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Abstract 

Background:  The occurrence and timing of mycobacterial culture conversion is used as a proxy for tuberculosis 
treatment response. When researchers serially sample sputum during tuberculosis studies, contamination or missed 
visits leads to missing data points. Traditionally, this is managed by ignoring missing data or simple carry-forward 
techniques. Statistically advanced multiple imputation methods potentially decrease bias and retain sample size and 
statistical power.

Methods:  We analyzed data from 261 participants who provided weekly sputa for the first 12 weeks of tuberculo-
sis treatment. We compared methods for handling missing data points in a longitudinal study with a time-to-event 
outcome. Our primary outcome was time to culture conversion, defined as two consecutive weeks with no Mycobac-
terium tuberculosis growth. Methods used to address missing data included: 1) available case analysis, 2) last observa-
tion carried forward, and 3) multiple imputation by fully conditional specification. For each method, we calculated the 
proportion culture converted and used survival analysis to estimate Kaplan-Meier curves, hazard ratios, and restricted 
mean survival times. We compared methods based on point estimates, confidence intervals, and conclusions to 
specific research questions.

Results:  The three missing data methods lead to differences in the number of participants achieving conversion; 
78 (32.8%) participants converted with available case analysis, 154 (64.7%) converted with last observation carried 
forward, and 184 (77.1%) converted with multiple imputation. Multiple imputation resulted in smaller point estimates 
than simple approaches with narrower confidence intervals. The adjusted hazard ratio for smear negative participants 
was 3.4 (95% CI 2.3, 5.1) using multiple imputation compared to 5.2 (95% CI 3.1, 8.7) using last observation carried 
forward and 5.0 (95% CI 2.4, 10.6) using available case analysis.

Conclusion:  We showed that accounting for missing sputum data through multiple imputation, a statistically valid 
approach under certain conditions, can lead to different conclusions than naïve methods. Careful consideration for 
how to handle missing data must be taken and be pre-specified prior to analysis. We used data from a TB study to 
demonstrate these concepts, however, the methods we described are broadly applicable to longitudinal missing 
data. We provide valuable statistical guidance and code for researchers to appropriately handle missing data in longi-
tudinal studies.
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Background
Standard treatment for drug-susceptible tuberculosis 
(TB) disease is a 6-month drug regimen [1]. Following the 
initiation of therapy, sterilization of sputum is expected 
to occur within two to 3 months. Clinical, radiological, 
and bacteriological measures are assessed during early 
treatment as potential predictors of long-term treatment 
response [2, 3]. Culture conversion, commonly defined 
as two consecutive sputum cultures without Mycobac-
terium (M.) tuberculosis present, is the best current sur-
rogate endpoint for long-term treatment success with 
conversion by 2 months following therapy initiation most 
predictive of durable cure [4–6]. A common primary 
endpoint in phase II TB clinical trials of new treatments 
and longitudinal observational studies is time to culture 
conversion (TCC), defined as the time from treatment 
initiation to the first of two consecutive negative cultures. 
TCC is estimated to assess individuals’ response to treat-
ment and compare the efficacy of treatments.

To calculate TCC, sputum specimens are serially col-
lected for culture at regular intervals. As with all longitu-
dinal studies, missing data can occur. Reasons for missing 
specimens include missed visits, participant attrition, 
inability to produce sputum, poor quality specimens, or 
sample contamination. For these analyses, missing data is 
especially consequential because the outcome of interest 
depends on consecutive culture results. Incomplete data 
can potentially bias TCC estimation. TCC calculation 
will be differentially affected depending on whether the 
missed culture result would have been positive or nega-
tive had it been observed. An example of theoretical cul-
ture data for 12 weeks of treatment and possible patterns 
of missing samples are shown in Table 1. Individuals may 

be misclassified as non-converters or the estimated con-
version week may be later than the true conversion week 
had all culture results been observed. This can lead to 
underestimating the true proportion of culture convert-
ers by a certain time point or artificially inflating TCC.

Given our interest in a time to event outcome, a nat-
ural way to estimate TCC is through survival analysis. 
This approach avoids excluding individuals with miss-
ing data by censoring. Handling missingness prior to 
censoring is critical for valid TCC estimation but there 
is no standard method for managing missing data. The 
simplest option is available case analysis (ACA) where 
participants are censored at the time of their first miss-
ing sample. Another common approach is to implement 
“last observation carried forward” (LOCF), where last 
available culture result is carried forward for all subse-
quent missing values [7, 8]. Although often used, ACA 
and LOCF methods are not grounded in statistical theory 
and are known to be biased [9, 10]. Multiple imputation 
leverages all available information in decisions on fill-
ing in missingness. The result is a complete dataset upon 
which valid statistical inference and point estimation can 
be performed [11]. The statistical properties and validity 
of multiple imputation have been shown to be superior 
to other simple and naïve methods for addressing missing 
outcome and covariate data. While multiple imputation 
is based in statistical theory and generally seen as supe-
rior to other ad hoc approaches, in practice it still is not 
widely adopted [12, 13]. There are other alternative meth-
ods for addressing missing data in longitudinal studies 
that are often used in practice and are valid under cer-
tain conditions [13–15]. We choose to focus on multiple 
imputation as a comparison to ACA and LOCF as it is 

Keywords:  Longitudinal missing data, Multiple imputation, Survival analysis, Tuberculosis, Culture conversion

Table 1  Hypothetical example of missing data patterns and influence on estimated conversion week

+=positive culture, − = negative culture, X = culture result missing, *=conversion week
a  Culture conversion estimate is delayed to week 10 from missing cultures for weeks 7–9
b  Culture conversion is not achieved with last observed culture as negative
c  Culture conversion is not achieved with last observed culture as positive
d  Missing cultures occur after conversion and do not affect estimated conversion week
e  Conversion week defined as first of two consecutive cultures without Mycobacterium tuberculosis present

Treatment week

1 2 3 4 5 6 7 8 9 10 11 12

Complete + + + – + + + -* – – – –
Pattern 1a + + X – + + X X X -* – –
Pattern 2b + + + – + + + – X X X X
Pattern 3c + + + – + + + X X X X X
Pattern 4d + + + – + + + -* – – X X
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becoming more popular, is well documented with tutori-
als in multiple software packages, and is a valuable tool 
for practitioners.

In this study, we describe three methods for handling 
missing outcome data: ACA, LOCF, and multiple impu-
tation. We detail the general implementation of each 
method in the context of a planned survival analysis for 
TCC using serial weekly sputum collections in a lon-
gitudinal TB study. We then apply each method to data 
from a prospective TB cohort of 261 participants from 
the Tuberculosis Treatment and Alcohol Use Study 
(TRUST). Our goal is not to compare methods based on 
statistical performance, but to provide guidance on the 
practical implementation of multiple imputation in lon-
gitudinal studies with a time-to-event outcome. Treating 
multiple imputation as the gold standard, we compare 
methods focusing on the underlying assumptions, sur-
vival measure estimates, and conclusions to specific 
research questions. We provide R code for reproducibil-
ity and implementation on GitHub.

Methods
We describe three methods for handling missing out-
come data in longitudinal studies with a time-to-event 
outcome where the event of interest depends on repeated 
sampling at consecutive time points. We focus on the 
implementation of these methods within a survival analy-
sis framework.

Patterns of missing data
To appropriately handle missing data, it is important 
to first understand the ways in which missing data can 
occur and the extent this influences estimation. The 
impact missing data has on an analysis depends on 
multiple factors including the proportion of missing 
data, planned statistical analysis, and the missing data 
mechanism. There are three missing data mechanisms 
as defined by Rubin: 1) Missing completely at random 
(MCAR), 2) Missing at random (MAR), and 3) Missing 
not at random (MNAR). Data are MCAR if missingness 
does not depend on the values of the data, both missing 
or observed. Data are MAR if missingness depends only 
on the observed values of the data. Data are MNAR if 
missingness depends on unmeasured variables [16]. For 
data MCAR or MAR, methods exist for addressing miss-
ing data. For data MNAR, applying existing methods can 
lead to invalid statistical inference and biased estimation. 
It is important to note that while methods for addressing 
missing data rely on knowing the missing data mecha-
nism, there exists no formal test to verify the assumption 
that data are MAR or MCAR.

Available case analysis (ACA)
ACA uses all available information for each case without 
modification [16]. When operating in a survival analysis 
framework where the event depends on samples at con-
secutive time points, as with culture conversion, we can 
censor individuals with missing outcome data and avoid 
excluding them entirely. Individuals are censored at the 
first time point with a missing culture sample that may 
influence their TCC calculation. This depends entirely on 
the definition of culture conversion being used. In this 
example, since we are using two consecutive negative 
cultures as the definition of conversion, any occurrence 
of the following culture sequences would require censor-
ing and are illustrated in Table 1 as patterns 1, 2, and 3 
respectively: (positive, missing, missing), (positive, nega-
tive, missing), (positive, missing, negative).

ACA is the simplest approach to handling missing data, 
but is rarely appropriate to use because it relies on the 
assumption data are MCAR and no formal testing can 
be performed to assess whether this assumption holds. 
Implementing ACA when this assumption is clearly vio-
lated will lead to biased estimation and a loss of precision 
[17]. Even in the limited situations where ACA may be 
acceptable, it is not optimal because a loss in statistical 
power will still occur.

Last observation carried forward (LOCF)
LOCF is a single imputation method that is implemented 
by bringing forward the result from the previous time 
point for each occurrence of a missing sample. This 
method is often rationalized as we expect two consecu-
tive measurements in time to be strongly correlated. His-
torically, LOCF has been used in clinical trials to impute 
missing values due to participant drop out. In the case of 
missing culture data, individuals miss sample collection 
intermittently in addition to being lost to follow up (lost 
completely). Variations of LOCF have been used where 
the number of weeks carried forward for consecutive 
missing values can differ. For this example, we carry for-
ward a single culture result each time there is a missing 
instance. When there are consecutive missing samples, 
only the first is imputed and the rest are still considered 
missing. This results in potentially still having missing 
data after imputation which is subsequently handled with 
censoring as described with ACA. To illustrate, if LOCF 
was implemented for the data in pattern 1 of Table  1, 
weeks 3 and 7 would be imputed as culture positive and 
we would censor at week 7 as this is the last present sam-
ple before two consecutive missing.

LOCF has been used to impute missing data in TB clin-
ical trials and longitudinal observational studies but there 
is strong evidence that LOCF can lead to biased results 
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[9, 18]. We describe the most conservative approach to 
implementing LOCF by carrying forward only 1 week 
when consecutive missing samples occur. We still assume 
that two consecutive samples have identical culture 
results and do not allow for uncertainty when imputing 
or consider other factors known to be predictive of cul-
ture results.

Multiple imputation
Multiple imputation is a statistical method for analyzing 
incomplete data that leverages all available information 
in a data set and results in valid statistical estimation and 
inference under certain conditions. The validity of MI 
depends most importantly on the assumption that data 
are MAR, in addition to the amount of missing data and 
the quantity of information available being sufficient for 
imputation. When working in a survival analysis frame-
work, the assumption of non-informative censoring must 
also be considered. We describe in detail multiple impu-
tation (MI) by fully conditional specification because it is 
straightforward to implement and is flexible in the types 
of data it can handle. Both predictors and the outcome of 
interest can have missing data present.

When imputing repeated measures data, a multi-level 
imputation is the most theoretically sound approach to 
take [19]. Treating all observations across time as inde-
pendent without accounting for the within subject corre-
lation will lead to unaccounted variability in analysis and 
less conservative results [20, 21]. In this tutorial, we do 
not describe the process of multi-level imputation as it 
introduces significant modelling complexity which would 
diverge from our goal of introducing practitioners to the 
idea of multiple imputation. Instead, we proceed with a 
single-level imputation and acknowledge this limitation.

MI imputes missing data on a variable-by-variable 
basis. An imputation model is specified for each vari-
able with missing observations and then imputation is 
carried out iteratively. If we have n participants repre-
sented in the data with p data elements collected, we can 
organize this into a matrix of size nxp. For a nxp matrix 
of data Y, let Yj be the jth column in Y, and Y−j indicates 
all columns in Y except Yj. MI specifies the multivariate 
distribution P(Y, X, R| θ) through a set of conditional den-
sities P(Yj| X, Y−j, R, θj) where X is a set of predictors used 
to impute Yj and R indicates the missing observations 
of each Yj. This conditional density is used to impute 
the missing values of each Yj [22]. Imputation using MI 
starts by randomly filling in missing values, then iterating 
over the conditionally specified imputation models. One 
cycle through all variables is considered one iteration and 
multiple iterations, usually 5–10, are executed result-
ing in a single imputed data set. This process is done m 
times, generating m imputed data sets. There is no strict 

guidance on the number of data sets to impute, but 20 
is standard. There are several algorithms to implement 
imputation using conditionally specified models. We use 
the Multiple Imputation by Chained Equations (MICE) 
algorithm as it is extensively documented and is easily 
implemented using the MICE package in R [23].

Prior to imputing, an imputation model for each Yj 
with missing data must be specified. For MI to be valid, 
data are assumed to be MAR. All variables predictive 
of missingness should be included as predictors in the 
imputation model. Additionally, all variables used in the 
planned analysis should be included to preserve rela-
tionships among variables [19]. In the case of imputing 
repeated measures data, the problem of overfitting or 
model non-convergence can occur when using all time 
points to predict missing values [24]. Alternatively, only 
time points adjacent to each time point can be included 
as predictors. Distributional assumptions of Yj must also 
be specified. MI is flexible as there is a range of paramet-
ric distributions to choose from, such as logistic, Poisson, 
and normal. Correct model specification is not a simple 
task as issues with collinearity, overfitting and model 
non-convergence can occur. Others have detailed com-
mon difficulties with model specification and best prac-
tices [25].

Following imputation, estimation is conducted sepa-
rately on each of the m imputed data sets using the 
desired statistical method for analysis. Estimates and 
standard errors are then pooled (combined) using Rubin’s 
rules into an overall estimate and variance–covariance 
matrix [26]. These rules are based in asymptotic theory 
and assume inference around the parameter of inter-
est is based on the normal approximation such that 
Q − Q̂ ∼ N (0,U) , where Q is defined as the true value 
of the quantity being estimated and Q̂ is the estimator 
obtained through imputation and, in our case, survival 
analysis modeling. Rubin defined the overall estimate 
Q̂ , as the average of Q̂i, i = 1, . . . ,m, estimates where 
Q̂ = 1

m
m
i=1 Q̂i.

The pooled variance is defined as U = 1
m

∑m
i=1Ui , 

where Ui is the variance of Q̂i , and the between-imputa-
tion variance is B = 1

m−1

∑m
i=1

(

Q̂i − Q
)2

 . To account 
for both within-imputation variability and between-
imputation variability the total variance of Q̂, is defined 
as: T = U +

(

1+ 1
m

)

B . Pooled estimates and variances 
can then be used to perform standard statistical infer-
ence. The result is model output that appears the same as 
all standard output from statistical software.

We are interested in a time to event outcome and focus 
on implementing Rubin’s rules with survival analysis 
estimates, including hazard ratios, survival probabilities, 
and restricted mean survival time difference (RMSTD). 
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Hazard ratios and survival probabilities are standard 
measures of effect for time to event outcomes while 
RMSTD is less common. RMSTD is a measure of the dif-
ference in average survival time between a treatment and 
control group and is equivalent to the difference between 
the area under the two survival curves [16]. For hazard 
ratios and survival probabilities, the normality assump-
tion does not hold so we transform estimates prior to 
pooling. We then apply Rubin’s rules as described above 
and back transform to the original scale. A complemen-
tary log-log transformation for survival probabilities and 
a log transformation for hazard ratios is standard [20, 21].

Application
We analyzed data from TRUST, a prospective cohort 
study conducted in Worcester, Western Cape Province, 
South Africa [31]. Serial sputum specimens were col-
lected at treatment initiation and weekly for the 11 weeks 
following. Treatment initiation (Week 0) samples were 
collected within 3 days of initiating TB therapy. For this 
analysis, we assumed samples were collected on the same 
day for each week of follow-up, however, this was not 
always the case, and in practice, should be considered in 
analysis. Following decontamination, neutralization and 
centrifugation the sputum sediment was resuspended in 
2 ml phosphate buffered saline. Mycobacterial Growth 
Indicator Tubes (MGIT) were inoculated with a 500 μl 
aliquot of the resuspended sediment and incubated at 
37 °C in the MGIT 960 instrument (Becton Dickinson). A 
growth index of 100 was used to indicate a positive cul-
ture while a negative culture was defined if the growth 
index failed to reach 100 after 42 days. M. tuberculosis 
growth was confirmed by Ziehl Neelsen staining and the 
detection of antigen 85 (Capilia TB Neo Assay; Tauns 
(Japan)), while contamination was indicated by a nega-
tive antigen 85 test and/or growth on blood agar. Mis-
classification of samples was unlikely as MGIT culture is 
the gold standard for detecting M. tuberculosis with high 
sensitivity [32].

All participants included in the analysis were positive 
on Xpert MTB/RIF (Cepheid Sunnyvale, CA) or Xpert 
MTB/RIF Ultra (Cepheid Sunnyvale, CA) or culture 
positive with rifampicin susceptible pulmonary TB. The 
outcome of interest was TCC defined as the first of two 
consecutive weeks with sputum cultures with no growth 
of M. tuberculosis. We investigated missing data pat-
terns to assess overall missingness and how completeness 
varied during follow-up. We applied the three methods 
for handling missing data described above. For each 
method we examined the association between smear sta-
tus (concentrated smear), defined as positive if acid-fast 
bacilli were present on smear microscopy at week 1 and 

negative otherwise, and culture conversion adjusting for 
confounders using survival analysis.

We classified samples as missing if there was no collec-
tion due to missed visits, poor quality of collected sam-
ples, or contamination of collected samples without M. 
tuberculosis present. We also considered samples miss-
ing due to a participant’s inability to produce sputum as 
negative for M. tuberculosis. We explored missing data 
patterns visually and summarized using basic descriptive 
statistics. We divided culture data for each participant 
into three visit windows (week 0 to week 3, week 4 to 
week 7, week 8 to week 11), and categorized each win-
dow as complete I if all samples were observed, intermit-
tent (I) if one to three samples were observed or missing 
(M) if no samples were observed. In addition, we summa-
rized basic descriptive statistics by frequency of missing 
samples to assess whether there were strong associations 
between key demographics and missingness that may 
indicate data MNAR.

We implemented three methods for handling miss-
ing data. For ACA, the data was not modified prior to 
analysis. For LOCF, the previous week’s result was car-
ried forward for each occurrence of a missing sample. If 
there were multiple consecutive samples missing, we only 
carried forward one sample and all subsequent samples 
were left unchanged. We implemented MI to impute 
any occurrence of a missing culture result, as well as any 
missing covariates.

For MI to be valid, we assumed our data to be MAR. 
While this assumption cannot be formally tested, we 
found no systematic patterns of missingness to indicate 
data were MNAR. We included all variables we planned 
to use in the main analyses as well as auxiliary variables 
in our imputation model. We used the following vari-
ables when imputing a given week’s culture result: culture 
result from previous week, smear result from previous 
week, age, biologic sex, body mass index (BMI), HIV sta-
tus, tobacco use, smoked drug use, cavitary disease, and 
excessive alcohol use. Smoked drug use was defined as 
self-reported or biologically verified methamphetamine, 
methaqualone, and/or cannabis use. Excessive alcohol 
use was defined as an Alcohol Use Disorders Identifica-
tion Test score ≥ 8 and/or a phosphatidylethanol result 
≥50 ng/mL. Tobacco use was defined as any self-reported 
use. Cavitary disease was scored as presence or absence 
of lung cavitation on chest x-ray. We used logistic regres-
sion to impute culture results and binary covariates and 
multinomial logit regression to impute variables with 
more than two categories. As missingness of independent 
variables was minimal in this data set, they were imputed 
along with the dependent variable (see Additional File 1). 
Following convention, we generated 20 imputed data 
sets. After imputing, analyses were run separately on 
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each imputed data set and estimates were combined 
using Rubin’s rules. All inference was made using pooled 
estimates and standard errors [29].

We analyzed our data using survival analysis methods 
and compared results for the three methods of handling 
missing data. We fit cox proportional hazards models to 
examine the association between week 0 smear status 
and TCC, adjusting for age, biologic sex, HIV, and cavi-
tary disease. We tested the proportional hazards assump-
tion using Shoenfeld residuals. We estimated RMSTD for 
a time horizon of 8 weeks to compare average times to 
culture conversion for smear positive versus smear nega-
tive participants over 8 weeks of treatment. We estimated 
unadjusted RMSTD estimates using the area between the 
two Kaplan-Meier curves and adjusted RMSTD using the 
ANCOVA-type method of Tian et al. [33].

Results
The TRUST study enrolled 261 participants between May 
1, 2017 and June 1, 2021. We excluded 21 participants 
due to week 1 cultures without M. tuberculosis growth 
and 2 participants with missing week 0 cultures, leaving 
238 participants for this analysis. We analyzed 3132 spu-
tum specimens collected over 12 weeks of follow-up from 
238 participants; 210 (88.2%) participants were missing 
at least one sputum specimen. The median (IQR) number 
of missing samples per individual was 2 [1, 5]. Samples 
were most commonly missing due to specimen contami-
nation (440, 14.1%), participants being lost to follow up 
(239, 7.6%), or intermittently missing weekly sputum col-
lection (197, 6.3%).

Missing data patterns were examined and participants 
were categorized based on the status of their three visit 
windows (Table  2). The three most frequent patterns 
were (C, I, I), (C, I, I), and (I, I, I) with frequencies 58 
(24.4%), 42 (17.6%), and 31 (13.0%) respectively. Conver-
sion was highest for patterns (C, I, I) and (C, C, I). For 
participants missing all samples for weeks 4–7 or weeks 
8–11, 5 (3.5%) achieved conversion. Comparing key 
demographics by frequency of missing samples showed 
participants were more likely to be missing more than 
1 sample if they were living with HIV or had cavitation 
(Table 3).

Following the implementation of each method for han-
dling missing data, the proportion of positive, negative, 
censored or missing samples each week was calculated 
(Fig. 1). Compared to ACA and LOCF, MI had the great-
est proportion of negative and positive samples across all 
treatment weeks with minimal censoring and no missing 
samples.

The three missing data methods lead to considerable 
differences in the number of participants achieving con-
version; 78 (32.8%) participants converted with ACA, 154 

(64.7%) converted with LOCF, and 184 (77.1%) converted 
with MI. Kaplan-Meier curves were estimated stratified 
by smear status (Fig. 2). There was no evidence that the 
assumption of proportional hazards was violated (see 
Additional  File  2). All hazard ratios for the association 
between smear status and culture conversion were signif-
icant and showed smear negative participants were more 
likely to achieve culture conversion (Fig. 3). The adjusted 
hazard ratio for negative smear was similar for both ACA 
and LOCF (HR = 4.99, 95% CI: 2.36, 10.58; HR = 5.21, 
95% CI: 3.1, 8.74). The adjusted hazard ratio for MI was 
smallest in magnitude and had the narrowest confidence 
interval (HR = 3.1, 95% CI: 1.87, 5.14). RMSTD over 
8 weeks was 1.48, 2.87 and 2.74 weeks for ACA, LOCF 
and MI, respectively.

Discussion
We described three different approaches to handling 
missing data for a time-to-event outcome dependent on 
serially sampling with a confirmatory result. Using data 
from a prospective TB cohort, we demonstrated the 
impact these approaches can have on estimation and 
inference from survival analysis methods. We estimated 
Kaplan-Meier curves, Cox proportional hazards mod-
els, and differences in restricted mean survival times to 

Table 2  Patterns of missing culture results for three-time 
windows following treatment initiation

C No samples missing, I 1–3 samples missing, M All samples missing
a  Conversion achieved if two consecutive cultures without Mycobacterium 
tuberculosis occurs

Time Window Total Conversiona

Weeks 0–3 Weeks 4–7 Weeks 8–11 N = 238 N = 141

N(%)

C C C 28 (11.8) 20 (14.3)

C C I 42 (17.6) 28 (20)

C C M 3 (1.3) 1 (0.7)

C I C 17 (7.1) 12 (8.6)

C I I 58 (24.4) 33 (23.6)

C I M 6 (2.5) 1 (0.7)

C M C 1 (0.4) 1 (0.7)

C M I 1 (0.4) 0 (0)

C M M 1 (0.4) 0 (0)

I C C 9 (3.8) 6 (4.3)

I C I 14 (5.9) 13 (9.3)

I C M 1 (0.4) 1 (0.7)

I I C 4 (1.7) 3 (2.1)

I I I 31 (13) 20 (14.3)

I I M 8 (3.4) 2 (1.4)

I M I 1 (0.4) 0 (0)

I M M 13 (5.5) 0 (0)
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estimate the association between smear status and cul-
ture conversion. The number of participants achieving 
culture conversion with MI (184, 77.1%) was more than 
double the number achieving conversion with ACA (78, 
32.8%). Hazard ratios for ACA and LOCF were larger 
with wider confidence intervals compared to MI (Fig. 3). 
Smear negative participants were 3.1 times more likely 
to achieve culture conversion compared to smear posi-
tive participants. The RMSTD over 8 weeks was about 
3 weeks for LOCF and MI (Fig. 4), which was two times 
greater than the RMSTD for ACA. We can interpret 
this to mean that participants who were smear negative 

at baseline achieved culture conversion about 3 weeks 
faster on average compared with those who were smear 
positive at baseline. The differences in results from the 
three methods demonstrate the bias ad hoc methods 
for addressing missing data can introduce into survival 
analyses.

There is extensive literature on the theoretical develop-
ment of multiple imputation as well as numerous tutori-
als with applications to different research areas [34–36]. 
The statistical properties and validity of multiple impu-
tation have also been shown by many to be superior to 
other simple and naïve methods for addressing missing 

Table 3  Descriptive summmary for basic demographics by frequency of missing sputum samples

0–1 Samples
N = 68

2–3 Samples
N = 43

4–5 Samples
N = 73

> 5 Samples
N = 54

Male Sex 46 (67.6%) 28 (65.1%) 44 (60.3%) 28 (51.9%)

Age, Median (Q1, Q3) 40 (31, 49) 36 (28, 50) 36 (26, 49) 38 (25, 46)

BMI

  Underweight 41 (60.3%) 31 (72.1%) 44 (60.3%) 34 (63.0%)

  Normal Weight 22 (32.4%) 10 (23.3%) 27 (37.0%) 15 (27.8%)

  Overweight and Obese 5 (7.4%) 2 (4.7%) 2 (2.7%) 5 (9.3%)

HIV Positive 10 (14.7%) 17 (40.5%) 22 (30.1%) 21 (38.9%)

Excessive Alcohol Use 43 (63.2%) 25 (58.1%) 47 (64.4%) 35 (64.8%)

Tobacco Use 50 (73.5%) 24 (55.8%) 53 (72.6%) 35 (64.8%)

Cavitation 11 (17.5%) 20 (48.8%) 20 (29.0%) 21 (42.0%)

Smoked substance use 32 (47.1%) 28 (65.1%) 44 (60.3%) 30 (55.6%)

Fig. 1  Proportion of participants with positive, negative, or missing cultures per treatment week. Positive and negative culture defined as presence 
or absence of Mycobacterium tuberculosis. Method for handling missing data: available case analysis A), last observation carried forward B), multiple 
imputation by fully conditional specification C). Stripe, positive; circle, negative; white, censored; black, missing
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Fig. 2  Kaplan-Meier curves of cumulative probability of culture conversion for smear negative and smear positive. Solid line is smear negative and 
dashed line is smear positive. Shaded regions represent 95% confidence intervals. Method for handling missing data: available case analysis A), last 
observation carried forward B), multiple imputation by fully conditional specification C)

Fig. 3  Forest plot showing hazard ratios for smear negative participants. Hazard ratios and 95% confidence intervals for negative smear with 
positive smear as the referent are shown for unadjusted estimates (circle) and adjusted estimates (square). Available case analysis, ACA; last 
observation carried forward, LOCF; multiple imputation by fully conditional specification, MI
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outcome and covariate data including ACA and LOCF 
[37]. To our knowledge, there is no prior publication 
that addresses the implementation of these methods 
with a planned survival analysis in the context of treat-
ment for TB. Few studies have addressed missing spu-
tum data when using culture conversion as an outcome. 
Scharfstein et al. addressed this problem by introducing a 
benchmark assumption to learn about the distribution of 
unknown culture results in order to estimate the overall 
TCC distribution [38]. Rehal compared methods for han-
dling missing data with culture conversion handled as a 
binary outcome and found MI to perform best compared 
to ACA, LOCF, and other methods [39].

We only show empirically the differences these three 
methods can have on conclusions from a survival analy-
sis. Additionally, the results shown here are subject to the 
analysis conducted to demonstrate these methods, most 
importantly the association of interest, smear status and 
culture conversion, and the definition of culture conver-
sion used. There are also limitations with our imputation 
methods. We did not conduct a multi-level imputation to 
account for correlation of sputum sample results within 
participants. We cannot comment on the extent to which 
this impacts our results given the analysis we conducted. 
We assume our data are MAR. We showed HIV and cavi-
tation may be associated with missingness which would 
indicate data MNAR but the extent to which this influ-
ences our results is unknown. Similarly, since our pri-
mary outcome is TCC, we would expect negative samples 

to occur more frequently in later weeks. Further analysis 
should be conducted to understand the impacts this has 
on the validity of the imputation procedures used. We do 
not report on or test the validity of each method or dem-
onstrate the theoretical properties of MI. We imputed 
independent variable data since it was minimal in our 
example data set. In practice, when there is significant 
missing data in independent variables as well as multi-
level outcome data, the imputation process becomes 
more complicated and great care should be taken with 
model specification [19]. We focus on describing the 
imputation of individual repeated measures as there is 
some evidence this performs better than imputing the 
composite variable, however, there may be instances 
where imputing the composite variable is more appropri-
ate [40, 41].

For applications to serially collected samples for a 
discrete time-to-event outcome, we propose MI as the 
method preferred to ACA or LOCF. Our implementation 
of MI can be adapted to many different study designs. We 
described how to use MI with weekly sample collection 
but this can easily be extended to studies with different 
sampling frequencies and lengths of time between sample 
collection. MI is also able to impute missing covariates or 
outcome values, a benefit over other ad hoc methods. We 
chose to demonstrate these methods for a time-to-event 
analysis, which has more power than a simple binary out-
come method of estimation. The same MI process would 
apply if the outcome was binary. We compared methods 

Fig. 4  Restricted mean survival time difference for smear negative – smear positive using 8-week time horizon. Method for handling missing data: 
available case analysis A), last observation carried forward B), multiple imputation by fully conditional specification C).  Time horizon of 7 weeks was 
used for ACA because all smear negative participants converted or were censored by week 7. Shaded regions represent unadjusted estimates of 
restricted mean survival time difference
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using the definition of two consecutive negative sam-
ples with weekly sputum collection, however, there is no 
standard definition of culture conversion and frequency 
of sample collection varies across studies [42]. The MI 
process detailed does not depend on the definition of cul-
ture conversion used.

TCC is often the primary outcome in phase II TB 
therapy trials and observational studies which both 
require multiple months of repeated sputum collec-
tions. These longitudinal studies are susceptible to 
missing specimens and it is difficult to obtain com-
plete follow up on individuals to properly calculate and 
determine the true time at which culture conversion 
is achieved. Failing to properly address missing data 
can yield biased results and potentially lead to misin-
formed conclusions.

Conclusions
This article addresses the common problem of missing 
data in longitudinal studies with repeated measures. We 
described two common naïve approaches and one statis-
tically advanced approach for handling missing data. We 
applied these methods to data from a TB cohort and con-
ducted a survival analysis to empirically compare meth-
ods. We showed that accounting for missing sputum data 
with different methods can lead to different results and 
conclusions. It is critical with longitudinal missing data 
to understand the implications and assumptions different 
methods for addressing missing data have and the influ-
ence this has on the final analysis. We used data from a 
TB study to demonstrate these concepts, however, the 
methods we described are broadly applicable to longitu-
dinal missing data. Careful consideration for how to han-
dle missing data must be taken and be pre-specified prior 
to analysis. We provide valuable statistical guidance and 
code for researchers to appropriately handle missing data 
in longitudinal studies.
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