 247 313

August 19, 2021 301 295 262 328

August 20, 2021 331 301 268 334

August 21, 2021 327 342 309 375

August 22, 2021 313 331 297 364

August 23, 2021 306 305 272 338

August 24, 2021 301 299 266 332

August 25, 2021 301 297 264 330

August 26, 2021 294 300 267 332

August 27, 2021 297 291 259 323

August 28, 2021 303 296 264 328

August 29, 2021 296 305 273 337

August 30, 2021 291 294 262 326

Table 7 The number of patient prediction for time-series model 
ARIMAX (1,1,1) + X2 Training from May 1 to July 22, 2021, Prediction 
from August 1 to August 30, 2021

CI confidence interval

Date Actual data Prediction Lower CI Upper CI

August 1, 2021 334 330 293 365

August 2, 2021 339 333 296 368

August 3, 2021 347 342 305 380

August 4, 2021 361 345 307 382

August 5, 2021 387 362 325 399

August 6, 2021 404 391 353 428

August 7, 2021 393 404 366 441

August 8, 2021 384 385 348 422

August 9, 2021 381 379 343 416

August 10, 2021 391 377 341 414

August 11, 2021 386 392 355 428

August 12, 2021 382 380 344 416

August 13, 2021 376 379 343 415

August 14, 2021 350 371 336 407

August 15, 2021 340 340 304 375

August 16, 2021 328 338 302 373

August 17, 2021 296 322 287 358

August 18, 2021 301 290 250 321

August 19, 2021 301 305 270 341

August 20, 2021 331 298 263 333

August 21, 2021 327 335 304 376

August 22, 2021 313 321 285 356

August 23, 2021 306 309 273 344

August 24, 2021 301 304 269 339

August 25, 2021 301 299 264 334

August 26, 2021 294 301 266 335

August 27, 2021 297 291 256 325

August 28, 2021 303 298 264 332

August 29, 2021 296 303 269 338

August 30, 2021 291 293 259 327
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Table 8 Top 5 association rules for different combinations of particular consequence, their Support, Average-confidence, Confidence 
(LHS ➔ RHS), Confidence (RHS ➔ LHS) and Lift measures

No LHS RHS N(A) N(B) N(A,B) SupLR ConfA ConfLR ConfRL LiftLR

Length of Stay less than or equal to 14 days

 1 job_health los_1_14 93 3625 93 2.524 51.283 100.000 2.566 1.017

 2 ud_oth los_1_14 64 3625 64 1.737 50.883 100.000 1.766 1.017

 3 ud_preg los_1_14 23 3625 23 .624 50.317 100.000 .634 1.017

 4 ud_dlp los_1_14 14 3625 14 .380 50.193 100.000 .386 1.017

 5 cxr_pneu los_1_14 472 3625 470 12.754 56.271 99.576 12.966 1.012

Length of Stay more than or equal to 15 days

 1 sym_mode los_15 19 60 2 .054 6.930 10.526 3.333 6.465

 2 ud_meta los_15 53 60 3 .081 5.330 5.660 5.000 3.476

 3 ud_dm los_15 18 60 1 .027 3.611 5.556 1.667 3.412

 4 ud_ht los_15 39 60 2 .054 4.231 5.128 3.333 3.150

 5 age_65 los_15 74 60 2 .054 3.018 2.703 3.333 1.660

Home Discharge

 1 ud_ht dc_home 39 3600 39 1.058 50.542 100.000 1.083 1.024

 2 ud_dm dc_home 18 3600 18 .488 50.250 100.000 .500 1.024

 3 ud_dlp dc_home 14 3600 14 .380 50.194 100.000 .389 1.024

 4 age_24 dc_home 1148 3600 1131 30.692 64.968 98.519 31.417 1.008

 5 cxr_pneu dc_home 472 3600 465 12.619 55.717 98.517 12.917 1.008

Refer to General hospital

 1 sym_mode dc_hosp 19 85 4 .109 12.879 21.053 4.706 9.127

 2 ud_preg dc_hosp 23 85 3 .081 8.286 13.043 3.529 5.655

 3 ud_meta dc_hosp 53 85 6 .163 9.190 11.321 7.059 4.908

 4 los_15 dc_hosp 60 85 5 .136 7.108 8.333 5.882 3.613

 5 age_65 dc_hosp 74 85 6 .163 7.583 8.108 7.059 3.515

Chest X-ray is No lesion

 1 job_health cxr_no 93 3213 91 2.469 50.341 97.849 2.832 1.122

 2 source_hosp cxr_no 91 3213 88 2.388 49.721 96.703 2.739 1.109

 3 age_24 cxr_no 1148 3213 1058 28.711 62.545 92.160 32.929 1.057

 4 symp_ast cxr_no 2295 3213 2112 57.313 78.880 92.026 65.733 1.055

 5 ud_repp cxr_no 82 3213 73 1.981 45.648 89.024 2.272 1.021

Chest X-ray is Pneumonia

 1 sym_mode cxr_pneu 19 472 8 .217 21.900 42.105 1.695 3.287

 2 age_65 cxr_pneu 74 472 31 .841 24.230 41.892 6.568 3.271

 3 ud_ht cxr_pneu 39 472 11 .299 15.268 28.205 2.331 2.202

 4 ud_dm cxr_pneu 18 472 5 .136 14.419 27.778 1.059 2.169

 5 ud_meta cxr_pneu 53 472 14 .380 14.691 26.415 2.966 2.062

Current incidence in Wave 1

 1 los_15 wave_1 60 55 13 .353 22.652 21.667 23.636 14.517

 2 source_hosp wave_1 91 55 16 .434 23.337 17.582 29.091 11.780

 3 job_health wave_1 93 55 15 .407 21.701 16.129 27.273 10.806

 4 dc_hosp wave_1 85 55 6 .163 8.984 7.059 10.909 4.729

 5 symp_ast wave_1 2295 55 54 1.465 50.267 2.353 98.182 1.576

Current incidence in Wave 2

 1 job_health wave_2 93 311 13 .353 9.079 13.978 4.180 1.656

 2 symp_ast wave_2 2295 311 266 7.218 48.560 11.590 85.531 1.373

 3 source_hosp wave_2 91 311 10 .271 7.102 10.989 3.215 1.302

 4 bmi_25_29 wave_2 931 311 96 2.605 20.590 10.311 30.868 1.222

 5 bmi_30 wave_2 445 311 42 1.140 11.472 9.438 13.505 1.118
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including Thailand, have a highest priority to save lives 
and protect their economies. A previous study using ARM 
for mining COVID-19 data to analyze factors related to 
COVID-19 situation management showed that face mask 
mandates combined with mobility reduction through 
moderate stay-at-home orders were most effective in 
reducing the number of COVID-19 cases in United State 
[24]. In this study, the ARM technique was used to ana-
lyze and identify factors related to the length of stay and 
prognosis of COVID-19 patients and found that the top 
five factors related to hospital stays longer than 14 days 
consisted of healthcare workers uncommon underlying 
diseases such as thalassemia, thyroid diseases, gout and 
G6PD deficiency, pregnant patients, dyslipidemia and 
signs of pneumonia in chest x-rays. This study also iden-
tified a clinical factor rule related to the worsening con-
dition of the inpatient. Among those who needed more 
advanced medical treatment, the rules included mild to 
moderate COVID-19 symptoms, pregnant patients, meta-
bolic syndrome, length of hospital stay more than 14 days, 
and patients older than 65 years old. These factors are 
consistent with those in a previous study, which reported 
similar conditions among patients who had a poor prog-
nosis in COVID-19 infections [1, 30].

In any prediction tasks, more data is needed to achieve 
better performance from the models. This study devel-
oped the combination of the ARM technique and the 
ARIMA model, as the ARIMAX model. This model 
worked by selecting the rules related to COVID-19 prog-
nosis from the ARM technique, including mild to mod-
erate COVID-19 symptoms, patients with metabolic 
syndrome and patients older than 65 years old, and inte-
grating them to the ARIMA model. Experimental results 
showed that the ARIMAX model (1, 1, 1) improved the 
accuracy of forecasting the number of admitted COVID-
19 cases, which achieved a R2 = 0.5695, RMSE = 27.7508, 

MAE = 23.4642 (Fig. 5). The forecast value of this model 
for August 30, 2021 was estimated to be 259 to 327 cases. 
The actual number of cases on the same date was 291 
cases. The actual value also was within the lower and 
upper prediction bounds for both 95% confidence inter-
vals. To the best of our knowledge, this is the first study 
to combine the ARM technique with the ARIMA model 
for forecasting the COVID-19 cases by integrating the 
optimal exogenous variables from the ARM rules to form 
a predictive model. This ARIMAX model had the poten-
tial to predict the number of COVID-19 patients, which 
could be one of the reliable forecasting-based models 
for the future outbreak. These predictive models are 
intended to help better decision-making to plan an effec-
tive management system if the virus outbreak has not 
subsided.

Limitations
The limitation of this study is that the dataset was based 
on retrospective data from a single COVID-19 field hos-
pital in Thailand with a limited number of cases and clin-
ical variables of COVID-19 patients.

Future directions
In future work, the collaboration between multi-medical 
centers for a larger number and different variables of 
COVID-19 cases, including the medical records of clini-
cal, laboratory and treatment data from various COVID-
19 centers, would upgrade the forecasting performance 
of this AI model to predict the COVID-19 event more 
accurately. Additionally, geographic data related to the 
pandemic area could be used as a variable for alternative 
time series models such as space-time ARIMA models 
[31], which could be more reliable in predicting future 
COVID-19 outbreaks.

Table 8 (continued)

No LHS RHS N(A) N(B) N(A,B) SupLR ConfA ConfLR ConfRL LiftLR

Current incidence in Wave 3

 1 symp_ast wave_3 2295 1779 1285 34.871 64.111 55.991 72.232 1.160

 2 age_25_44 wave_3 1838 1779 1009 27.381 55.807 54.897 56.717 1.137

 3 cxr_no wave_3 3213 1779 1635 44.369 71.396 50.887 91.906 1.054

 4 ud_none wave_3 3392 1779 1700 46.133 72.839 50.118 95.559 1.038

 5 bmi_25 wave_3 2309 1779 1136 30.828 56.527 49.199 63.856 1.019

Current incidence in Wave 4

 1 ud_preg wave_4 23 1540 22 .597 48.540 95.652 1.429 2.289

 2 ud_dm wave_4 18 1540 17 .461 47.774 94.444 1.104 2.260

 3 age_65 wave_4 74 1540 64 1.737 45.321 86.486 4.156 2.069

 4 ud_meta wave_4 53 1540 43 1.167 41.962 81.132 2.792 1.941

 5 sym_mode wave_4 19 1540 15 .407 39.961 78.947 .974 1.889
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Conclusion
This study demonstrated that the ARIMAX model has 
the potential to increase the accuracy for predicting 
the number of COVID-19 cases by incorporating the 
most associated prognostic factors identified by ARM 
technique to the ARIMA model. The result of this 
study proved to be an effective AI model to predict the 
number of and to identify prognostic factors of admit-
ted COVID-19 patients. This work is expected to be a 
novel AI-based decision-making model for preparation, 
organizing hospital resources and more optimal use of 
medical personnel and equipment to enhance health-
care decision-making, and to manage the COVID-19 
pandemic but as well as other epidemic crises.
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