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Abstract 

Background:  Risk prediction models are useful tools in clinical decision-making which help with risk stratification 
and resource allocations and may lead to a better health care for patients. AutoScore is a machine learning–based 
automatic clinical score generator for binary outcomes. This study aims to expand the AutoScore framework to pro-
vide a tool for interpretable risk prediction for ordinal outcomes.

Methods:  The AutoScore-Ordinal framework is generated using the same 6 modules of the original AutoScore algo-
rithm including variable ranking, variable transformation, score derivation (from proportional odds models), model 
selection, score fine-tuning, and model evaluation. To illustrate the AutoScore-Ordinal performance, the method was 
conducted on electronic health records data from the emergency department at Singapore General Hospital over 
2008 to 2017. The model was trained on 70% of the data, validated on 10% and tested on the remaining 20%.

Results:  This study included 445,989 inpatient cases, where the distribution of the ordinal outcome was 80.7% alive 
without 30-day readmission, 12.5% alive with 30-day readmission, and 6.8% died inpatient or by day 30 post dis-
charge. Two point-based risk prediction models were developed using two sets of 8 predictor variables identified by 
the flexible variable selection procedure. The two models indicated reasonably good performance measured by mean 
area under the receiver operating characteristic curve (0.758 and 0.793) and generalized c-index (0.737 and 0.760), 
which were comparable to alternative models.

Conclusion:  AutoScore-Ordinal provides an automated and easy-to-use framework for development and validation 
of risk prediction models for ordinal outcomes, which can systematically identify potential predictors from high-
dimensional data.
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Introduction
Risk prediction models are mathematical equations 
which help clinicians estimate the probability of a health-
care outcome, given patient data. Such models include 
integer-point scores which can be used to predict that a 
disease is present (diagnostic models) or a specific out-
come will occur (prognostic models), depending on the 
clinical question. A combination of multiple predictors 
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(different weights for different predictors) is included 
into a multivariable model to calculate a risk score [1–3]. 
Some risk prediction models have been used in routine 
clinical settings, including the Framingham Risk Score 
[4], Ottawa Ankle Rules [5], Nottingham Prognostic 
Index [6], Gail model [7], Euro-SCORE [8], the modi-
fied Early Warning Score (MEWS) [9, 10] and Simplified 
Acute Physiology Score [11].

The use of health information technology, particularly 
electronic health records (EHR), has increased in the 
past decade, which provides opportunities for big data 
research. EHR data includes detailed patient information 
and clinical outcome variables which can be a unique 
data source for risk model development [12, 13]. Avail-
ability of a large number of variables in EHR data could 
be a mathematical challenge when using traditional 
regression analysis to build up a risk model. Machine 
learning (ML), as an alternative approach, applies math-
ematical algorithms to handle such big data resulting in 
novel risk prediction models. Traditional variable selec-
tion approaches (such as backward elimination, forward 
selection, stepwise selection using pre-specified stopping 
rules) may result in different subsets of variables in the 
context of EHR data, and clinical knowledge might not 
be always available in some clinical domains. Powerful 
feature selection techniques are available for supervised 
learning, which is a very critical aspect in risk model 
development when working with EHR data [13, 14].

AutoScore [15] is an easy-to-use, machine learning–
based automatic clinical score generator, which devel-
ops interpretable clinical scoring models. In an empirical 
experiment using EHR data, AutoScore generated scoring 
models that achieved comparable predictive performance 
as several conventional methods for risk model develop-
ment but by using fewer variables [15]. The advantage of 
the AutoScore framework is the combination of efficient 
variable selection using ML techniques and the acces-
sibility and interpretability of simple regression models. 
It can be easily used in different clinical settings and its 
applicability has been shown with a large number of vari-
ables (EHR data, for example) [15]. Some recent studies 
have used this framework to develop a risk prediction 
model in various clinical domains [16–20].

Most risk prediction models in the literature were 
developed using multivariable logistic regression mod-
els or ML techniques to predict a binary outcome. 
Aside from the AutoScore framework, ML applications 
include the use of Naive Bayes (NB), XGBoost, k-near-
est neighbor (K-NN), multilayer perceptron, support 
vector machine (SVM) and CatBoost for predicting the 
risk of cardiovascular disease [21], random forest (RF), 
XGBoost, logistic regression, SVM and K-NN for the risk 
of incident diabetic retinopathy among patients with type 

2 diabetes mellitus [22], a stroke risk prediction model 
using NB, decision tree and RF models [23], a XGBoost 
based cerebral infarction risk prediction model [24], and 
a developed risk model for 90-day mortality of patients 
undergoing gastric cancer resection with curative intent 
using cross validated elastic regularized logistic regres-
sion method, boosting linear regression, RF and an 
ensemble model [25].

Many clinical ordinal outcome variables exist and they 
are often dichotomized (favorable and unfavorable) or 
reduced to unordered categories for simplicity, e.g., in a 
cross-sectional study of emergency department (ED) tri-
age [26] and a retrospective cohort study of ovarian can-
cer patients [27]. Nevertheless, it should not be ignored 
that such re-categorization results in loss of clinically 
and statistically relevant information, which may also 
involve difficulties in borderline patients (cases that can 
easily be categorized into either of the two levels of the 
outcome). One should note that analyzing ordinal vari-
ables has more statistical power in comparison to the 
corresponding re-categorized binary variables. This has 
been illustrated in both simulations and empirical studies 
in clinical trials [28–32]. Literature also recommends the 
use of the ordinal scale outcomes rather than dichotomi-
zation, as smaller treatment effect sizes are detectable via 
ordinal analysis [29, 33–35].

In the literature, ordinal outcome variables are dis-
cussed in several clinical domains, where the objective 
was either an association exploration or predictions. A 
large international study (including 26 hospitals from 
six countries) conducted ordinal logistic regression to 
study a composite ordinal outcome variable (defined as 
1 = alive, no long length of stay [LOS], no readmission; 
2 = alive, long LOS, no readmission; 3 = alive, no long 
LOS, readmission; 4 = alive, long LOS, readmission; 
5 = death), and the correlation among different levels 
of the composite ordinal outcome at hospital level was 
reported [36]. ML methods using multiple biomarkers 
were performed to develop an ovarian cancer–spe-
cific predictive framework in a retrospective cohort 
study of 435 patients on a secondary ordinal outcome 
of residual tumor size (defined as: no residual tumor, 
< 1 cm residual tumor, ≥1 cm residual tumor), and the 
predictive accuracy and AUC were discussed [27]. Sta-
tistical and ML methods have been used for ordinal 
outcomes in the literature, e.g., the proportional odds 
model (POM) in middle ear dysfunction diagnosis of 
infants [37] and in a coronary artery disease study [38], 
ordinal RF in the aforementioned ovarian cancer study 
[27], multilayer perceptron with ordinal loss in a study 
across 9 mental health and suicide-related sub-Reddits 
[39], and 3D convulotional neural network model with 
ordinal binary decomposition in Parkinson’s disease 
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patients [40]. However, there is a lack of interpretabil-
ity (where one may not easily understand the output of 
such complex and how it works, which is not recom-
mended in healthcare domain [41]) and accessibility 
using these ML approaches, whereas the transparent 
POM is not as easily used as an interpretable risk scor-
ing system in the clinic for real-time decision making.

There is a lack of literature in model development 
using ordinal analysis that can be easily applied to clin-
ical studies dealing with complex data (EHR, for exam-
ple). The primary objective of this study was to expand 
the original AutoScore framework to provide a tool 
for easy development and validation of risk prediction 
models for ordinal outcomes. Hence the main contri-
bution of the current study is not only the inclusion 
of the ordinal blocks, but also some modifications on 
the original AutoScore framework which leads to new 
methodological work and revised model performance 
measurements appropriate for ordinal outcomes. 
For illustration purpose, a risk prediction model was 
developed and validated using EHR data from the 
emergency department (as a real world data), where 
the ordinal outcome included three categories (alive 
without readmission to the hospital within 30 days 
post discharge, alive with readmission within 30 days 
post discharge and dead inpatient or within 30 days 
post discharge).

Methods
AutoScore‑Ordinal framework
In this section we describe the 6 modules constituting 
the proposed AutoScore-Ordinal framework. In Module 
1 (see Fig.  1) the data is first split into a training set to 
train prediction models, a validation set to select hyper-
parameters (e.g., number of variables, cut-off values 
for categorizing continuous variables), and a test set to 
evaluate the final model(s) selected. The three datasets 
typically contain 70%, 10% and 20% of the full dataset, 
respectively. Variables are ranked based on their impor-
tance to a RF [42] for multiclass classification (i.e., ignor-
ing the ordering of categories), trained on the training set 
with a default number of 100 trees.

To simplify the interpretation and account for possible 
non-linear relationship between the predictor variables 
and the outcome, all continuous variables are catego-
rized in Module 2 (see Fig. 1). To automate this process, 
AutoScore-Ordinal categorizes each continuous variable 
using the 5-th, 20-th, 80-th and 95-th percentiles (based 
on the training set) as cut-off values, but some cut-offs 
may be removed to avoid sparsity issues when the distri-
bution of a variable is highly skewed. These (somewhat 
arbitrary) cut-off values provide reasonable initial con-
figuration for subsequent score development, and can be 
fine-tuned by users in Module 5 (see detail below).

In Module 3 (see Fig. 1), weights associated with vari-
ables are developed using the cumulative link model 

Fig. 1  Visual illustration of the AutoScore-Ordinal workflow. Blue color highlight modules modified from the original AutoScore framework [15]
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[43] with the logit link, also known as the proportional 
odds model (POM) [43, 44], which is one of the most 
widely used regression models in studies of ordinal 
outcomes and has been integrated with deep learning 
approaches to handle complex (e.g., image) data [45]. 
Let scalar Y denote the ordinal outcome with J catego-
ries (denoted by integers 1, …, J) and column vector x 
denote the variables (with continuous variables readily 
categorized in Module 2). The POM assumes a linear 
model for the logit of the cumulative probabilities asso-
ciated with the j-th ordinal category, i.e., pj = P(Y ≤ j), 
j = 1, …, J − 1:

The scalar terms θj are category-specific intercept 
terms, where θ1 < θ2 < … < θJ − 1 to ensure pj < pk for any 
j < k. β is the vector of regression coefficients corre-
sponding to the predictors. The negative sign before β 
follows from the notation used by McCullagh [43, 44], 
such that a positive value of β indicates a positive asso-
ciation between x and Y, i.e., an increase in x leads to 
an increased probability of observing a higher category 
in Y. Hence an increase in xTβ is always associated with 
increased probabilities of observing higher outcome cat-
egories, allowing us to construct prediction scores based 
on xTβ. Another general approach for handling ordinal 
outcomes is ordinal binary decomposition, but it models 
an ordinal outcomes as several binary labels in separate 
models [46], making it challenging to derive a common 
score for the risk of being in each ordinal category.

A simple scaling and rounding of trained β values 
may generate a scoring model spanning negative and 
positive values with confusing interpretation, e.g., 
the arbitrary zero score may be misinterpreted as no 
risk. Hence, the POM is refitted after redefining refer-
ence categories in each variable such that all elements 
in β are positive, and β is normalised with respect to 
the minimum value of β. With all continuous variables 
readily categorised in Module 2, these normalised coef-
ficients can be interpreted as scores associated with 
a category of a variable, referred to as partial scores. 
The partial scores (which are 0 for reference catego-
ries and 1 or larger otherwise) are rounded to positive 
integers to simplify the calculation of final prediction 
scores, which is the summation of all partial scores cor-
responding to the values of variables for an individual. 
To facilitate interpretation, all partial scores are often 
rescaled (and then rounded) such that the maximum 
total score attenable is a meaningful value (e.g., 100).

To evaluate the performance of the final model, the 
prediction of outcome Y with J categories is divided into 

log
pj

1− pj
= θj − x

Tβ .

J − 1 binary classifications of Y ≤ j vs Y > j, and the mean 
area under the receiver operating characteristic curve 
(AUC) across these binary classifications (referred 
to as mAUC hereafter) is used to evaluate the overall 
performance for predicting Y, which is equivalent to 
the average dichotomized c-index for evaluating ordi-
nal predictions [47, 48]. In Module 4, a scoring model 
is grown by adding one variable at each time (based 
on the variable ranking from Module 1) until all can-
didate variables are included, and the improvement in 
mAUC (evaluated on the validation set) with increasing 
number of variables is inspected using the parsimony 
plot. The final list of variables is often selected when 
the benefit of adding a variable is small, where such 
small benefit could be assessed via visual inspection (by 
looking at parsimony plot) and clinical knowledge (and 
drop/include variables manually). Next, the cut-off val-
ues for continuous variables selected in Module 4 may 
be fine-tuned for favourable interpretation in Mod-
ule 5, e.g., by using 10-year age groups instead of the 
arbitrarily defined quantile-based intervals. The final 
model is evaluated on the test set in Module 6 using the 
mAUC and Harrell’s generalised c-index [47, 49, 50], 
which is based on the proportion of concordant pairs 
(i.e., when predictions and observed outcomes generate 
the same ranking for the pair of observations, includ-
ing tied ranks) among all possible pairs of observations. 
For both mAUC and generalised c-index, a value of 0.5 
indicates a random performance and a value of 1 indi-
cates a perfect predictive performance. The mAUC and 
generalised c-index from the test set are reported with 
the bias-corrected 95% bootstrap confidence interval 
(CI) [51].

Data preparation
To demonstrate and validate our proposed AutoScore-
Ordinal framework, we applied it in a clinical study in 
compliance with the checklist for assessment of medical 
AI [52]. We used AutoScore-Ordinal to predict readmis-
sion and death (composite outcome) after inpatient dis-
charge, using data collected from patients who visited the 
emergency department (ED) of Singapore General Hos-
pital in years 2008 to 2017 and were subsequently admit-
ted to the hospital [53, 54]. The full cohort included data 
on 449,593 ED presentation cases. Information on patient 
demographics, ED administration, inpatient admission, 
clinical tests and vital signs in ED, medical history and 
comorbidities was extracted from the hospital electronic 
health record system [16]. We excluded patients aged 
below 18, resulting in a final sample of 445,989 inpatient 
cases.

We constructed a composite ordinal outcome with 
three categories: alive without readmission to the 
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hospital within 30 days post discharge, alive with read-
mission within 30 days post discharge, died inpatient or 
within 30 days post discharge. Among the 445,989 cases, 
359,961 (80.7%) were in the first outcome category (i.e., 
alive without 30-day readmission), 55,552 (12.5%) were in 
the second category (i.e., alive with 30-day readmission), 
and 30,476 (6.8%) were in the third category (i.e., died 
inpatient or by day 30 post discharge).

We randomly split the dataset (stratified by outcome 
categories) into a training set of 70% (n = 312,193) cases 
to train models, a validation set of 10% (n = 44,599) cases 
to perform necessary model fine-tuning for AutoScore-
Ordinal, and a test set of 20% (n = 89,197) cases to eval-
uate the performance of the final prediction models. 
For each case, we extracted the length of stay (LOS) of 
the previous inpatient admission (missing values were 
treated as 0 days). Missing values for vital signs or clinical 
tests were imputed using the median value in the valida-
tion set.

We compared the prediction model built using 
AutoScore-Ordinal with the RF (with 100 trees) and 
POM with LASSO or stepwise variable selection tech-
niques. For each model, we computed the 95% CI for 
mAUC and generalized c-index from bootstrap samples 
of the test set (the number of bootstrap samples was 
selected as 100 for the demo purposes and can be modi-
fied in the AutoScore algorithm). Generalized c-index 
was computed based on the total score for AutoScore-
generated models, the linear predictor excluding 
intercept terms for POM and the predicted outcome cat-
egories for RF.

Implementation
All analyses were implemented in R version 4.0.5 [55]. 
Our proposed AutoScore-Ordinal is implemented as an 
R package, available from https://​github.​com/​nliul​ab/​
AutoS​core-​Ordin​al. POM was implemented using the 
clm function from package ordinal [56]. The stepAIC 
function from package MASS [57] was used to perform 
stepwise variable selection for POM, and the ordinal-
Net function from package ordinalNet [58] was used to 
implement the LASSO approach. The RF was imple-
mented using the randomForest function from package 
randomForest [59]. The bias-corrected bootstrap CI was 
implemented using the bca function from package coxed 
[60]. The generalized c-index was implemented using the 
rcorrcens function from package Hmisc [61].

Results
The characteristics of the full cohort are summarized in 
Table 1. Cases in the 3 outcome categories showed statis-
tical difference in all variables, therefore it is non-trivial 
to develop a sparse prediction model based on POM.

Variable selection
The parsimony plot (see Fig.  2) suggests a reasonable 
model of the first  8 variables: ED LOS, creatinine, ED 
boarding time, number of visits in the previous year, age, 
systolic blood pressure (SBP), bicarbonate and pulse, 
which reached a mAUC that is only 7.9% lower than 
that the scoring model using all 41 variables. We refer 
to this model as Model 1. When using the parsimony 
plot to select variables, researchers are not restricted to 
consecutively select variables in the descending order of 
importance. For example, we built an alternative model 
(i.e., Model 2) with 8 variables, where we excluded the 
3rd variable (i.e., ED boarding time) from Model 1 that 
had little impact on mAUC, and added the 14th vari-
able (i.e., history of metastatic cancer in the past 5 years, 
which can be easily collected by asking the patient or the 
accompanying person/family/relatives) that incremented 
the mAUC by approximately 4% when it entered the pre-
diction model.

Fine‑tuning
All variables selected in the two models were continuous, 
and we fine-tuned their cut-off values in the categoriza-
tion step to improve interpretability. The scoring tables 
after fine-tuning were shown in Table 2 for both models, 
and the performance of the resulting prediction mod-
els (evaluated on the test set) were reported in Table  3. 
Model 1 had an mAUC of 0.758 (95% CI: 0.754–0.762), 
and by excluding ED boarding time and adding meta-
static cancer, the mAUC of Model 2 improved to 0.793 
(95% CI: 0.789–0.796).

Interpreting prediction scores
The AutoScore-generated score (from Models 1 and 2) 
can be mapped to the likelihood of falling into different 
outcome categories based on the observed proportions 
in the training set. For example, we illustrate the use of 
Model 2 for risk prediction for a hypothetical new patient 
in Fig. 3. With values of the 8 variables measured for this 
new patient, clinicians can simply check relevant rows in 
the scoring table, summate the partial scores to a total 
score for this patient, and read the corresponding pre-
dicted probabilities for the three outcome categories in 
the lookup table. Such predicted probabilities can also be 
calculated from POM using a calculator or be returned 
from RF using designated software commands, but the 
checklist-style scoring table of AutoScore-generated 
models and the accompanying lookup tables of predicted 
probabilities are much easier to use in clinical practice.

We evaluate the calibration performance of Mod-
els 1 and 2, visually presented in Fig.  4. Specifically, we 
grouped subjects based on score intervals defined in the 
lookup table in Fig.  3, and plotted the observed risk of 
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Table 1  Characteristics of cases in the full cohort. Outcome categories 1, 2, and 3 refer to cases that were alive without readmission to 
the hospital within 30 days post discharge, alive with readmission within 30 days post discharge and dead inpatient or within 30 days 
post discharge, respectively

Overall (n = 445,989) Outcome category 1 
(alive, no readmission; 
n = 359,961)

Outcome category 2 
(alive, with readmission; 
n = 55,552)

Outcome 
category 3 (death; 
n = 30,476)

Patient demographics
  Age (years; mean (SD)) 61.66 (18.24) 60.16 (18.55) 66.38 (15.86) 70.84 (13.83)

  Male (%) 222,644 (49.9) 177,267 (49.2) 28,753 (51.8) 16,624 (54.5)

  Race (%)

    Chinese 27,471 (6.2) 24,615 (6.8) 1958 (3.5) 898 (2.9)

    Indian 316,474 (71.0) 250,930 (69.7) 41,022 (73.8) 24,522 (80.5)

    Malay 47,508 (10.7) 39,606 (11.0) 5973 (10.8) 1929 (6.3)

    Others 54,536 (12.2) 44,810 (12.4) 6599 (11.9) 3127 (10.3)

Comorbidity (%)
  Myocardial infarction 26,594 (6.0) 15,653 (4.3) 6242 (11.2) 4699 (15.4)

  Congestive heart failure 49,575 (11.1) 32,360 (9.0) 11,809 (21.3) 5406 (17.7)

  Peripheral vascular disease 25,878 (5.8) 16,701 (4.6) 6258 (11.3) 2919 (9.6)

  Stroke 57,730 (12.9) 41,674 (11.6) 10,463 (18.8) 5593 (18.4)

  Dementia 12,385 (2.8) 8129 (2.3) 2625 (4.7) 1631 (5.4)

  Pulmonary 42,770 (9.6) 30,385 (8.4) 8868 (16.0) 3517 (11.5)

  Rheumatic 6180 (1.4) 4645 (1.3) 1147 (2.1) 388 (1.3)

  Peptic ulcer disease 17,193 (3.9) 11,834 (3.3) 3478 (6.3) 1881 (6.2)

  Mild liver disease 20,483 (4.6) 14,318 (4.0) 4216 (7.6) 1949 (6.4)

  Severe liver disease 7119 (1.6) 3863 (1.1) 1906 (3.4) 1350 (4.4)

  Diabetes (without complications) 55,699 (12.5) 42,529 (11.8) 8756 (15.8) 4414 (14.5)

  Diabetes with complications 104,682 (23.5) 76,553 (21.3) 19,987 (36.0) 8142 (26.7)

  Paralysis 24,903 (5.6) 17,683 (4.9) 4692 (8.4) 2528 (8.3)

  Renal 91,213 (20.5) 62,033 (17.2) 20,290 (36.5) 8890 (29.2)

  Cancer (non-metastatic) 39,571 (8.9) 27,627 (7.7) 6778 (12.2) 5166 (17.0)

  Metastatic cancer 35,225 (7.9) 18,469 (5.1) 5683 (10.2) 11,073 (36.3)

ED Admission
  ED LOS (hours; mean (SD)) 2.86 (1.70) 2.84 (1.72) 2.58 (1.62) 2.12 (1.42)

  ED Triage code (%)

    P1 83,221 (18.7) 59,513 (16.5) 11,696 (21.1) 12,012 (39.4)

    P2 250,382 (56.1) 199,708 (55.5) 33,906 (61.0) 16,768 (55.0)

    P3 and P4 112,386 (25.2) 100,740 (28.0) 9950 (17.9) 1696 (5.6)

  ED Boarding Time (hours; mean 
(SD))

4.78 (3.81) 4.80 (3.79) 4.79 (3.94) 4.48 (3.89)

  Consultation Waiting Time (hours; 
mean (SD))

0.77 (0.80) 0.80 (0.82) 0.71 (0.72) 0.53 (0.60)

Inpatient admission
  Day of Week (%)

    Friday 62,453 (14.0) 50,314 (14.0) 7801 (14.0) 4338 (14.2)

    Monday 74,192 (16.6) 60,142 (16.7) 9091 (16.4) 4959 (16.3)

    Weekend 115,418 (25.9) 92,387 (25.7) 14,604 (26.3) 8427 (27.7)

    Midweek 193,926 (43.5) 157,118 (43.6) 24,056 (43.3) 12,752 (41.8)

  Admission Type (%)

    A1 16,814 (3.8) 14,795 (4.1) 1195 (2.2) 824 (2.7)

    B1 37,345 (8.4) 32,938 (9.2) 2658 (4.8) 1749 (5.7)

    B2 212,261 (47.6) 174,752 (48.5) 23,238 (41.8) 14,271 (46.8)

    C 179,569 (40.3) 137,476 (38.2) 28,461 (51.2) 13,632 (44.7)

  Previous LOS (days; mean (SD)) 3.57 (8.55) 3.04 (7.90) 5.34 (10.00) 6.50 (11.55)
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Outcome categories were compared using Kruskal-Wallis and Chi-square test for continuous and categorical variables, respectively. All tests had p-value< 0.001

DBP diastolic blood pressure, ED emergency department, HD high dependency ward, ICU intensive care unit, LOS length of stay, SBP systolic blood pressure, SD 
standard deviation, SpO2 blood oxygen saturation
a Excluding 9365 missing entries for pulse, 10,772 missing entries for respiration, 10,704 missing entries for SpO2, 5348 missing entries for SBP and DBP, 56857 missing 
entries for bicarbonate, 56,742 missing entries for creatinine, 58,747 missing entries for potassium, and 56,678 missing entries for sodium

Table 1  (continued)

Overall (n = 445,989) Outcome category 1 
(alive, no readmission; 
n = 359,961)

Outcome category 2 
(alive, with readmission; 
n = 55,552)

Outcome 
category 3 (death; 
n = 30,476)

Healthcare utilisation in the previous year
  No. inpatient visits (mean (SD)) 0.93 (2.21) 0.62 (1.42) 2.66 (4.46) 1.44 (2.17)

  No. surgery (mean (SD)) 0.20 (0.74) 0.15 (0.63) 0.42 (1.10) 0.37 (0.99)

  No. ICU stays (mean (SD)) 0.02 (0.25) 0.02 (0.22) 0.05 (0.35) 0.05 (0.36)

  No. HD stays (mean (SD)) 0.09 (0.47) 0.07 (0.40) 0.17 (0.68) 0.17 (0.69)

Vital sign and clinical tests
  Ventilation (%) 89 (0.0) 47 (0.0) 7 (0.0) 35 (0.1)

  Resuscitation (%) 9083 (2.0) 6211 (1.7) 1045 (1.9) 1827 (6.0)

  Pulse, beat/minute (mean (SD))a 82.85 (17.23) 81.99 (16.73) 83.35 (17.00) 92.05 (20.51)

  Respiration, breath/minute (mean 
(SD))a

17.84 (1.77) 17.76 (1.60) 17.98 (1.81) 18.59 (2.98)

  SpO2, % (mean (SD))a 97.98 (3.25) 98.05 (3.05) 97.93 (3.12) 97.34 (5.22)

  DBP, mmHg (mean (SD))a 71.33 (13.55) 71.67 (13.36) 71.14 (13.70) 67.62 (14.93)

  SBP, mmHg (mean (SD))a 133.68 (25.53) 134.05 (25.19) 135.98 (26.22) 125.13 (26.63)

  Bicarbonate, mmol/L (mean (SD))a 22.78 (3.78) 22.91 (3.55) 22.55 (3.97) 21.67 (5.39)

  Creatinine, μmol/L (mean (SD))a 154.70 (208.52) 142.72 (196.69) 213.21 (259.28) 185.61 (215.82)

  Potassium, mmol/L (mean (SD))a 4.16 (0.72) 4.14 (0.69) 4.23 (0.76) 4.36 (0.91)

  Sodium, mmol/L (mean (SD))a 135.02 (5.17) 135.30 (4.84) 134.56 (5.39) 132.76 (7.30)

Fig. 2  Parsimony plot by the mean area under the curve (mAUC) on the validation set
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being in each outcome category in the test set against the 
predicted risk (based on the lookup tables). Both Mod-
els 1 and 2 generated predicted risk similar to observed 
levels, indicated by dots close to the diagonal line. An 
increase in the scores (visually indicated by lighter color 
in Fig.  4) generally reflects an increased likelihood of 
being in a higher category in the outcome, whereas 

Model 2 has improved ability compared to Model 1 in 
differentiating different outcome categories given differ-
ent predicted scores (indicated by a wider spread of dots 
along the diagonal line).

Comparison with other approaches
AutoScore-generated prediction models had compara-
ble mAUC as the POM that used the same variables (see 
Table 3, where POM1 and POM2 correspond to Models 
1 and 2 respectively). The RF using the same variables as 
Model 1 (see RF1 in Table  3) had a higher mAUC than 
Model 1, but when compared with Model 2 the advantage 
of the corresponding RF (see RF2 in Table 3) in terms of 
mAUC is less pronounced. AutoScore-generated models 
had slightly higher generalized c-index than the corre-
sponding POMs, and both were higher than the corre-
sponding RFs. In particular, the generalized c-index of 
RFs were much lower than the corresponding AutoScore-
generated models or POMs, due to the use of predicted 
labels instead of numeric scores when evaluating the per-
formance of RF.

When using traditional model building methods to 
build sparse POM, stepwise algorithm using AIC failed to 
work when starting from the null model (i.e., without any 
variable), and ended up selecting 35 variables when start-
ing from the full model (i.e., including all 41 variables). 
Although this POM with 35 models had a high mAUC 
and generalized c-index (see POM (stepwise) in Table 3), 
it is difficult to use in practical settings. The LASSO 
approach selected 10 variables (i.e., ED LOS, gender, ED 
triage code, total number of ICU stays in the past year, 
admission type, SpO2, SBP, bicarbonate, sodium and dia-
betes with complications) that had much lower perfor-
mance than other models (see POM (LASSO) in Table 3).

Discussion
A scoring system was developed using the AutoScore 
framework for ordinal outcomes in this study. The algo-
rithm was applied on a case study to discuss the risk 
prediction model and its application on EHR data from 
the emergency department where the ordinal outcome 
includes three categories (alive without readmission 
to the hospital within 30 days post discharge, alive with 
readmission within 30 days post discharge and dead inpa-
tient or within 30 days post discharge). The model was 
developed using 70% of the data (n = 312,193); validated 
on subset of 10% of the data (n = 44,599) to perform 
necessary model fine-tuning; and tested on a set of 20% 
(n = 89,197). The performance of the AutoScore-Ordi-
nal model was checked against the alternative models 
including POM and RF using 100 bootstrap samples via 
mAUC and generalized c-index. The AutoScore-Ordinal 
identified two feasible scoring models with 8 variables, 

Table 2  Scoring table for AutoScore-generated models

“[A, B)” indicates an interval inclusive of the lower limit and exclusive of the 
upper limit. “--” indicates variables not included in a model

h hours, min minutes, ED Emergency department, LOS length of hospital stay

Variable Interval Partial 
score for 
Model 1

Partial score 
for Model 2

ED LOS < 40 min 11 7

[40 min, 80 min) 8 6

[80 min, 4 h) 4 2

[4 h, 6 h) 1 1

> = 6 h 0 0

Creatinine, μmol/L < 45 6 4

[45, 60) 0 0

[60, 135) 0 1

[135, 595) 6 7

> = 595 4 7

ED boarding time < 80 min 0 –

[80 min, 2.5 h) 2 –

> = 2.5 h 1 –

Systolic blood pressure, 
mmHg

< 100 12 9

[100, 110) 7 5

[110, 150) 3 2

[150, 180) 1 0

> = 180 0 0

Bicarbonate, mmol/L < 17 8 7

[17, 20) 3 3

[20, 28) 0 0

> = 28 5 4

Age, years < 25 0 0

[25, 45) 6 5

[45, 75) 18 13

[75, 85) 22 17

> = 85 25 21

Pulse, beat/minute < 70 0 0

[70, 95) 3 2

[95, 115) 8 6

> = 115 14 11

Number of inpatient 
visits in the previous year

< 1 0 0

[1, 4) 12 9

> = 4 23 20

Metastatic cancer No – 0

Yes – 19
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and both had slightly better performance than the POM 
and RF that use the same variables. The novelty of the 
AutoScore-Ordinal model is its easy-to-use and machine 
learning-based automatic clinical score generator fea-
tures, which develops interpretable clinical scoring mod-
els and can be useful tools for clinical decision-making at 
different stages of clinical pathway.

Prediction models in clinical settings are useful tools 
to inform clinical decision-making at different stages of 
clinical practice [62, 63]. To design, conduct and build 
prediction models, fundamental concepts including 
developing, validating and updating risk prediction mod-
els are discussed in the TRIPOD (Transparent Report-
ing of a multivariable prediction model for Individual 

Table 3  Evaluation of prediction models on the test set, after fine-tuning cut-off values for continuous variables. The 95% CIs were 
generated from 100 bootstrap samples of the test set

POM proportional odds model, RF random forest, mAUC​ mean area under the curve
a These models used the same 8 variables: emergency department (ED) length of stay (LOS), creatinine, ED boarding time, number of visits in the previous year, age, 
systolic blood pressure (SBP), bicarbonate and pulse
b These models used the same 8 variables: ED LOS, creatinine, number of visits in the previous year, age, SBP, bicarbonate, pulse and metastatic cancer

Number of variables mAUC (95% CI) Generalized c-index (95% CI)

AutoScore-Ordinal Model 1a 8 0.758 (0.754, 0.762) 0.737 (0.734, 0.741)

POM1a 8 0.750 (0.747, 0.754) 0.726 (0.722, 0.729)

RF1a 8 0.767 (0.764, 0.771) 0.547 (0.544, 0.549)

AutoScore-Ordinal Model 2b 8 0.793 (0.789, 0.796) 0.760 (0.757, 0.763)

POM2b 8 0.790 (0.786, 0.793) 0.754(0.750, 0.756)

RF2b 8 0.798 (0.794, 0.801) 0.564 (0.561, 0.566)

POM (stepwise) 35 0.815 (0.812–0.819) 0.775 (0.772–0.778)

POM (LASSO) 10 0.704 (0.700–0.708) 0.669 (0.665–0.673)

Fig. 3  Scoring and lookup tables for AutoScore-generated Model 2, with their use illustrated for a hypothetical new patient
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Prognosis Or Diagnosis) Statement [64]. New risk mod-
els should always be validated to quantify the predic-
tive ability of the model (for example, calibration and 
discrimination), which could be addressed via internal 
(bootstrapping, cross-validation, etc.) or external (inde-
pendent cohort, for example) validation [64].

Most of the developed models in literature lacks of 
interpretability and accessibility while using machine 
learning techniques [26, 27, 39]. In contrast, the 
AutoScore-Ordinal via a point-based risk prediction 
model can be easily implemented in different clinical 
settings and fills a gap in interpretability, when dealing 
with ordinal outcomes. The advantages of the original 
AutoScore framework [15] applies to the AutoScore-
Ordinal framework. AutoScore-Ordinal builds on 
the POM, which is suitable for analyzing ordinal out-
comes and widely used in clinical and epidemiologi-
cal research. Compared to conventional use of POM, 

AutoScore-Ordinal makes use of machine learning meth-
ods to build sparse prediction models with good predic-
tion performance, whereas traditional approaches such 
as stepwise variable selection and LASSO may not work 
well. AutoScore-Ordinal creates a check-list style scoring 
model that is easily implemented in clinical settings. In 
clinical research, sometimes quantitative data are catego-
rized as ordinal variables due to different reasons such as 
skewness or multi-modal distribution. Under such sce-
narios, dichotomization may not be ideal and could result 
in loss of clinically and statistically relevant informa-
tion. One may take advantage of the AutoScore-Ordinal 
framework to deal with such ordinal outcome variables.

AutoScore-Ordinal provides an efficient, straightfor-
ward and flexible variable selection procedure based on 
the parsimony plot, which visually presents the improve-
ment in model performance with a growing number 
of variables in the model. Intuitively, researchers can 

Fig. 4  Calibration performance for (A) Model 1 and (B) Model 2
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select the top few variables that correspond to a satisfy-
ing model performance and inclusion of an additional 
variable results in a small (e.g., < 1%) improvement, 
which resulted in Model 1 in our example. In addition, 
AutoScore-Ordinal allows researchers to manually add or 
remove variables from the final variables based on their 
contribution to model performance (e.g., as illustrated 
in Model 2) or practical implications. While the cur-
rent AutoScore-Ordinal implementation uses the POM 
(or more generally the cumulative link model with the 
logit link) that is widely used in clinical applications, it 
can be used with other link functions (e.g., probit, com-
plementary log-log) with minor modifications for pos-
sible improvements in model fit. Researchers may want 
to draw multiple parsimony plots to select a link function 
that best suits the data when determining variables to 
include in the final model.

In our data example we trained RF with 100 trees when 
ranking variables in Module 1 of AutoScore-Ordinal and 
when using it as a prediction model. Researchers may 
want to increase the number of trees to improve perfor-
mance in general applications, e.g., 500 trees is a com-
mon choice [65]. Due to the large sample size of our case 
study, we run out of memory when training an RF with 
500 trees, and an RF with 200 trees generated compara-
ble results when ranking variables and predicting ordinal 
outcomes.

As indicated by the name, POM assumes proportional 
odds, i.e., the effect of each variable on the outcome is 
the same across outcome categories. In univariable POM 
analyses of the training set (without categorizing con-
tinuous variables), the proportional odds assumption was 
rejected for all variables (with significance level of 5%). 
Future study should investigate how to relax this assump-
tion when necessary without considerably complicating 
the interpretation of the resulting scoring model. Despite 
this, the two prediction models built using AutoScore-
Ordinal worked reasonably well. For performance eval-
uation, we considered two metrics (i.e., mAUC and 
generalized c-index) that have straightforward interpre-
tation and similar definition with metrics for binary and 
survival predictions [47, 48, 50]. Future work may con-
sider other performance metrics, e.g., volume under the 
receiver operating characteristic surface (more generally 
the hypervolume under the manifold) [66] and the ordi-
nal c-index [47] for ordinal prediction, or the M-index 
[67] and polytomous discrimination index [68, 69] for 
multi-class outcomes without explicitly accounting for 
ordering of categories.

Our data example aims to illustrate the use of our pro-
posed AutoScore-Ordinal framework. The prediction 
performance can be improved, e.g., although Model 2 
had better performance than Model 1, it will most likely 

fail to predict any new case into category 2, as this cat-
egory is dominated by the other two categories (see 
lookup table in Fig. 3). The AutoScore-Ordinal should be 
applied in other clinical domains with different sample 
sizes and various number of variables to establish exter-
nal validity. Further investigation is required to improve 
performance before applying the AutoScore-Ordinal-
derived scoring models in clinical settings, e.g., inclusion 
of additional relevant variables, alternative imputation 
of missing values and cross-validation feature within the 
package. Another future research direction, as seen in the 
literature [70–73], is to integrate the AutoScore-Ordinal 
package as a mobile application where it could be eas-
ily accessible to the clinicians. Nonetheless, AutoScore-
Ordinal provides a powerful, flexible and easy-to-use 
framework for developing interpretable scoring models 
for ordinal clinical outcomes.

Conclusion
AutoScore-Ordinal as a risk prediction model was devel-
oped for ordinal outcome variable. For illustration pur-
pose, the framework was implemented and validated 
using EHR data from the emergency department, where 
the ordinal outcome included three categories (alive 
without readmission to the hospital within 30 days post 
discharge, alive with readmission within 30 days post 
discharge and dead inpatient or within 30 days post 
discharge). An efficient and flexible variable selection 
procedure was explained and the model indicated a com-
parable goodness-of-fit in compared to the alternative 
models. The point-based risk prediction model generated 
by the AutoScore-Ordinal is easy to implement and inter-
pret in different clinical settings.
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