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Abstract 

This paper provides the methodologies of a new summary curve that measures the dynamic outcome following allo-
genic hematopoietic cell transplantation. This new summary curve computes the probabilities that a patient is alive in 
remission and free of severe-to-moderate chronic graft-versus-host disease (GVHD) over time. The probability is called 
Current chronic GVHD-free, Relapse-Free Survival (CGRFS). Based on a multistate model depicting the possible states 
that a patient may experience after transplant, CGRFS can be formulated as a linear combination of five survival func-
tions. This method is known as the model-free approach. In this paper we provide the inferences of the model-free 
approach, including estimation of CGRFS, precision evaluation and comparison of CGRFS between two independent 
samples.
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Introduction
Several survival curves are often depicted to show the 
outcomes after allogenic hematopoietic cell transplanta-
tion. Among these curves, overall survival (OS) and dis-
ease-free survival (DFS) are most commonly used. Death 
and death/disease relapse are the endpoints for OS and 
DFS, respectively. Aiming at depicting the probability 
of survival in remission and free of comorbidity, Holtan 
et al. [1] proposed the GVHD-free, Relapse-Free Survival 
(GRFS). For GRFS, either death, relapse, grade 3-4 acute 
GVHD, or chronic GVHD requiring immunosuppression 
is viewed as a terminal failure event. GRFS is effective in 
measuring the short-term transplant outcome. In a study 
cohort of 907 patients, Holtan reported the 1-year GRFS 
to be 31%. The Center for International Blood and Mar-
row Transplant Research (CIBMTR) suggested 23% to be 

the reference 1-year GRFS in adult patients in trial stud-
ies. GRFS is very useful in trials evaluating different treat-
ments since the target events can be observed within a 
relatively short time period.

GRFS is not suitable for assessing long-term post-trans-
plant outcomes. First, acute GVHD occurred shortly after 
transplant. It is more appropriate to consider acute GVHD 
as a brief transit state. Second, chronic GVHD condition 
can be resolved in a large proportion of patients. There 
is no difference in quality of life between patients with 
resolved chronic GVHD and those never experiencing 
chronic GVHD. To better evaluate the long-term outcome, 
our group proposed the Current chronic GVHD-free, 
Relapse-Free Survival (CGRFS) function, defined as the 
probability that a patient is alive in remission and free of 
severe-to-moderate chronic GVHD after transplant at time 
t [2]. In CGRFS chronic GVHD is not a terminal event. A 
subject is removed from the risk set at the onset of chronic 
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GVHD. When the chronic GVHD is resolved, the subject is 
again included in the risk set.

Composite endpoints such as DFS or GRFS are com-
monly used for summarizing outcomes in stem cell 
transplant studies. For a composite endpoint, only one 
health state is of study interest. CGRFS is not a compos-
ite endpoint since more than one health state are con-
sidered in CGRFS. The dynamic nature of CGRFS makes 
it similar to the current leukemia-free survival (CLFS) 
proposed by Klein, Szydlo et al. [3]. CLFS was advocated 
as a better summary curve measuring effectiveness of 
donor lymphocyte infusion (DLI) post transplant [4]. 
Post-transplant relapse was treated by DLI and many 
relapsed patients achieved the second remission. For 
CLFS, relapse in the initial remission is not a terminal 
event. Both initial and second remission states are con-
sidered in CLFS.

A multistate model should be constructed for a 
dynamic endpoint [5]. The survival associated with a 
dynamic endpoint involves the transition probabilities 
from the initial state to other states. The conventional 
method for estimating a transition probability is the 
product-limit estimator [6]. An alternative method for 
estimating a transition probability was suggested by 
Pepe [7] by using the difference of two survival func-
tions. For CLFS, Klein, Szydlo et  al. [3] employed the 
conventional product-limit method to estimate the 
transition probability in CLFS. In another work by 
Klein, Keiding et  al. [8], inspired by Pepe’s idea, they 
proposed the model-free approach to formulate CLFS 
as a linear combination of three survival functions, 
and use the Kaplan-Meier estimators to estimate the 
survival functions. For CGRFS, both conventional 
product-limit method and the model-free approach 
can be utilized. The model-free approach has a great 
advantage because it is much simpler in formulation 
and computation. In our clinical paper, we suggested 

the model-free approach and presented the estima-
tion result of a real data set [2]. In recent years other 
dynamic endpoints have been advocated for stem cell 
transplant studies [9, 10]. The current survival func-
tions were defined for these dynamic endpoints based 
on specific multistate models, and the model-free 
approach was utilized to estimate the proposed current 
survival functions.

CGRFS has been recognized as a useful addition to 
the existing survival functions [11–13] and considered 
as suitable implication of transplant success [14]. Our 
clinical paper did not include interval estimation, which 
is critical for assessing precision of CGRFS estimates. 
Also the clinical paper lacked details about two-sam-
ple comparison. In this paper we present the detailed 
inferences. In Section  2 we give definition of CGRFS, 
together with point estimation, precision evaluation 
and two-sample comparison. In Section  3 we pre-
sent the analytical results of the data of 422 patients, 
including the CGRFS curve, the estimated transition 
probabilities of different health states, and two-sample 
comparison result. In addition, we explain how to com-
pute probabilities of all states, and suggest other prac-
tically meaningful functions. A discussion of CGRFS is 
given in Section 4.

Methods
Estimation of CGRFS
For CGRFS, onset and resolution of chronic GVHD need 
to be clearly determined. Onset of chronic GVHD event 
was defined as moderate-to-severe chronic GVHD based 
on the NIH criteria [15] at the time of the most recent 
assessment. GVHD evaluation was prospectively per-
formed by a single practitioner within the program. Res-
olution of chronic GVHD was determined if symptoms 
became quiescent and systemic immunosuppression 
discontinued.

Fig. 1  Possible transitions in the multistate model for CGRFS
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We constructed a multi-state model to depict the dis-
ease progression after transplantation. Two episodes of 
chronic GVHD were incorporated in the model (Fig. 1). 
The model contains the following states,

State 0: Alive in initial remission state without expe-
riencing chronic GVHD
State 1: Dead or relapsed before first chronic GVHD
State 2: Alive with first chronic GVHD
State 3: Dead or relapsed in first chronic GVHD
State 4: Alive without first chronic GVHD
State 5: Dead or relapsed in recovery from first 
chronic GVHD
State 6: Alive with second chronic GVHD
State 7: Dead or relapsed in second chronic GVHD
State 8: Alive without second chronic GVHD
State 9: Dead or relapsed in recovery from second 
chronic GVHD

CGRFS is the probability that one stays in state 0 or 4 
or 8 at time t. Let Pkl(s, t) be the transition probability 
from state k to l in time interval [s, t]. CGRFS, denoted by 
C(t), is defined as the sum of three transition probabili-
ties, C(t) = P00(0, t)+ P04(0, t)+ P08(0, t) . An intensity 
matrix can be constructed based on the transition inten-
sities, �01, · · · , �89 (Fig.  1). The conventional method of 
estimating P00(0, t),P04(0, t) and P08(0, t) is to consider 
the product integral of the intensity matrix [6].

The product-integral method is computationally 
expensive. The issue is most severe for P08(0, t) because 
a subject has to experience three states before reaching 
state 8, alive without the second chronic GVHD. Follow-
ing Pepe [7] and Klein, Keiding et  al. [8], we developed 
the model-free approach for CGRFS [2]. We formulated 
CGRFS as a linear combination of five survival functions, 
S1(t), · · · , S5(t) , pertaining to five composite endpoints. 
These five composite endpoints are explained as follows,

S1(t) : First occurrence of first chronic GVHD or 
death/relapse,
S2(t) : First occurrence of second chronic GVHD or 
death/relapse,
S3(t) : First occurrence of resolution of first chronic 
GVHD or death/relapse,
S4(t) : Death/relapse at any time,
S5(t) : First occurrence of resolution of second chronic 
GVHD or death/relapse.

Let Tk be the time to the kth composite endpoint and 
Sk(t) = Pr(Tk > t) ( k = 1, · · · , 5 ). Note that S1(t) coin-
cides with P00(0, t) . The composite endpoint for T2 is 
the first occurrence of second chronic GVHD or death/
relapse. For T2 , the death/relapse event could only be 

death/relapse in remission, in first chronic GVHD or 
in resolved first chronic GVHD. A patient without 
experiencing this composite endpoint stays in state 
0, 2 or 4 (see Fig.  1). Using transition probabilities, 
S2(t) = Pr(T2 > t) = P00(0, t)+ P02(0, t)+ P04(0, t)   . 
Similarly, the composite endpoint for T3 is the first 
occurrence of resolution of first chronic GVHD 
or death/relapse. Without experiencing this com-
posite event, one stays in state 0 or 2. That is, 
S3(t) = Pr(T3 > t) = P00(0, t) + P02(0, t) . Consequently, 
S2(t)− S3(t) yields P04(0, t) . In addition, based on the 
composite endpoints for T4 and T5 , S4(t) is the prob-
abilities of staying in state 0, 2, 4, 6 or 8 while S5(t) is 
the probability of staying in state 0, 2, 4 or 6. We can 
get that P08(0, t) = S4(t)− S5(t) . In summary, CGRFS 
is a linear combination of these five survival functions, 
C(t) = S

1
(t) + S

2
(t) − S

3
(t) + S

4
(t) − S

5
(t) . Among these sur-

vival functions, S1(t) and S4(t) are practically meaningful 
as they are the relapse-free, chronic GVHD free survival 
and DFS, respectively. Other survival functions are not 
interpretable in real life but introduced here to find prob-
ability of being in one state. All these five survival func-
tions can be estimated by the Kaplan-Meier method.

To introduce inferences for CGRFS, we used the count-
ing process notations. Let Z be the censoring time. Sup-
pose that data of n patients are collected. The sample can 
be summarized as (Xik ,�ik) (i = 1, · · · , n; k = 1, · · · , 5) , 
where Xik = min(Tik ,Zi), �ik = I(Tik ≤ Zi) and I(•) 
is an indicator function which takes value 1 if the event 
happens, and 0 otherwise. Nik(t) indicates whether the 
ith patient experiences the kth composite endpoint at 
or prior to t, that is, Nik(t) = I(Xik ≤ t,�ik = 1) and let 
N̄k(t) = n

i=1Nik(t) . Also we defined the risk sets related 
to the five composite endpoints. Let Yik(t) = I(Xik ≥ t) 
and Ȳk =

∑n
i=1 Yik(t) . So Ȳ1(t) is number of patients alive 

in remission without experiencing CGVHD, i.e., in state 0 
at time t, and

Ȳ2(t) : Number of patients in states 0, 2, 4 at time t
Ȳ3(t) : Number of patients in states 0, 2 at time t
Ȳ4(t) : Number of patients in states 0, 2, 4, 6, 8 at 
time t
Ȳ5(t) : Number of patients in states 0, 2, 4, 6 at time t

Using the counting process notations, the Kaplan-Meier 
estimator of Sk(t) is given by

CGRFS, as a linear combination of five sur-
vival functions, can be subsequently estimated by 
Ĉ(t) = Ŝ1(t)+ Ŝ2(t)− Ŝ3(t)+ Ŝ4(t)− Ŝ5(t).

Ŝk(t) =
t∏

u≥0

[
1− dN̄k(u)

Ȳk(u)

]
, k = 1, · · · , 5.
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The hazard function of Tk is defined as 
�k(t) = lim�t→0 Pr(t ≤ Tk < t +�t|Tk ≥ t)/�t . Then 
we have the martingales

Define yk(t) = n−1 limn→∞ Ȳk(t),∀k = 1, · · · , 5 . Based 
on the facts in Andersen et al. [6] and Pepe [7], for large 
samples,

where

Based on the martingale central limit theorem, ∀t , √
n
[
Ĉ(t)− C(t)

]
 converges to a mean-zero normal dis-

tribution with variance σ(t)2 = E[Wi(t)
2] . It should be 

noted that the martingale processes, Mi1(t), · · · ,Mi5(t) , 
are not orthogonal because by definition the event count-

ing processes may involve the same events. Consequently 
the covariance should be considered if one wishes to con-
sider the martingale variation process. Here we alterna-
tively consider a moment estimator of the variance, 
σ̂ (t)2 = n−1

∑n
i=1[Ŵi(t)

2] , where

Mik (t) = Nik (t) − ∫
t

0

Yik (u)�k (u)du, i = 1,⋯ , n; k = 1,⋯ , 5.

√
n
[
Ĉ(t)− C(t)

]
≈ 1√

n

n∑

i=1

Wi(t),

Wi(t) = − S
1
(t)∫

t

0

dMi1(u)

y
1
(u)

− S
2
(t)∫

t

0

dMi2(u)

y
2
(u)

+ S
3
(t)∫

t

0

dMi3(u)

y
3
(u)

− St (t)∫
t

0

dMi4(u)

y
4
(u)

+ S5(t)∫
t

0

dMi5(u)

y
5
(u)

�Wi(t) =n

[
−�S

1
(t)∫

t

0

�Mi1(u)

Ȳ
1
(u)

− �S
2
(t)∫

t

0

�Mi2(u)

Ȳ
2
(u)

+ �S
3
(t)∫

t

0

�Mi3(u)

Ȳ
3
(u)

−�St (t)
�Mi4(u)

Ȳ
4
(u)

+ �S
5
(t)∫

t

0

�Mi5(u)

Ȳ
5
(u)

]

and

The above moment variance estimator is similar to the 
variance estimation method provided by Klein, Kei-
ding et  al. [8] for current LFS. A linear (1− α)100% 
confidence interval for CGRFS can be calculated by 
Ĉ ± n−1/2z1−α/2 σ̂ (t) . Log-log transformation is rou-
tinely used for interval estimation of a survival prob-
ability. A (1− α)100% log-log transformed confidence 
interval for C(t) is given by

A confidence band for CGRFS
In survival analysis the simulation approach has been com-
monly used to find the confidence band of a survival func-
tion [16, 17]. ∀i, k , let Gik(t) be a standard normal random 
variate. The martingale process 

∫ t
0 dMik(u) has the same 

distribution as 
∫ t
0 Gik(u)dNik(u) . Based on this knowledge, 

we consider the process W̃ (t) that

Let Q(t) =
∣∣∣
√
n
{
Ĉ(t)− C(t)

}∣∣∣ , then Q(t) can be approx-
imated by W̃ (t) . To construct a band for C(t) in an inter-
val [t1, t2] , one needs to find the critical value such that

To obtain a realized process, one can generate stand-
ard  normal random variates for Gik(t),∀i, k . Also plug 
in the Kaplan-Meier estimators for survival probabilities 
and Yk(t)/n to replace yk(t),

M̂ik(t) = Nik(t)−
∫ t

0

dNik(u)

Ȳk(u)
.

(1)
�
Ĉ(t)1∕� , Ĉ(t)�

�
with � = exp

⎛⎜⎜⎜⎝

n−1∕2z1−�∕2 �̂(t)

Ĉ(t) ln
�
Ĉ(t)

�
⎞⎟⎟⎟⎠
.

(2)
W̃ (t) = 1√

n

n∑

i=1

[
−S1(t)

∫ t

0

Gi1(u)dNi1(u)

y1(u)
− S2(t)

∫ t

0

Gi2(u)dNi2(u)

y2(u)

+ S3(t)

∫ t

0

Gi3(u)dNi3(u)

y3(u)
− St(t)

∫ t

0

Gi4(u)dNi4(u)

y4(u)
+ S5(t)

∫ t

0

Gi5(u)dNi5(u)

y5(u)

]
.

Pr

(
sup

t∈[t1,t2]
|Q(t)/σ (t)| > qα

)
= α.

(3)

̂̃
W (t) =

√
n

n∑

i=1

[
−Ŝ1(t)

∫ t

0

Gi1(u)dNi1(u)

Ȳ1(u)
− Ŝ2(t)

∫ t

0

Gi2(u)dNi2(u)

Ȳ2(u)

+ Ŝ3(t)

∫ t

0

Gi3(u)dNi3(u)

Ȳ3(u)
− Ŝt(t)

∫ t

0

Gi4(u)dNi4(u)

Ȳ4(u)
+ Ŝ5(t)

∫ t

0

Gi5(u)dNi5(u)

Ȳ5(u)

]
.
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Given B realized processes, let ̂̃Wb(t) denote the bth real-
ized process. The critical value is obtained by finding the 
(1− α)100th percentile of the supremum values, which is 
given by

where I(•) is the indicator function. A confidence band 
for C(t) is given by Ĉ(t)± n−1/2q̃ασ̂ (t),∀t ∈ [t1, t2].

A confidence band for differences in CGRFS between two 
independent samples
The method described in Section  2.2 can be extended to 
construct a confidence band for differences in CGRFS 
between two independent samples. Such a band could tell in 
what time range that CGRFS’s of two groups differ. This type 
of band is related to the hypotheses H0 : C1(t)− C2(t) = 0 
versus Ha : C1(t)− C2(t) �= 0, ∀t ∈ [t1, t2] , where Ci(t) is 
CGRFS for sample i. A supremum test for the hypotheses 
can be developed.

Let Ĉ1(t) and Ĉ2(t) be the estimated CGRFS of sam-
ples 1 and 2, respectively. Let the processes described in 
Eq. (2) for samples 1 and 2 denoted by W̃ (1)(t) and 
W̃ (2)(t) , respectively. Under the null hypothesis, asymp-
totically 

√
n{C1(t)− C2(t)} has the same distribution as 

W̃ (1)(t)− W̃ (2)(t) . To obtain a standardized realized 
process, we need to estimate the standard error for √
n
�
C
1
(t) − C

2
(t)

� , ŜE(t) =
√
�̂
1
(t)2 + �̂

2
(t)2 , where �̂i(t)2(i = 1, 2) 

is the estimated variances for sample i. A standardized 
realized process is defined as Û (t) =

{
̂̃
W

(1)

(t) −
̂̃
W

(2)

(t)

}
∕ŜE(t) . 

We can generate B realized processes

The critical value for the band can be obtained by finding 
the (1− α)100th percentile among B supremum values,

The (1− α)100% confidence band for C1(t)− C2(t) is 
given by Ĉ1(t)− Ĉ2(t)± n−1/2g̃α ŜE(t).

For the supremum test, we evaluate the supremum for 
the sample data,

The test p-value is to the probability of observing K̂  or 
more extreme values in the sampling distribution of 
supt∈[t1,t2]

∣∣∣Û(t)
∣∣∣ . The p-value can be obtained by finding 

B−1
B∑

b=1

I

(
sup

t∈[t1,t2]

∣∣∣∣
̂̃
Wb(t)/σ̂ (t)

∣∣∣∣ > q̃α

)
= α,

Ûb(t) =
{
̂̃
W

(1)

b (t)− ̂̃
W

(2)

b (t)

}
/ŜE(t), b = 1, · · · ,B.

B−1
B∑

b=1

I

(
sup

t∈[t1,t2]

∣∣∣Ûb(t)
∣∣∣ > g̃α

)
= α.

K̂ = sup
t∈[t1,t2]

∣∣∣
√
n
{
Ĉ1(t)− Ĉ2(t)

}
/ŜE(t)

∣∣∣.

the proportion of the supremum values higher or equal 
to K̂ ,

In a supremum test, one should determine the time inter-
val [t1, t2] in which survival functions of two samples are 
compared. If the goal is to compare survival functions 
over the entire study period, one may set 
t1 = max

(
t
(1)
min, t

(2)
min

)
 where t(1)min and t(2)min are the smallest 

event times in samples 1 and 2, respectively. If a large 
number of subjects remain under study even after the 
largest event time, one may set t2 to be the largest event 
time in two samples.

The real life example
The study cohort consisted of 422 patients receiving an allo-
geneic transplant at a single institution in 2010 to 2015. The 
median age was 44 years (range 18 - 77). 56% of patients 
were male. Matched related, matched unrelated and hap-
loidentical donors were used in 125, 165 and 132 patients, 
respectively. The majority had low or intermediate disease 
risk index (DRI) (N=291, 69%). About half had hematopoi-
etic cell transplant comorbidity index (HCT-CI) 3 or higher 
(N=194, 46%). Among 264 survivors the median follow-up 
time was 36 months (range 11-78 months).

We depicted four survival curves in Fig.  2. The 1-year 
OS, DFS, conventional GRFS and CGRFS (Table  1) were 
0.78 (95% CI 0.74-0.82), 0.68 (95% CI 0.64-0.72), 0.33 
(95% CI 0.29-0.38) and 0.45 (95% CI 0.40-0.50), respec-
tively. The 1-year GRFS of this cohort was comparable to 
the rate reported by Holtan et al. [1] based on a cohort of 
907 patients. As shown in Fig. 2, the GRFS curve dropped 
rapidly within 1 year, followed by a slow decrease in 1 to 
3 years, and then the curve became flattened after 3 years. 
Since majority of events for GRFS occurred within one year, 
this function is only good for assessing the short-term out-
come. At 1 year, the CGRFS estimate was about 0.12 higher 
than the GRFS estimate and the difference became greater 
afterwards. Two reasons explain the difference. First, defi-
nition of CGRFS does not involve acute GVHD event. Sec-
ond, a good proportion of chronic GVHD conditions were 
resolved. At 3 years, OS, DFS, GRFS and CGRFS estimates 
were 0.61 (95% CI 0.55-0.66), 0.54 (95% CI 0.49-0.59), 0.23 
(95%  CI 0.18-0.27) and 0.47 (95% CI 0.42-0.52), respec-
tively. CGRFS and DFS estimates were very different at 1 
year but became similar at 3 years, indicating that a large 
proportion of chronic GVHD conditions were resolved.

The CGRFS curve together with its 95% confidence 
interval were depicted in Fig. 3. The log-log transforma-
tion was employed for interval estimation. The confidence 

p = B−1
n∑

b=1

I

(
sup

t∈[t1,t2]

∣∣∣Ûb(t)
∣∣∣ ≥ K̂

)
.
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Fig. 2  OS, CGRFS and conventional GRFS curves

Table 1  Estimates of survival probabilities and 95% confidence intervals at different time points

OS DFS GRFS CGRFS

Time Estimate 95% CI Estimate 95% CI Estimate 95% Estimate 95%

1 year 0.78 (0.74, 0.82) 0.68 (0.64, 0.72) 0.33 (0.29, 0.38) 0.45 (0.40, 0.50)

2 years 0.69 (0.64, 0.73) 0.60 (0.55, 0.64) 0.26 (0.22, 0.30) 0.46 (0.41, 0.51)

3 years 0.61 (0.55, 0.66) 0.54 (0.49, 0.59) 0.23 (0.18, 0.27) 0.47 (0.42, 0.52)

4 years 0.59 (0.53, 0.64) 0.52 (0.47, 0.57) 0.22 (0.18, 0.26) 0.49 (0.43, 0.54)

Fig. 3  The CGRFS curve together with the 95% confidence interval
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interval was calculated by the formula given in Eq. (1). We 
also evaluated the confidence interval for DFS (not shown 
in the paper). The confidence interval for CGRFS is nar-
rower than that of DFS within 1 year but the precision lev-
els for CGRFS and DFS become comparable afterwards.

Though we focused on the probabilities of being in 
states 0, 4 and 8 (alive free of chronic GVHD) in Fig. 1, it 
is not challenging to find the probabilities of other states. 
According to the composite endpoints and survival prob-
abilities explained in Section  2.1, we can identify that 
S3(t)− S1(t) and S5(t)− S2(t) yield the probabilities of 
staying in state 2 and state 6, respectively. Note that states 
2 and 6 relate to survival under chronic GVHD condition. 
Regarding probabilities of state 1, we can see that death/
relapse in remission and onset of first chronic GVHD 
are two competing risks. Therefore, the probability of 
state 1 is the cumulative incidence function in the com-
peting risks context and can be estimated by the Aalen-
Johansen estimator. Probabilities of other death/relapse 
states can all be recognized as cumulative incidence func-
tions under competing risks settings. In summary, for 
i ∈ (1, 3, 5, 7, 9), Pr(State i) = P0i(0, t) = ∫ t

0
P0(i−1)(0,u−)�(i−1)i(u)du  . 

These functions can be estimated by the Aalen-Johansen 
estimator. In Fig. 4 we depicted the probabilities of being 
in states 1 to 8. We can see from this figure that very small 

proportions of patients stayed in states 5 and 7, indicat-
ing that patients with resolved chronic GVHD had low 
chance of experiencing failure events. Note that no one 
died while alive with  resolved second chronic GVHD. 
Therefore, zero percent of patients stayed in state 9.

As shown in Fig.  4, 28% of patients had entered state 
2 (first chronic GVHD) within one year. At 1 year, 23%, 
3% and 2% of patients were staying in states 2, 3 (death/
relapse in first chronic GVHD) and 4 (resolution of first 
chronic GVHD), respectively. These numbers indicate 
that a high proportion of patients developed chronic 
GVHD within one year of transplantation. In some 
patients, the chronic GVHD condition was resolved 
very soon as 2% became GVHD free by 1 year, while 
3% died or relapsed by 1 year. As time went by, relative 
more patients resolved their GVHD condition rather 
than experienced failure event. At 2 years, 32% patients 
had developed initial chronic GVHD and entered state 
2. Among them, 7% died or relapsed while 13% resolved 
chronic GVHD condition and transited to state 4. Only 
12% were alive with GVHD condition. At 2 years, in 
patients with resolved GVHD, a small proportion of 
them (1.5%) experienced second episode of chronic 
GVHD, while the majority (11.5%) remained relapse-free 
and GVHD-free.

Fig. 4  Estimated probabilities that a patient is in different states after transplant
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Association of demographics and clinical charac-
teristics with CGRFS was evaluated by the supremum 
test described in Section  2.3. We chose to conduct the 
supremum test in the time interval [t∗, 4] years, where t∗ 
is the larger value between two smallest event times of 
two samples. Only a few CGRFS events occurred after 4 
years. Therefore we truncated at 4 years to avoid the high 
variability at the tails of CGRFS curves. We evaluated 
the following factors: age (<55, ≥55), gender, Dana-Far-
ber risk index (DRI) (low/intermediate, high/very high), 
HCT-CI (0-2, ≥3), donor type, stem cell source (bone 
marrow, PBSC), diagnosis, conditioning intensity, CMV 
status, and year of transplantation (2010-2012, 2013-
2015). Based on the supremum test results, only DRI had 
significant effect on CGRFS ( P < 0.01 ). Compared to the 
high or very high risk in DRI, patients with low or inter-
mediate risk had significantly higher chance to stay in 
leukemia and chronic GVHD free status (Fig. 5).

Other outcomes can be generated from the multistate 
model in Fig. 1. For example, Pepe [7] mentioned that the 
prevalence of chronic GVHD in leukemia-free patients 
provides a measure of quality of life. Based on the states 
in Fig. 1, this prevalence is given by

As another example, it is interesting to examine whether 
the chance of failure would be higher when a chronic 
GVHD is resolved in a patient compared to one staying 
in the initial remission state. To answer this question 
and given that we are interested in recovery from the 
first chronic GVHD only, we can consider the following 
function,

(4)
Pr(State 2)+ Pr(State 6)

Pr(DFS)
.

(5)
Pr(State 5)

Pr(State 4)
− Pr(State 1)

Pr(State 0)
.

Fig. 5  a CGRFS curves in DRI subgroups. b The 95% confidence band for difference in CGRFS between DRI subgroups
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Based on our clarification on the probabilities of all states 
given in this section, it is straightforward to estimate the 
functions in Eqs. 4 and 5. The bootstrap method can be 
used for interval estimation.

Discussion
Pepe [7] initially discussed the model-free approach for 
estimating probability of chronic GVHD. CGRFS was 
introduced to accommodate a more general context 
including two episodes of chronic GVHD. It reflects 
both onset and resolution of initial and recurred chronic 
GVHD. A CGRFS curve is a useful supplement to the 
conventional OS, DFS and GRFS curves. For DFS, a 
patient is alive without relapse but may still suffer from 
chronic GVHD. Different from DFS, CGRFS shows the 
probability of staying in a better health status and is a 
meaningful measure of good quality of life. In the exam-
ple, we explained how to estimate the probabilities of 
all states. Based on these results, we will be able to find 
the probabilities of survival with chronic GVHD (sum 
of probabilities of states 2 and 6). Suppose that we con-
sider CGRFS as the perfect health condition and assign 
the utility value 1. If a utility for survival with chronic 
GVHD is provided, the quality-adjusted lifetime can be 
evaluated. This quantity will be another tool for outcome 
assessment.

In this paper we presented the inferences for CGRFS. 
Using the model-free approach, CGRFS can be conveni-
ently estimated by a linear combination of Kaplan-Meier 
estimators of five survival functions. Computation can 
be done by invoking the build-in functions in statistical 
software and performing basic data manipulation. More 
specifically, one can use a build-in function, such as the 
LIFETEST procedure in SAS, to compute Kaplan-Meier 
estimates of relevant survival functions. The next step is 
to merge the survival probability estimates by time, and 
then evaluate the linear combination. 

Suppose that there exists only one episode of chronic 
GVHD. Such a setting is described by states 0 to 5 only, 
which cover the states related to the first chronic GVHD, 
and CGRFS reduces to S0(t)+ S3(t)− S2(t) . The inferen-
tial methods provided in Section 2 can be simplified by 
removing terms related to S4(t) and S5(t).

Relapse in CGRFS is treated as a terminal event. If 
relapse would rather be considered as a curable condi-
tion, only minor changes are needed for the underlying 
multistate model. First, death becomes the only termi-
nal event in states 1, 3, 5, 7 and 9 (states of the terminal 
event). Second, occurrence of either chronic GVHD or 
relapse triggers entrance to state 2 and state 6 (states of 
the diseases). Third, one in state 2 transits to state 4, as 
well as transition from state 6 to 8, where states 6 and 
8 indicate disease resolutions, only if the person is free 

of chronic GVHD and relapse. Estimation methods dis-
cussed in the paper are still applicable for CGFRS based 
on such a multistate model.

For studies focus on post-GVHD performances, e.g., 
a study to evaluate efficacy of different treatments for 
chronic GVHD, the multistate model can be revised by 
removing states 0 and 1 (initial remission and death/
relapse in remission). Under this reduced multistate 
model, the time origin becomes onset of chronic GVHD. 
Sum of probabilities of states 4 and 8 (survival without 
chronic GVHD) can be used as the function for outcome 
assessment. One can follow the methods presented in 
Section 2 to develop relevant inferences.
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