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Abstract 

Background:  Availability of linked biomedical and social science data has risen dramatically in past decades, facilitat-
ing holistic and systems-based analyses. Among these, Bayesian networks have great potential to tackle complex 
interdisciplinary problems, because they can easily model inter-relations between variables. They work by encoding 
conditional independence relationships discovered via advanced inference algorithms. One challenge is dealing with 
missing data, ubiquitous in survey or biomedical datasets. Missing data is rarely addressed in an advanced way in 
Bayesian networks; the most common approach is to discard all samples containing missing measurements. This can 
lead to biased estimates. Here, we examine how Bayesian network structure learning can incorporate missing data.

Methods:  We use a simulation approach to compare a commonly used method in frequentist statistics, multiple 
imputation by chained equations (MICE), with one specific for Bayesian network learning, structural expectation-max-
imization (SEM). We simulate multiple incomplete categorical (discrete) data sets with different missingness mecha-
nisms, variable numbers, data amount, and missingness proportions. We evaluate performance of MICE and SEM in 
capturing network structure. We then apply SEM combined with community analysis to a real-world dataset of linked 
biomedical and social data to investigate associations between socio-demographic factors and multiple chronic 
conditions in the US elderly population.

Results:  We find that applying either method (MICE or SEM) provides better structure recovery than doing nothing, 
and SEM in general outperforms MICE. This finding is robust across missingness mechanisms, variable numbers, data 
amount and missingness proportions. We also find that imputed data from SEM is more accurate than from MICE. Our 
real-world application recovers known inter-relationships among socio-demographic factors and common multi-
morbidities. This network analysis also highlights potential areas of investigation, such as links between cancer and 
cognitive impairment and disconnect between self-assessed memory decline and standard cognitive impairment 
measurement.

Conclusion:  Our simulation results suggest taking advantage of the additional information provided by network 
structure during SEM improves the performance of Bayesian networks; this might be especially useful for social sci-
ence and other interdisciplinary analyses. Our case study show that comorbidities of different diseases interact with 
each other and are closely associated with socio-demographic factors.
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Background
Bayesian networks (BNs), first proposed by Pearl [1], are 
a flexible statistical tool for encoding probabilistic rela-
tionships with directed acyclic graphs (DAGs) [2]. BNs 
have a wide range of applications, including developing 
expert systems for predicting diseases [3], disclosing dif-
fusion of messages in social networks [4], reconstructing 
gene regulatory networks [5], and inferring neuronal net-
works [6] and ecological networks [7]. However, BNs are 
still only rarely applied to population health and social 
science questions. Relatedly, use of survey data for BN 
structure learning is limited.

Compared with other fields of study, for instance, 
experimental biological systems, missing data are more 
pervasive in observational and survey data. There are 
plentiful causes, including item missingness, e.g., unan-
swered questions in questionnaires, data entry errors, or 
subject missingness, e.g., patients dropping out in lon-
gitudinal research, or missing samples. Missing data not 
only reduce overall statistical power and precision, but 
can lead to biased inferences in subsequent data analy-
sis [8]. Taking a popular method of listwise deletion (e.g., 
undertaking analysis only on those complete cases with-
out any missing data) as an example, its statistical power 
and precision would be inevitably reduced because of the 
decreased sample size.

Based on the different processes leading to the missing-
ness, every missing data pattern can be generally classi-
fied into three categories - missing completely at random 
(MCAR), missing at random (MAR), and missing not at 
random (MNAR) [9]. This nomenclature is widely used in 
statistical data analysis and is also referred to as the miss-
ing data mechanisms. MCAR occurs if the missingness 
is unrelated to both unobserved and observed variables. 
Data are said to be MAR if the missingness is related to 
observed variables but not to any unobserved variables 
given the observed ones. MNAR is the most complicated 
because its missingness relates to both unobserved and 
observed variables [9]. These three patterns cause differ-
ent levels of risks of bias in data analysis. For instance, 
listwise deletion analysis in MAR and MNAR data would 
yield more biased estimates than MCAR [10].

Multiple imputation by chained equations (MICE) 
is a popular multiple imputation method used in bio-
medical, epidemiological and social science fields. It is 
designed to impute missing data values under the miss-
ing data assumption MAR [11, 12]. Compared to single 
imputation, multiple imputation methods are less biased 
because they take account of the uncertainty of the miss-
ing data by combining multiple predictions for each miss-
ing value. MICE uses a divide and conquer approach to 
replace missing values for all variables in the data set: it 
focuses on one variable at a time and makes use of other 

variables to predict the missing values in that focused 
variable. Figure 1 illustrates how MICE imputes missing 
values for a given incomplete data set. Firstly, it imputes 
all values by using univariate imputation methods (e.g., 
replace missing values by the median of a single variable) 
to create a starting point. Then it removes the imputed 
values from each variable in turn and creates a model 
(e.g., a linear regression model) using the complete sam-
ples. This model may or may not include all variables in 
the dataset. After that, it imputes the values in each vari-
able using this model and other values in the remaining 
variables. These steps are repeated until the data is com-
pleted. Then it subtracts this completed data from the 
starting point to get a difference matrix. To make this dif-
ference close to 0, the whole process is iterated, using the 
just completed data as a new starting point, until a pre-
defined threshold on the difference between the starting 
point and new completed data is met. Depending on the 
features of the focused variable, MICE employs differ-
ent multivariate regression models to predict the missing 
values (e.g., logistic regression for binary dependant vari-
ables). In epidemiology and clinical research, multiple 
imputation can enhance reliability of inferences based on 
data with values missing at random (MAR); however, the 
same procedures are not suitable for MNAR data, and 
thus further work is required to address MNAR data in a 
multiple imputation framework [8].

Learning BN structure from incomplete data is quite 
challenging. Depending on the missing data mecha-
nisms (e.g., MNAR or MAR), learning would be biased 
if we simply delete incomplete observations. However, 
while BNs can theoretically consider completion of the 
dataset, to do so for all missing values in all possible con-
figurations would increase computational time infeasibly 
(exponential increase per missing data point) [13].

The structural expectation-maximization (SEM) algo-
rithm makes BN structure learning from incomplete data 
computationally feasible by changing its search space to 
be over structures rather than parameters and structures. 
SEM iteratively  completes the data, then applies the 
standard structure learning procedures to the completed 
data [13]. Similar to the standard EM algorithm [14], 
SEM involves two steps - expectation (E-step) and maxi-
mization (M-step). Figure 2 shows the basic principle of 
SEM algorithm. Firstly, it considers a BN structure (e.g., 
an empty one) for the incomplete data. Then it applies 
the iterative two-step, alternating E-step and M-step. The 
E-step estimates the values of missing data by computing 
the expected statistics using the current network struc-
ture. The M-step maximizes the scoring function and 
updates the resulting network structure. This continues 
until convergence is met [15]. The framework of SEM was 
first proposed by Friedman [16]. His simulation results 
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Fig. 1  Schematic diagram of Multiple Imputation by Chained Equations approach. For a given incomplete dataset, MICE firstly imputes all missing 
values via univariate imputation methods. Then it removes the imputed values from variables one by one and creates a model by using the other 
complete samples. After that, it imputes missingness in each variable in turn using the created model and the remaining variables. These steps are 
repeated until the data is completed. It then subtracts this new completed data from the initial imputed values to get a difference matrix. The new 
completed data then becomes the starting point for the next iteration. The whole process is iterated until a pre-defined threshold on the difference 
between initial imputed and new completed data is met

Fig. 2  Schematic diagram of Structural Expectation-Maximization algorithm. SEM has two components: E-step and M-step. It considers a BN 
structure for the incomplete data at the very beginning. Then it applies the iterative two steps, alternating E-step and M-step. E-step estimates the 
values of missing data by computing the expected statistics using the current network structure. The M-step maximizes the scoring function and 
updates the resulting network structure. These two steps are repeated until convergence is met
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suggest that although there is a degradation of learning 
performance with an increased percentage of missing 
data, SEM shows promise for handling data involving 
missing values and hidden variables [16]. Friedman [15] 
later improved his work so that SEM is not limited to 
using scoring matrices like minimal description length 
(MDL) or Bayesian Information Criterion (BIC) that 
only compute the approximations to Bayesian posterior 
probability, enabling direct optimizations of the Bayesian 
posterior probability that incorporates prior information 
(e.g., Dirichlet priors) over network parameters into the 
learning procedures.

In this study, we evaluate methods for addressing 
incomplete data using a simulation framework. Simula-
tion provides a vital mechanism for understanding and 
evaluating the performance of approaches before apply-
ing them to real-world cases. Here we simulate multiple 
incomplete categorical data sets, including three different 
missing data mechanisms, various number of variables 
and amounts of missing data. We concentrate here on 
categorical, or discrete, data due to its ubiquity in popu-
lation health and social science data (e.g., categorical sur-
vey responses, presence or absence of disease). We then 
evaluate and compare the performance of MICE and 
SEM with each other and with the standard expedient of 
using only samples without missing data, by comparing 
their resulting network structures with the original net-
work structure.

We then apply the best working method (SEM, see 
Results) to a real-world health and social survey dataset 

to investigate concurrent chronic diseases in the US 
elderly population. Multimorbidity (the concurrence of 
two or more chronic diseases in an individual) places an 
enormous burden on individuals and health systems, and 
is expected to  grow more in importance as populations 
age [17–19]. Researchers have used a variety of methods 
to unpick the complexity of combinations of diseases, 
and identify clusters and risk factors [20, 21]. Among 
these, BNs have great potential to tackle such complex 
problems and can help us understand multimorbidity as 
a complex system of biosocial disadvantage. In our net-
work analysis, we investigate the interactions between 
presence and treatment of several chronic diseases, cog-
nition, and their associations with health behaviours and 
other factors including race, gender and socioeconomic 
status.

Methods
Overview of our simulation
Figure 3 shows an overview of our simulation approach. 
We compare the performance of MICE and SEM on 
incomplete categorical (discrete) data, and both against 
doing nothing (e.g., using only complete cases). The main 
steps are as follows:

1. Generate a random graph. This random graph is 
also referred to as the original structure in the final 
step for comparison.
2. Sample data points from the random graph to get 
the complete data.

Fig. 3  Flowchart of our simulation approach
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3. Introduce missing values to the complete data.
4. Learn the Bayesian network structure, either: (a) 
from all complete cases, (b) from the data set com-
pleted via MICE, or (c) using SEM.
5. Compare learned Bayesian network structures 
with the original structure.

We analysed networks with numbers of variables rang-
ing from 2 to 20. For each number of variables, we ana-
lysed a range of missing proportions from 0.1 to 0.6 at 
intervals of 0.1. Each variable number/missing propor-
tion was repeated 100 times. We completed the whole 
analysis for each of 1000, 5000 and 10,000 sampled data 
points.

Simulated data
Random networks and sampled data
We first generated a randomly connected network struc-
ture with the specified number of nodes (variables) 
using method Ide’s and Cozman’s Generating Multi-con-
nected DAGs (ic-dag) algorithm in the function random.
graph from R package bnlearn [22]. We set maximum in-
degree for any node at 3, and each node had 3 discrete 
levels. Various descriptive statistics of these random 
network structures are shown in Additional file  1; the 
networks had expected changes: increasing out-degrees, 
reduced density and clustering, and increased diameter 
with larger networks. We obtained conditional prob-
ability tables (CPTs) for each node by generating random 
vectors from the Dirichlet distribution using function 
rdirichlet from R package MCMpack [23]. The parameter 
α of Dirichlet distribution was 0.5 for nodes with par-
ents and 5 for nodes without parents. This provided our 
random parameterised BN. We then randomly sampled 
1000, 5000 or 10,000 data points from the parameterised 
BN to get our sampled data using the function rbn from 
R package bnlearn [22].

Missing data
For each missing data mechanism, we introduced differ-
ent amounts of missing data to the sampled data using 
the function ampute  from R package mice  [24]. This 
function requires a complete data set and specified miss-
ing patterns (i.e., the variable or variables that are missing 
in a given sample). We used the default missing pattern 
matrix for all simulations, in which the number of miss-
ing patterns is equal to the number of variables, and one 
for each variable is missing. We also used the default 
relative frequency vector for the missing patterns, so that 
each missing pattern has the same probability to occur. 
Thus, the probability of being missing is equal across var-
iables. The data is split into subsets, one for each missing 

pattern. Based on the probabilities of missingness, each 
case in each subset can be either complete or incomplete. 
Finally, the subsets are merged to generate the required 
incomplete data. The allocated probability for each value 
to be removed in each subset depends on the specified 
missing proportion and missing data mechanism [25]:

MCAR​ The missingness is generated by chance. 
Each value in the sampled data has the same prob-
ability to be incomplete and such probability is com-
puted once the missing proportion is specified [25].
MAR The probability of each value being incom-
plete is dependent on a weighted sum score calcu-
lated from values of other variables. We used the 
default weights matrix in our simulation, in which 
all variables except the missing one contribute to the 
weighted sum score [25].
MNAR Simulating MAR and MNAR data share 
most procedures during amputation. The only dif-
ference is that it is the value of the potential missing 
value that contributes to the probability of its own 
missingness [25].

Bayesian network structure learning
During the whole study, we used the same BN structure 
learning procedures to learn from data either before pro-
cessing or after. That is, procedures were all the same 
for methods “None”, “MICE” and “SEM” in Fig.  3: we 
used a score and search algorithm, using the BDe score 
[2] and the tabu search algorithm for searching the best 
network structure [26]. The imaginary sample size used 
by BDe was set equal to 1 (default value). A test for the 
impact of scoring function was performed by also assess-
ing structures learned using the BIC and BDs scores for 
one dataset configuration (MNAR data, 1000 data points, 
0.3 missingness; BDs imaginary sample size set to 1 as 
default; BIC also used default value for penalty coef-
ficient: log(number data points)*0.5). For “None” and 
“MICE”, we applied the tabu  function from R package 
bnlearn  [22]; for SEM the search was incorporated into 
the iterative steps as described below.

No imputation
We used the complete cases of simulated incomplete data 
for BN structure learning.

Structural EM
We applied the SEM algorithm to the incomplete 
data using the function structural.em  from R package 
bnlearn  [22]. We used the default imputation method 
(“parents”) in the E-step, which imputes missing data 
values based on their parents in the current network. We 
applied tabu search and BDe scoring matrix for structure 
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learning and the default method Maximum Likelihood 
parameter estimation (mle) for parameter learning in 
the M-step. The maximum number of iterations was 5 as 
default.

Multiple Imputation by Chained Equations
As all the variables in this study were categorical and 
unordered, we used the polytomous logistic regression 
model for prediction using the function mice from R 
package mice [24]. The number of iterations was 5 as 
default.

Evaluation of recovered network structures
To compare the learned BN structures with the original 
ones, we compared their skeletons using functions com-
pare and skeleton from R package bnlearn [22]. We com-
pared skeletons, which represent all links in the network 
as undirected links, to deal with variation of link direc-
tion due to different equivalence classes. We explored 
comparison of equivalence classes, but a single missing/
extra link could significantly change equivalence class, 
giving erroneous results for those dependencies accu-
rately recovered. For example, a link which was directed 
in the equivalence class of the simulated network could, 
due to a missing link elsewhere, be undirected in the 
equivalence class of the recovered network; this would 
result in not only recording one missing link but also 
an additional, incorrect, extra link. Comparison of the 
undirected skeletons resolved this issue. We measured 
the performance of each method by computing the pre-
cision and recall (sensitivity) based on their comparison 
results. Precision measures the level of a method making 
mistakes by adding false arcs to the network, while recall 
evaluates the sensitivity of a method to capturing positive 
arcs from the targets. Their equations are as follows:

where True Positive represents finding arcs present in the 
original structure, False Positive represents finding arcs 
that are not in the original structure, and False Negative 
represents lack of an arc that is present in the original 
structure (Fig. 4).

We divided the number of variables into 6 groups for 
analysis: having number of variables 2-5, 6-8, 9-11, 12-14, 
15-17 and 18-20. For each group with each missing pro-
portion in each sampled data amount, we performed 
a one-way ANOVA to test whether there were any sta-
tistically significant differences between the means of 
the three methods. We applied a Bonferroni correction 
to correct the resulting p-values in these multiple com-
parisons. If there were significant Bonferonni-corrected 
results (p < 0.05) in a variable group/missing proportion 
combination, we performed the honestly significant dif-
ference (Tukey’s HSD) test on the pairwise compari-
sons between the three methods. For both precision and 
recall, the same procedures were applied.

Evaluation of imputed data values
We explored the accuracy of MICE’s and SEM’s impu-
tation, using a subset of the simulations. We extracted 
the completed datasets from the last iteration of SEM 
and MICE for each missing mechansim (MCAR, MAR, 
MNAR) for 1000 data points at missing proportion 0.3, 
using 10 datasets each of 10 and 20 variables. We cal-
culated the Hamming distance between the imputed 
datasets from the original (no missing values) simulated 

(1)Precision =
True Positive

True Positive + False Positive

(2)Recall =
True Positive

True Positive + False Negative

Fig. 4  A toy example comparison across four skeleton networks (from left to right): original network, None (complete cases), SEM, and MICE. The 
original networks work as the reference network for comparison. Blue arcs indicate the arcs that are missed by methods but exist in the original 
network ( False Negative ). Red arcs represent the arcs that are additionally found by methods but not in the original network ( False Positive ). Bold 
arcs are found by methods that are also in the original network ( True Positive)
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dataset. We performed Student’s t-test to test whether 
there were any statistically significant differences 
between the means of the Hamming distance of imputed 
versus original data of the two methods.

Real‑world data application
We use self-reported and nurse-collected data from the 
United States Health and Retirement Study (HRS) [27–
29], a representative study of adults aged 50 and older. 
We merged the interview data (N = 42233) [27] collected 
in 2016, the harmonised data (N = 42233) [29] and the 
laboratory data (N = 7399) [28] that were collected in the 
same year. As we are focusing on imputation methods, 
we set any provided imputed values to missing (i.e., to use 
our method). To ensure a representative sample of older 
respondents, and due to the focus on multimorbidity, we 
excluded those aged below 50 (N = 279). To ensure bio-
marker and survey data were collected concurrently, we 
excluded respondents whose interviews were finished in 
2017 and 2018 (N = 1394). Our analysis dataset consisted 
of 29 categorical variables each with two to four levels. 
Supplementary Table  1 in Additional file  1 shows the 
detailed description of each variable. This cleaned subset 
contained 5726 observations, in which only 2688 cases 
were complete (corresponding to a missingness propor-
tion of 0.53).

We applied the best-working method, SEM (see 
Results), to this real-world data. Because SEM includes 
random elements in the algorithm, we averaged across 
multiple repeats to capture the most complete picture 
of relationships among real-world variables. To accom-
plish this, we set different random seeds using the base 
function set.seed  in the R environment, before apply-
ing the function structural.em  from R package bnlearn 
[22] (using tabu search and BDe scoring metrics in the 
M-step, as above). In this way, we learned 100 network 
structures using the SEM algorithm from the whole 
incomplete data set. We determined the average net-
work across the 100 repetitions based on an arc strength 
of each learned structure, calculated from the completed 
partially directed acyclic graph using the function arc.
strength also from bnlearn. As the resulting arc strengths 
were strongly bimodal (see Results), we included in a final 
average network all links in the higher mode. While the 
resulting networks were partially directed, we show as 
results the skeletons – all links as undirected – because 
we do not wish to imply causal relationships between 
these measured variables; we are presenting statistical 
associations only.

We then further explored relationships among real-
world variables based on the network structure by apply-
ing hierarchical divisive clustering from the R package 
igraph  [30] to detect the densely connected variables in 

the learned average network. This identifies community 
groups consisting of nodes that are densely connected 
together but sparsely connected to others based on the 
edge betweenness of the edges without considering the 
directions.

Results
Recovered network structures
A total of 1026 scenarios and 102,600 data sets were 
analysed.

Results of all three missingness mechanisms shared 
similar features among three levels of sampled data 
points. Detailed results are shown in Fig.  5 for MCAR, 
Fig.  6 for MAR, and Fig.  7 for MNAR with 1000 data 
points. In general, there was enhanced performance of 
methods of addressing missing data over doing noth-
ing, and better performance of SEM over MICE. There 
were more significant differences looking at recall than 
precision. There were more significant differences with 
increasing proportion of missingness and number of 
variables. This observation was consistent when there 
were 5000 and 10,000 data points, although the out-
performance of SEM over MICE decreased with 5000 
data points and was even less obvious with 10,000 data 
points. Detailed results for 5000 and 10,000 data points 
are shown in Additional file 1.

In addition to the pairwise comparisons between the 
three methods regarding precision and recall, we also 
compared the performance of each method across the 
three missing data mechanisms (MCAR, MAR and 
MNAR) for each level of data points. However, our 
results did not show any significant differences in perfor-
mance across the mechanisms.

We summarise patterns of recall across the simulation 
experiments in Fig.  8 when there are 1000 data points. 
This demonstrates substantial improvements in perfor-
mance when using either method (compared to doing 
nothing), which start to emerge consistently at a 0.3 
level of missingness, and increase as levels of missing-
ness and number of variables increases. Generally, SEM 
outperforms MICE, but the difference does not appear 
to be conditioned by levels of missingness or missing 
data mechanism. There is an increase in SEM’s outper-
formance through low numbers of variables, and then 
appears to reach an asymptote above 5 or 6 variables. 
This pattern was also observed when there were 5000 and 
10,000 data points (see Additional file 1). However, their 
scale of observed difference was much smaller than with 
1000 data points (differences around 0.01-0.02 compared 
to 0.1-0.2).

The same general pattern of SEM outperforming 
MICE, and both imputation methods outperforming 
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Fig. 5  Performance on MCAR data with 1000 data points. Precision (A) and recall (B) of three different methods of handling incomplete data: none, 
multiple imputation by chained equations (MICE) and structural expectation-maximization (SEM). Rows represent different missing proportions and 
columns indicate different groups of number of variables. Barplots show means with error bars representing standard error of the mean. Adjusted 
p-values for ANOVAs are displayed in those panels that are significant at least the 0.05 level. Lines representing significant Tukey’s HSD pairwise tests 
are shown and annotated as: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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Fig. 6  Performance on MAR data with 1000 data points. Precision (A) and recall (B) of three different methods of handling incomplete data: none, 
multiple imputation by chained equations (MICE) and structural expectation-maximization (SEM). Rows represent different missing proportions and 
columns indicate different groups of number of variables. Barplots show means with error bars representing standard error of the mean. Adjusted 
p-values for ANOVAs are displayed in those panels that are significant at least the 0.05 level. Lines representing significant Tukey’s HSD pairwise tests 
are shown and annotated as: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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Fig. 7  Performance on MNAR data with 1000 data points. Precision (A) and recall (B) of three different methods of handling incomplete data: none, 
multiple imputation by chained equations (MICE) and structural expectation-maximization (SEM). Rows represent different missing proportions and 
columns indicate different groups of number of variables. Barplots show means with error bars representing standard error of the mean. Adjusted 
p-values for ANOVAs are displayed in those panels that are significant at least the 0.05 level. Lines representing significant Tukey’s HSD pairwise tests 
are shown and annotated as: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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doing nothing, also held with the test using the BIC and 
BDs scores (see Additional file 1).

Imputed data
We further compared the performance of MICE and 
SEM in terms of missing data completion, using 1000 
data points with a 0.3 level of missingness. The data 
completed by SEM in the last iteration is more similar 
to the original simulated data than MICE (Fig.  9). SEM 
has a significantly better performance than MICE in data 
imputation and this finding is consistent when there are 
10 variables and 20 variables and across all three missing 
mechanisms, with p < 0.0001 for all comparisons.

Real‑world data application
Figure  10 displays an overview of the levels of missing-
ness in the cleaned HRS data set. Most have less than 5% 
of missing values; a few have ∼10% or greater, with the 
highest value being 33.1% missing for household income 
hhincome. There is a large amount of missing patterns 
that are different combinations of various variables. Only 
a few variables are missing individually.

The arc strengths averaged over the 100 repetitions 
of SEM applied to this data were strongly bimodal, with 
individual links having strength 0.87-1.0 (representing 
presence in 87-100% of the networks) or 0.05 or less. 
Thus, we generated a final averaged network with arc 
strengths of 0.87 or greater (Fig. 11).

Five community groups were identified within this net-
work structure (nodes of each community are coloured 
the same in Fig.  11). Common cardiovascular condi-
tions, such as heart disease, stroke and high blood pres-
sure (HBP), are clustered with total cholesterol level and 
treatment for those conditions. Diabetes, HbA1c level 
and diabetes treatment are clustered. Another cluster 
contains arthritis, self-assessed memory decline and BMI 
level. Diabetes is directly linked to HBP, HbA1c and BMI 
levels. The other two clusters contain a mixture of dis-
eases and social factors. Cognitive impairment (TICS-M) 
is clustered with cancer, lung disease, smoking and race. 
It is also directly linked to education whereas education 
clusters with high-density lipoprotein (HDL), drinking, 
exercise, gender, cohabitation and household income. 
We find expected links between health behaviours and 

Fig. 8  Distribution of the difference in means of recall of three pairwise comparisons among three methods when there are 1000 data points: 
MICE’s increase over doing nothing (red), SEM’s increase over nothing (blue), and SEM’s increase over MICE (green) A. MCAR data. B. MAR data. 
C. MNAR data. The y-axis represents the difference of the mean recall (averaged over the 100 simulations). The x-axis represents the number of 
variables from 2-20. Column panels represent missing proportions



Page 12 of 16Ke et al. BMC Medical Research Methodology          (2022) 22:326 

Fig. 9  Comparison of the mean Hamming distance of MICE and SEM imputed data from the simulated data at 0.3 level of missingness with 1000 
data points, using 10 datasets each of condition. Barplots show means with error bars representing standard error of the mean. Rows represent 
different numbers of variables and columns indicate different missing mechanisms. Lines representing significant Student’s t-tests are shown and 
annotated as: ****, p < 0.0001

Fig. 10  Distribution of missing values in the real-world data set. (A) Proportion of missing values in each variable (named as in Supplementary 
Table 1 of Additional file 1), shown as a bar chart. (B) Missing patterns, shown as a heatmap with proportions to the right of the plot. Rows represent 
a single missing pattern (‘Combinations’) and columns variables, with the variable missing in a given pattern coloured green (blue otherwise). The 
proportion of each missing pattern is shown as a horizontal bar chart to the right of the heatmap (summing to 0.53 for missing patterns). The very 
bottom row represents the pattern with no missing values, with its proportion bar in blue with value 0.47
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chronic conditions, e.g., smoking and lung disease. Bio-
markers are directly linked to socio-demographic and 
socio-economic factors, e.g., alcohol use is directly linked 
to HDL cholesterol level and gender. We also find some 
unexpected links and clusters: arthritis is directly linked 
to lung disease, and cancer treatment is directly linked to 
individual income.

Discussion
The main aim of this work was to quantitatively evalu-
ate and compare the performance of a common form of 
imputation (MICE) and SEM on learning BN structures 
from incomplete data, such as is commonly found in 
observational health and social datasets. According to 
our simulation results, as might be expected, both MICE 
and SEM performed better than no imputation. In addi-
tion, significant improvements in recall and precision 
were observed with SEM versus MICE. This disparity 
might be explained given that SEM is using additional 
information, i.e. the structure of the network, to deal 
with missing data, whereas MICE relies only on the mul-
tivariate associations between variables.

We note that SEM performs comparatively well under 
the MNAR mechanism. This is significant because 
MNAR is a complex problem to which there is no obvious 
solution. In MNAR data, a particular value’s missingness 
rate depends on the real value itself and some unob-
served predictors. Although it is theoretically achievable 
to calculate the missing data rate given the correct set of 
explanatory factors, in practice it is very hard to find out 
the combinations of factors that influence the missing 
rate [31]. Taking an example of blood glucose measure-
ments, people suffering from hyperglycemia will be more 
likely to drop out of clinical surveys because they feel 
unwell. However, this assumption is unverifiable using 
the observed data, and in practice we cannot distinguish 
between MAR and MNAR data [31]. Multiple imputa-
tion methods would therefore generate biased results if 
we apply them on MNAR data, and the issue can only be 
addressed by sensitivity analysis to evaluate the differ-
ence under different assumptions about the missing data 
mechanism [31]. In the case of BN structure learning, our 
results suggest that SEM may be a principled approach to 
deal with MNAR data. However, this finding should be 

Fig. 11  The average network learned from SEM. Nodes are labelled with variable names as found in Supplementary Table 1 of Additional file 1. 
Nodes are coloured to represent the different groups as discovered by community analysis on the network structure
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validated by conducting further experiments under vary-
ing MNAR conditions.

The validity of multiple imputation methods also 
depends on the choices of statistical approaches in ana-
lysing the sampled complete data sets and the resulting 
distribution of estimates for each missing value [8]. More 
sophisticated approaches are required if the mechanism 
MNAR appears in different types of variables. Galimard and 
colleagues [32] recently proposed a new imputation model 
based on Heckman’s model [33, 34] to address the issue 
caused by MNAR binary or continuous outcome variables. 
They then integrated this model into MICE for manag-
ing MAR predictors at the same time. We can use function 
mice.impute.hecknorm  from R package miceMNAR  [32] 
to impute incomplete data with MNAR outcome variables 
and MAR predictors. Although it has been proposed that 
applying imputation methods on multivariate data before 
learning BNs can be problematic [32, 35], this novel 
method might be helpful for the further development of 
BN structure learning from incomplete data.

While SEM did consistently perform statistically sig-
nificantly better than MICE, we point out that the dif-
ferences were relatively small (on the order of <5% for 
both precision and recall). The overwhelming signal 
in our results is that imputation is far superior to using 
only complete cases (e.g., see Fig. 8). SEM can be more 
computationally intensive than MICE, particularly with 
higher missing proportion, thus there could be a trade-off 
between accuracy and computation time. However, these 
computational times are relatively small (seconds–minutes), 
thus we still recommend using the better performing SEM.

We showed the usefulness of SEM by applying it to 
real-world linked biomedical and survey data on chronic 
diseases, in a dataset which had a high level of miss-
ingness. The network we recover from real-world data 
highlights pivotal interactions among several chronic 
diseases, health behaviours and social risk factors [20]. 
As seen in other studies we observe clustering of car-
diovascular diseases [36] and metabolic conditions, and 
treatments for them (e.g. diabetes). Known risk factors of 
HBP, BMI and smoking either directly or indirectly link 
to these conditions, although HBP stands apart as being 
directly linked to diabetes, stroke and heart disease. The 
connections between cognitive impairment, education 
and race have been previously observed in the US con-
text [37]. Our analysis also highlights potential areas of 
investigation. Cognitive impairment is closely associated 
with cancer, but stands alone from self-assessed memory 
decline. Cancer treatment is directly linked to individual 
income, suggesting socioeconomic disparities in cancer 
treatment, and/or differential survival patterns by income.

Our simulation study showed better performance of 
SEM, and our real-world case study was able to reveal 

features of interest from a dataset with high levels of 
missingness. As in most simulation studies, the main 
drawback in our simulation is that simulated data sam-
pled from random network is not guaranteed to reflect 
real data. Our simulation data has two main limitations. 
First, our simulation used all categorical variables and 
an even distribution of missing values among variables, 
which is not very plausible in real-world social science 
data. For example, some survey questions (e.g., income) 
will suffer higher levels of missingness due to refusal than 
other less sensitive ones (e.g., gender). These features 
probably help to reduce the difference between missing 
data mechanisms, especially the difference in data with 
MNAR. This perhaps could also help to explain why 
there were no significant differences across three missing 
data mechanisms in our simulation results, particularly 
with MICE method. Thus, future extensions of this work 
should incorporate more realistic simulations of mixtures 
of variable types and uneven missingness patterns. Sec-
ond, our simulation study deals with cross-sectional, non 
hierarchical data, and in real social science data obser-
vations are often clustered or contain repeat measures 
from individuals. This can lead to a different, complex 
and important form of missingness – survey attrition. 
In future work, we could investigate the application of 
SEM using more complicated real-world data, using more 
complex missing patterns (e.g., longitudinal data).

Conclusion
Our simulation results indicate that both SEM and MICE 
improve the completeness of BN structures learned from 
partially observed data. In most circumstances, especially 
when there are relatively high number of variables and 
missing values, SEM performs better than MICE. This 
suggests that making use of extra information from the 
BN structure within SEM iterations could enhance its 
capability of capturing the real network structure from 
incomplete data. In our real-world data application, 
SEM identified expected interactions between common 
chronic diseases, and provided additional insights about 
the links between socio-demographic, socio-economic 
factors and chronic conditions. Our study suggests that 
BN researchers working with incomplete biomedical and 
social survey data should use SEM to deal with missing data.
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