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Abstract 

Background:  This study illustrates the use of logistic regression and machine learning methods, specifically random 
forest models, in health services research by analyzing outcomes for a cohort of patients with concomitant peripheral 
artery disease and diabetes mellitus.

Methods:  Cohort study using fee-for-service Medicare beneficiaries in 2015 who were newly diagnosed with periph-
eral artery disease and diabetes mellitus. Exposure variables include whether patients received preventive measures 
in the 6 months following their index date: HbA1c test, foot exam, or vascular imaging study. Outcomes include any 
reintervention, lower extremity amputation, and death. We fit both logistic regression models as well as random forest 
models.

Results:  There were 88,898 fee-for-service Medicare beneficiaries diagnosed with peripheral artery disease and 
diabetes mellitus in our cohort. The rate of preventative treatments in the first six months following diagnosis were 
52% (n = 45,971) with foot exams, 43% (n = 38,393) had vascular imaging, and 50% (n = 44,181) had an HbA1c test. 
The directionality of the influence for all covariates considered matched those results found with the random for-
est and logistic regression models. The most predictive covariate in each approach differs as determined by the 
t-statistics from logistic regression and variable importance (VI) in the random forest model. For amputation we see 
age 85 + (t = 53.17) urban-residing (VI = 83.42), and for death (t = 65.84, VI = 88.76) and reintervention (t = 34.40, 
VI = 81.22) both models indicate age is most predictive.

Conclusions:  The use of random forest models to analyze data and provide predictions for patients holds great 
potential in identifying modifiable patient-level and health-system factors and cohorts for increased surveillance and 
intervention to improve outcomes for patients. Random forests are incredibly high performing models with difficult 
interpretation most ideally suited for times when accurate prediction is most desirable and can be used in tandem 
with more common approaches to provide a more thorough analysis of observational data.

Keywords:  Random forest, machine learning, critical limb ischemia, diabetes, amputation, reintervention

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  Philip.P.Goodney@hitchcock.org

1 The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School 
of Medicine at Dartmouth, Hanover, NH, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01774-8&domain=pdf


Page 2 of 10Austin et al. BMC Medical Research Methodology          (2022) 22:300 

Background
Machine learning algorithms, such as random forest (RF) 
models, are an ensemble regression tree method com-
monly used for prediction and measuring variable impor-
tance in predicting an outcome of interest [1]. Ensemble 
learning methods use multiple learning algorithms, in 
this case the RF consists of multiple regression trees, to 
obtain better predictive performance than an individual 
algorithm. Machine learning algorithms have long been 
applied in computational research including data min-
ing, artificial intelligence, and genomics [2–6]. In recent 
years, machine learning has been championed for use in 
health care research [7–9]. However, due to the lack of 
detailed understanding of machine learning algorithms 
among many healthcare workers, this method has been 
warily utilized among physician investigators where prac-
tical application and interpretability for clinical decision-
making are essential.

Logistic regression versus machine learning
The application of traditional regression approaches such 
as logistic regression as compared to machine learning 
approaches has been widely studied with no unquali-
fied recommendation of which approach is best suited 
to analyzing data and making predictions [10, 11]. While 
the interpretability of logistic regression is considered 
an important feature, the predictive power of RF algo-
rithms sway some in favor of its application. Multivari-
able regression approaches are frequently employed to 
produce prediction models. There is a growing consen-
sus that machine learning and the advent of big data in 
health care offer new opportunities for understanding 
predictors of disease and treatment outcomes in medi-
cine. Recent literature offers several new studies high-
lighting the application of RF in health services research, 
such as identifying multi-drug resistant tuberculosis (TB) 
versus drug-sensitive TB, predicting SARS COVID-19 
infection, and predicting patients most likely to require 
dental implants. However, no studies to date have applied 
machine learning methods to examine predictors associ-
ated with outcomes for patients with peripheral arterial 
disease (PAD).

To fully understand the data at hand and how the end 
results of the analysis will be utilized, both approaches 
have their role in the comprehensive analysis of the data, 
particularly for prediction and understanding previously 
latent factors influencing outcomes. In this study we 
illustrate how the application of traditional generalized 
linear regression models and RF models can elucidate 
the role of sociodemographic and clinical covariates in 
predicting outcomes for patients with peripheral arte-
rial disease and diabetes mellitus. This study is signifi-
cant from past studies in that it leverages novel real world 

data sources, machine learning methods and multivari-
ate logistic regression to provide complementary infor-
mation for physicians caring for patients with PAD and 
diabetes.

Using research on peripheral artery disease to illustrate 
identification of risk factors
Peripheral artery disease (PAD) results from a partial or 
complete buildup of atherosclerotic plaque in arteries car-
rying blood to the brain, limbs, and/or organs [12]. PAD 
occurs at the highest rates in patients with risk factors 
such as diabetes mellitus (DM) [12, 13]. where patients 
with both are at higher risk of amputation than those 
with either condition alone [14]. Furthermore, disparities 
in amputation rates have been observed among patients 
with concomitant lower extremity PAD and diabetes 
across race and geographic region [15–17]. Integrated 
management strategies for diabetes and PAD consist of 
preventative treatments such as hemoglobin A1c (HbA1c) 
testing, diabetic foot care, and vascular assessment with 
imaging. Several studies have shown that these interven-
tions reduce amputation rates in patients with PAD and 
DM [18–25]. Effective implementation of the recom-
mended integrated management strategies requires iden-
tifying the observable and modifiable risk factors which 
are most predictive of outcomes such as amputation and 
death in this population for targeted delivery.

Goal of this manuscript
In this methodologic review, we use both traditional gen-
eralized linear regression models and practical approach 
to RF modeling to analyze the data and provide informa-
tion on which sociodemographic and clinical covariates 
are most predictive of negative outcomes for patients 
with PAD and DM. By utilizing this approach we hope 
to provide insight into what observable factors influence 
the outcomes in this cohort of patients with PAD and 
DM. More importantly, we hope to provide a framework 
which outlines a more comprehensive analytic approach 
to applying traditional regression-based methods in tan-
dem with interpretable machine learning techniques in 
order to provide the clearest insights in to risk adjust-
ment for observational cardiovascular datasets.

Methods
Data sources and study population
We conducted an observational cohort study using a 
complete national sample of fee-for-service (FFS) Medi-
care beneficiaries in 2015 and 2016. We included all FFS 
patients who were newly diagnosed with concomitant 
peripheral artery disease and diabetes mellitus in 2015 
and were United States residents between the ages of 65 
and 95 at the time of diagnosis.
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Their first claim in Medicare (the Physician Services/
Carrier [Part B], Outpatient, or the Medicare Provider 
Analysis and Review [MedPAR] files) containing their 
first annual diabetes related International Classification 
of Diseases Ninth and Tenth Revisions (ICD-9 or ICD-
10) code was used to define their index date. We also 
required patients to be FFS for 1  year following their 
index date to ensure we could observe their outcomes 
during the entire follow-up period. Additionally, patients 
had to have a diagnosis of an ulcer during the first 
6 months of the index year so that we could ensure the 
ulcer occurred post diagnosis but before the outcomes of 
interest. Finally, patients had to be outcome-free (alive, 
no reinterventions or amputations) for at least 6 months 
following their index date so that the windows for expo-
sure and outcome observation were distinct.

Covariates
We gathered baseline health characteristics from the 
Medicare claims data, including patient-level comorbidi-
ties as determined by the individual disease indicators 
comprising the Charlson comorbidity index [26, 27]. We 
used the Medicare Master Beneficiary Summary File 
(MBSF) to determine each patient’s sex, race, age at diag-
nosis, Medicare-Medicaid dual-eligibility status, and used 
their ZIP code to determine whether they were rural or 
urban residing [28]. Our main clinical exposure variables 
include whether patients received at least one or more of 
the following integrated measures in the 6 months follow-
ing their index date: HbA1c test, foot exam, or vascular 
imaging study.

Outcome measures
We identified outcomes for the cohort in the 6  months 
following the exposure window and excluded any patients 
that had outcome events during the exposure window. 
Outcomes studied include any lower extremity amputa-
tion (both minor and major), any reintervention, and 
death. Death was determined from the Medicare MBSF 
while reintervention and amputation were determined 
using Current Procedure Terminology codes in the Part 
B and Outpatient files.

Statistical analysis
We applied traditional statistical methods to describe the 
demographic and health characteristics of the cohort, 
including mean and standard deviations for continu-
ous variables including age and comorbidity count, and 
counts and percentages for categorical variables (sex, 
race, exposures, Medicare-Medicaid dual-eligibility sta-
tus, urban/rural indicator, and outcomes).

Logistic regression analysis
We fit multivariable logistic regression models to assess 
statistical association between the outcomes of inter-
est (amputation, death, and reintervention) and patient 
characteristics including demographics and comorbidi-
ties. Model-estimated odds ratios (ORs) and p-values 
with a significance level of 0.05 are presented. We com-
pared the relative importance of each predictor in the 
logistic regression models using the absolute value of 
the t-statistic for each model parameter. In traditional 
logistic regression, the t-statistic is the parameter esti-
mate divided by the standard error; as the significance 
of the parameter estimate is based on the t distribution, 
often quantified by the p-value, the larger the t-statistic 
the more significant the predictor. The goodness-of-
fit for each model was determined using the McFadden 
pseudo-R2  [29]. A McFadden pseudo-R2value between 
0.2 and 0.4 represents excellent fit, where values close to 
0 represents weak fit [30].

Random forest (RF) modeling
Random forest (RF) models are collections of prediction 
trees, wherein many trees form a “forest” which can be 
used to provide a large number of trees to divide data 
elements [1, 10, 31–34]. A prediction tree is a non-linear 
approach to modeling complex data, which partitions the 
covariates into optimal splits until it achieves partitions 
allowing for the most homogenous subnodes.

How random forest models work
Random forest algorithms grow many prediction trees 
to create the forest. First, the algorithm selects a train-
ing set. In this analysis, we selected 2/3rds of the data, 
to fit each tree. The remaining 1/3rd of the data is used 
as a test set to calculate the out-of-bag (OOB) error, an 
unbiased estimate of the classification error as trees are 
added to the forest with each iteration. That is, we used 
the estimated model to predict the outcome for those 
observations in the test set (those not used to estimate 
the model) and compared it to the observed truth. The 
OOB error is then the proportion of the test set that the 
model predicts incorrectly. We used the randomForest 
library [35] in R to fit the RF algorithm to our data. See 
Additional file 1: Appendix Figs. 1 and 2 for a depiction 
of the algorithm, it’s associated parameters, and applica-
tion in prediction.

Rare outcomes in RF modeling
A consideration in using a RF model is the use of an 
imbalanced classification dataset. That is, the observed 
outcomes in our dataset are rare events, thus the 
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non-events are dominant in the dataset. If we fit the 
algorithm to the dataset as is, typically it would predict 
all observations in the test sample to have non-events, 
making the classification error appear small (equivalent 
to the event rate) and the resulting algorithm would 
appear to fit the data well while in reality, it would not 
identify any useful information in predicting events. 
With  imbalanced datasets, the RF algorithm does not 
ascertain the necessary information about the rare 
events to make an accurate  prediction. Hence, it is 
desirable to use RF algorithms with balanced data sets 
[36]. To fix the imbalance in the events, we performed a 
combination of oversampling (resampling patients with 
the event to balance the data) and under-sampling the 
non-events to obtain the same sample size as the origi-
nal cohort. Both techniques use a random sampling 
algorithm to select cases to comprise the final analytic 
cohorts with balanced numbers of outcome events and 
non-events [37, 38].

Variable importance in RF modeling
One key feature of RF models is their ability to produce 
a measure of variable importance. Variable importance 
in the RF models is estimated by examining how the 
prediction error increases when the data for each indi-
vidual covariate is permuted while all other covariates 
are left fixed. This approach was repeated for each tree 
grown in the forest and then averaged over all trees. 
The difference in the number of correctly predicted 
outcomes in the variable-permuted test data from the 
number of correctly predicted cases in the original test 
data gives the variable importance for the individual 
tree. The average of this difference over all the trees 
in the forest is the raw importance score for each vari-
able. This prediction error is calculated for each itera-
tion of the algorithm, for each tree generated, and 
normalized by the standard deviation then averaged 
over all trees [1, 35].

Variable effects in RF modeling
To describe how covariates influence the prediction 
ability of the random forest model, we use accumulated 
local effects (ALE) plots [39]. ALE plots describe how 
the covariates, commonly called features, influence the 
prediction in machine learning models, including RF 
models. For ALE plots, the cumulative effects of a given 
predictor value are calculated over a conditional distri-
bution to quantify how the effect of a predictor on a tar-
get variable/outcome varies with the predictor’s value. 
The basic interpretation of an ALE plot is, conditional 
on the  given value of a predictor, the relative effect of 
changing the feature on the prediction is the value given 
by the ALE plot, as all ALE plots are centered at zero 

(the sample means for the given predictor). Thus, the 
value for a given predictor on the ALE plot is inter-
preted as the difference from that covariate value to the 
sample mean prediction.

Comparison of logistic regression and RF approaches
To compare the results of the RF analysis to more conven-
tional regression-based methods, we iteratively estimated 
multivariable logistic regression analysis for each of the 
outcomes of interest on the training and test data in each 
iteration of the RF algorithm. As with the RF models, we 
controlled for age, sex, race, comorbidities, urban/rural 
indicator, Medicare-Medicaid dual eligibility status, and 
each of the exposures of interest (HbA1c, foot exam, and 
vascular imaging). We fit the model on the same over/
under sampled data used for the RF algorithm. We pro-
duced the prediction error rate of the estimated logistic 
regression model by predicting each outcome from the 
estimated probability for each model on all patients in the 
test set using a probability cutoff of 0.5.

We compared this to the prediction error rate for 
the same data using the RF methodology. We also 
compared the variable importance rankings of the 
covariates as determined by the two methods. This 
comparison emphasizes the importance of the multi-
pronged approach to analyzing the data for both asso-
ciations (regression) and predictive importance (RF) in 
a cohort such as this where areas for intervention are 
unclear.

All analyses were performed using SAS version 9.4 (Cary, 
NC) and R version 3.6.1 [40]. This study was approved 
by our Institutional Review Board, the Dartmouth-
Hitchcock Health Human Research Protection Program 
(STUDY00030829) with waiver of informed consent.

Results
Characteristics of the Cohort
From 2015, there were 88,898 FFS Medicare benefi-
ciaries diagnosed with concurrent PAD and diabetes 
with an ulcer in our cohort (Table  1). In the original 
cohort, before over/under sampling, 25% (n = 22,235) 
of patients were Medicare-Medicaid dual-eligible 
in the year of their diabetes diagnosis. The major-
ity of patients in the cohort were white (82%), female 
(53%), and urban residing (81%). The average age of 
the cohort was 76.6 years, with an average comorbid-
ity count of 1.73 using the Charlson comorbidity index. 
The rate of preventative treatments for these patients 
in the first six months following diagnosis were 52% 
(n = 45,971) with foot exams, 43% (n = 38,393) had 
vascular imaging, and 50% (n = 44,181) had an HbA1c 
test. Finally, the rate of outcomes among those in 
the original cohort included a mortality rate of 4.5% 
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(n = 3,977), a reintervention rate of 3.6% (n = 3,175), 
and an amputation rate of 1.6% (n = 1,407). The over/
under sampling balanced the cases and non-cases for 
each outcome with the final analytic cohorts for each 
outcome given in Table 1.

Logistics regression results
Variable effects and variation explained
We examined the association of the covariates with each 
of the outcomes using multivariable-adjusted logistic 
regression models (Table  2). We found for amputation 
all covariates were significant predictors. A patient being 
urban-residing had a protective effect against amputa-
tion (OR = 0.59; p-val < 0.001). The covariate with the 
largest odds of amputation is receipt of HbA1c testing 
(OR = 1.36; p-val < 0.001) followed closely by foot exam 
(OR = 1.16; p-val < 0.001). Vascular imaging decreases 
the odds of amputation (OR = 0.90; p < 0.001). Age is pro-
tective against amputation (for 85 + year olds vs. 65–69 
OR = 0.29; p-val < 0.001) with the likelihood of amputa-
tion decreasing as age decreases. Results were similar for 
reintervention and death.

The McFadden R2 = 0.071 indicating approximately 7% 
of the total variation in amputation risk is explained by 
the model, falling outside the 0.2–0.4 range represent-
ing excellent model fit. For reintervention, the McFadden 
R2 = 0.046, which signifies less than 5% of the observed 
variation is explained by the model. Finally, the McFad-
den R2 = 0.124 for death, which means the model for 

death explains almost double the variation as explained 
for amputation and over double than explained for rein-
tervention. Thus, the McFadden R2 values for each of 
the logistic regression models indicated that the chosen 
predictors did not explain a significant portion of the 
observed variance using these models.

Variable importance
Variable importance, as assessed by the absolute value of 
the t-statistic (Fig. 1a), tells us that age (85 + , t = -53.17), sex 
(t = -40.52), and urban/rural status (t = -31.33) are the most 
important predictors of amputation in the logistic regression 
model. While these factors were important, factors including 
dual eligibility status, receipt of a vascular image, and race are 
the least predictive of amputation. Similar findings for rein-
tervention and death outcomes are shown as well (Fig. 1a).

Random forest results
Variable importance
In Fig. 1b, we see the results of the variable importance cal-
culations from the RF estimation for each of the 3 outcomes. 
For the prediction of amputation in the cohort, the most 
important variable is whether they are rural- or urban-resid-
ing. We see the level of importance for the other covariates 
including age and sex follow closely behind. The first clinical 
variable, HbA1c testing, is the fourth most important vari-
able in the prediction of amputation followed by dual-eligi-
bility. As with our logistic regression models, similar results 
are shown for reintervention and death.

Table 1  Cohort characteristics for patients with a concomitant diagnosis of PAD and diabetes with an ulcer in 2015, overall and after 
over/under sampling each outcome (N = 88,898)

Characteristics Original Cohort Over/Under Sampled 
Amputation Cohort

Over/Under Sampled Death 
Cohort

Over/Under Sampled 
Reintervention Cohort

Mean/N StdDev/% Mean/N StdDev/% Mean/N StdDev/% Mean/N StdDev/%

Age in years
  65–69 22,981 26 30,615 34 17,346 20 26,677 30

  70–74 18,257 21 19,027 21 15,173 17 19,456 22

  75–79 15,405 17 14,556 16 13,975 16 15,355 17

  80–84 13,639 15 11,585 13 14,851 17 13,006 15

  85 +  18,616 21 13,115 15 27,553 31 14,404 16

Dual Eligible 22,235 25 23,440 26 26,287 30 22,371 25

White 73,125 82 71,669 81 73,812 83 69,908 79

Female 46,828 53 39,992 45 46,610 52 42,616 48

Foot exam 45,971 52 46,291 52 47,607 54 42,122 47

Vascular Image 38,393 43 38,089 43 41,946 47 40,594 46

HbA1c 44,181 50 48,853 55 35,303 40 47,797 54

Urban 72,157 81 67,921 76 71,880 81 70,376 79

Charlson Count 1.73 1.69 1.85 1.69 2.08 1.84 1.93 1.78

Death 3,977 4.5 44,495 50

Amputation 1,407 1.6 44,495 50

Reintervention 3,175 3.6 44,495 50
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Variable effects
In Fig. 2a, the ALE plot for amputation indicates that being 
rural-residing increases the likelihood of amputation com-
pared to the mean population, while being urban-resid-
ing decreases it. Similarly, as age (category) increases, the 
less likely amputation is to occur compared to the mean 

population. Females are less likely than the mean population 
to receive an amputation, as are those who are not dual-eli-
gible. Those not receiving an HbA1c test are also less likely 
than the mean population to receive an amputation.

For reintervention, certain differences were evident. 
The younger the patient, the more likely they are to 

Table 2  Logistic regression results for models fit on the over/under-sampled cohorts for each outcome

Covariate Amputation Death Reintervention

OR t-stat p-value OR t-stat p-value OR t-stat p-value

Foot Exam 1.16 10.49 < 0.001 1.01 0.74 0.457 0.73 -22.84 < 0.001

HbA1c 1.36 21.23 < 0.001 0.49 -47.56 < 0.001 1.29 17.90 < 0.001

Vascular Image 0.90 -7.66 < 0.001 1.54 28.89 < 0.001 1.18 11.55 < 0.001

Urban 0.59 -31.33 < 0.001 1.01 0.62 0.534 0.84 -10.43 < 0.001

Comorbidity Count 1.09 19.27 < 0.001 1.25 54.12 < 0.001 1.13 30.49 < 0.001

Dual Eligible 1.09 4.80 < 0.001 1.76 33.05 < 0.001 0.86 -9.05 < 0.001

White 0.84 -9.54 < 0.001 1.26 11.18 < 0.001 0.62 -25.99 < 0.001

Female 0.56 -40.52 < 0.001 0.80 -14.69 < 0.001 0.71 -24.59 < 0.001

Age in years
  65–69 (reference) (reference) (reference)

  70–74 0.62 -24.85 < 0.001 1.23 8.42 < 0.001 0.85 -8.60 < 0.001

  75–79 0.52 -31.36 < 0.001 1.63 19.67 < 0.001 0.77 -12.36 < 0.001

  80–84 0.44 -35.87 < 0.001 2.45 36.31 < 0.001 0.71 -15.20 < 0.001

  85 +  0.29 -53.17 < 0.001 4.42 65.84 < 0.001 0.46 -34.40 < 0.001

Fig. 1  Variable importance by outcome from (A) logistic regression models and (B) averaged over the 500 iterations of the RF algorithm
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have a reintervention compared to the mean popula-
tion. Patients who are non-white are more likely to have 
a reintervention than the mean population while white 
patients are less likely. Finally, for death, we see the older 
the patient is, the more likely they are to die. Receiving an 
HbA1c test, being dual-eligible, and male all increase the 
likelihood of death compared to the mean population. 
In Fig. 2b, we see the ALE plot for death as comorbidity 
count varies. We see the ALE plot crosses zero at approx-
imately 2, meaning those with 2 or fewer comorbidities 
are less likely to die than the general population and with 
those with greater than 2 comorbidities having a greater 
likelihood of death than the mean population.

Comparison of logistic regression and random forest 
approaches
Variable importance: RF models can help highlight hidden 
themes
Assessing variable importance of each model produced 
similar results from each approach. The top 3 variables 
for each outcome in each model are the same, except 
for death where the logistic regression model indicated 
comorbidity count as a highly significant predictor, and 
where this predictor is ranked least important in the 
RF model, and sex was included in its place in the RF 
model, following a close 4th in the logistic regression 

model. However, the variation in the variable importance 
measure in the RF models is noticeably less than in the 
logistic regression models. This indicates that the predic-
tive power of each variable according to the RF model is 
much closer, highlighting the necessity for comprehen-
sive analyses and importance of non-dominant subgroup 
analysis. For example, age (or at least 1 level of age in the 
logistic regression models) is the most significant predic-
tor (or the second most) in both models for amputation, 
death, and reintervention. Notably, age is not the most 
significant predictor for the RF model for amputation. 
The sensitivity of the approach was able to tease out a 
key difference in amputation rates for rural- and urban-
residing residence; the logistic regression model did iden-
tify this difference as well, following age and sex. This 
illustrates how the RF model can potentially tease out 
differences highlighting significant and non-dominant 
subpopulations for intervention or further study.

Variable effects: RF models and logistic regression often have 
similar effect sizes
For amputation, for the top 5 most predictive covariates 
determined in both techniques, we see exact concord-
ance in the directionality of the conclusions. For example, 
in the RF model, rurality increases the risk of amputation 
compared to the general population, while the logistic 

Fig. 2  Accumulated Local Effects (ALE) plots for the top 5 most predictive covariates in the RF model fit to amputation, hospitalization, and death. 
A Categorical ALE Plots. B Continuous ALE plot for Comorbidity Count for Death
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regression results show a ratio less than 1 for urban vs. 
rural indicating rurality decreases the odds of amputa-
tion compared to urban-residing population.For death 
and reintervention, we see similar concordance among 
the directionality of conclusions according to the logistic 
regression results and the ALE plots for the RF models.

Predictive capabilities: RF models often illustrate lower error 
rates
Finally, in Fig. 3, we see the average results of prediction 
on the test sample created in each iteration of the RF 
algorithm. The OOB error rate, on average, when predict-
ing amputation is 31%, while for the same test datasets is 
63% using the estimated logistic regression models. Simi-
larly, for reintervention the RF OOB error rate is 36% 
while for logistic regression it is 60%. For death, we see an 
OOB error rate of 30% while logistic regression has a pre-
diction error rate of 68% when predicting for test data, 
averaged over 500 iterations.

Discussion
In this study, we analyzed factors predicting amputa-
tion, death, and reintervention in a cohort of patients 
with peripheral artery disease and diabetes mellitus, and 
an ulcer using both a logistic regression approach and a 
random forest approach. In general, both approaches 
provided similar results. However, the RF approach 
illustrated differences in certain subgroups, highlighting 
significant and non-dominant subpopulations for inter-
vention or further study. Specifically, in the RF approach, 
we found patient age 65–69 was most predictive of 

amputation, as shown on the categorical ALE plots in 
Fig.  2, but whether the patient is rural- or urban-resid-
ing is the most predictive observed covariate (Fig.  1b). 
In other words, though urban/rural status is the most 
important predictor of amputation, and being rural leads 
to an increased risk of amputation compared to being 
urban, being in the youngest age group confers the larg-
est single increased risk of amputation. In the RF model, 
HbA1c testing and comorbidity count follow age in the 
most predictive covariates of death in this cohort, where 
the HbA1c test is given more often in those who die, a 
consequence of healthy patients not receiving monitoring 
as closely as those symptomatic patients, and the likeli-
hood of death increases with the patient’s comorbidities.

Using advanced statistical methods to complement 
common approaches
RF algorithms have a number of statistical and computa-
tional strengths. RFs are versatile in terms of the structure 
and types of data analyzed including both regression and 
classification approaches to estimation [35]. The algo-
rithms use of only a subset of features at a time allow it to 
process significantly faster than other machine learning 
algorithms and ultimately allows for rapid training and 
prediction across many trees. Additionally, unlike typical 
regression approaches including logistic regression, RFs 
are robust to outliers with their predictive power little 
influenced [41]. Finally, each tree in the RF has high vari-
ance and low bias. Averaging across many such trees to 
create the final RF model results in a final model with low 
bias and only moderate variance [42].

Fig. 3  Average prediction error rates for the random forest (RF) and logistic regression models. RF prediction error rate is the out-of-bag (OOB) error 
rate. Logistic regression test sample prediction error rate calculated using average error rate across 500 iterations
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While the relationship between the outcomes and the 
covariates given by the logistic regression results and 
the random forest models are similar in directionality, 
the RF results offer two key advantages to the regres-
sion approach. First, the RF approach offers a substantive 
and sensitive approach to identifying which covariates 
are most predictive and have the greatest importance 
in predicting the outcomes of interest. Second, the RF 
models offered increased predictive power over the clas-
sic logistic regression while using the same covariates. 
In fact, the prediction error rate was twice as high in 
logistic regression models than in the RF models. These 
two properties, when paired with the common inter-
pretability of the logistic regression approach, provide a 
framework for analyzing data in a population with clear 
magnitude of associations between the outcomes and 
covariates (regression) and the ability to deeply analyze 
which covariates are most predictive of the outcome and 
best suited for clinical consideration and/or intervention 
(RF). Potential extensions to the current analysis would 
be to include more clinical factors in the RF model to 
increase the predictability and more modifiable patient 
or care patterns to potentially prevent or delay negative 
outcomes for this cohort.

On the other hand, there are some limitations to using 
RF models. While RFs excel at classification, they do not 
predict beyond the range of the covariates in the train-
ing data. Additionally, RFs may overfit datasets that are 
particularly noisy, that is data with an abundance of 
unexplained variation. This is potentially problematic in 
healthcare research where we are limited by the informa-
tion in the Medicare claims data. The use of over/under 
sampling adds a layer of complexity and data manipula-
tion that many audiences may not be familiar or comfort-
able with. It overemphasizes cases (in the current study), 
stressing the influence of covariates that may ultimately 
impact a small portion of the true sample population. 
Finally, the lack of understanding of random forest plots 
among clinical audiences, may make interpretation and 
practical application in health care settings less likely. 
Thus, utilizing RF models in tandem with traditional 
regression approaches may best serve to establish the use 
of RF models in healthcare research while also improving 
the ability to predict potential outcomes and pathways 
for patients.

Conclusion
The use of RF models to analyze data and provide 
predictions for patients holds great potential in iden-
tifying modifiable patient-level and health-system 
factors and cohorts for increased surveillance and 
intervention to improve outcomes for patients. RFs are 

incredibly high performing models with difficult inter-
pretation most ideally suited for times when accurate 
prediction is most desirable and can be used in tandem 
with more typical methods and tools (ALE plots, logis-
tic regression) to provide a more thorough analysis of 
observational data.
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