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Abstract 

Background:  A critical step in trial design is determining the sample size and sample allocation to ensure the pro-
posed study has sufficient power to test the hypothesis of interest: superiority, equivalence, or non-inferiority. When 
data are available from prior trials and leveraged with the new trial to answer the scientific questions, the value of 
society’s investment in prior research is increased. When prior information is available, the trial design including the 
sample size and allocation should be adapted accordingly, yet the current approach to trial design does not utilize 
such information. Ensuring we maximize the value of prior research is essential as there are always constraints on 
resources, either physical or financial, and designing a trial with adequate power can be a challenge.

Methods:  We propose an approach to increasing the power of a new trial by incorporating evidence from a network 
meta-analysis into the new trial design and analysis. We illustrate the methodology through an example network 
meta-analysis, where the goal is to identify the optimal allocation ratio for the new three-arm trial, which involves the 
reference treatment, the new treatment, and the negative control. The primary goal of the new trial is to show that 
the new treatment is non-inferior to the reference treatment. It may also be of interest to know if the new treatment is 
superior to the negative control. We propose an optimal treatment allocation strategy which is derived from minimiz-
ing the standard error of the log odds ratio estimate of the comparison of interest. We conducted a simulation study 
to assess the proposed methods to design a new trial while borrowing information from the existing network meta-
analysis and compare it to even allocation methods.

Results:  Using mathematical derivation and simulations, we document that our proposed approach can borrow 
information from a network meta-analysis to modify the treatment allocation ratio and increase the power of the new 
trial given a fixed total sample size or to reduce the total sample size needed to reach a desired power.

Conclusions:  When prior evidence about the hypotheses of interest is available, the traditional equal allocation strat-
egy is not the most powerful approach anymore. Our proposed methodology can improve the power of trial design, 
reduce the cost of trials, and maximize the utility of prior investments in research.
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Background
Randomized controlled trials (RCTs) are the gold stand-
ard approach to evaluating new treatments. However, a 
single RCT is unlikely to be conclusive unless it is very 
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large and multi-centered. Pairwise meta-analysis and 
network meta-analysis (NMA) are tools used for sum-
marizing and combining the existing evidence from a 
network of RCTs. The advantage of meta-analysis is that 
it incorporates heterogeneity within and between tri-
als and therefore gives a pooled estimate of comparative 
efficacy using all the information available. When data 
are available from prior trials in a meta-analysis, it has 
been proposed that such prior information can be used 
in designing new trials and then the new trial results 
could immediately be incorporated into a meta-analysis 
to obtain an updated pooled estimate of comparative effi-
cacy [1–7]. An obvious advantage of leveraging evidence 
from the network is that it could reduce the required 
sample size or increase the power of the new trial.

Methods to plan a future trial based on the trial net-
work from a pairwise meta-analysis have been proposed 
[1–3]. The methods have been extended to NMAs 
[4–6]. Incorporating evidence from an NMA into new 
trial design offers unique advantages over pairwise 
meta-analysis because of the potential to leverage both 
direct and indirect evidence available from the network. 
Planning future studies to reduce the existing network’s 
irregularity has also been discussed [8]. The approaches 
to trial design informed by NMA published to date have 
often focused on designing either multiple trials or 
a single trial that will achieve a desired power or esti-
mation precision regarding existing treatments in the 
entire network [4–6, 8].

There does appear to be interest in the idea of lever-
aging prior research to design trials. In a survey on 76 
researchers regarding evidence-based planning of future 
trials [9], two thirds of participants were agreeable to 
considering synthesizing existing evidence to design a 
future trial. There has been, however, little published 
work utilizing such methodologies in designing new tri-
als to date.

A common goal of conducting a new clinical trial is 
to evaluate a new treatment against existing reference 
treatments and/or negative control. Interestingly, the 
previously published approaches have not addressed 
using the existing network to design a new trial when 
one of the treatments of interest is not currently 
included in the existing network. Here we propose an 
approach to using information from the existing net-
work meta-analysis to plan a trial with a new treatment 
not included in the existing network. The research 
question is how to optimize the power or total sample 
size of the future trial which includes a new treatment 
of interest. Gains in power or reductions in required 
total sample size are achieved over the traditional 

stand-alone power calculations by leveraging informa-
tion from the network of evidence and evaluating opti-
mal ways to allocate study subjects to the treatment 
groups. The methodological results are accomplished 
by an R shiny [10] application that allows end-users to 
upload a prior network and determine the most pow-
erful treatment allocation approach for a future three-
arm trial with a novel treatment.

Methods
We illustrate our proposed approach using a three-arm 
clinical trial where the goal is to test non-inferiority 
between a new treatment and a reference treatment. 
This was motivated by an application to the use of anti-
biotics to treat bovine respiratory disease (BRD). The 
question of non-inferiority was chosen because it is 
often more meaningful and realistic than asking if the 
new treatment is superior to current therapy. The new 
product might be equal in efficacy but cheaper or have 
other favorable attributes which would still motivate 
switching treatments. However, non-inferiority clinical 
trials are often underpowered or require large sample 
sizes due to the small comparative effect size between 
the new treatment and the reference treatment. The 
assessment of non-inferiority can be conducted in a 
two-arm between the referent and new treatments. 
However, if there is a concern that the reference treat-
ment (active treatment) might not be superior to the 
placebo (negative control) due to the absence of reliable 
historical data or disease etiology, then a negative con-
trol group should be included [11]. Thus it is common 
practice that at least three arms, the new treatment, 
the reference treatment, and the negative control, are 
included in such trials to study comparative effective-
ness of treatments [12–14].

The organization of the sections is as follows. In 
"Comparative effect size estimation in a traditional 
three-arm trial" section, we review traditional compar-
ative effect size estimation and its variation in a three-
arm trial which forms the basis for sample size and 
power calculations. Comparative effect size estimation 
of the new trial with existing fixed effects NMA model 
section provides the framework and formula used for 
the approach to analyse a three-arm trial with a fixed 
effects network meta-analysis. Optimal sample allo-
cation with a fixed total sample size section discusses 
allocation of study subjects to the treatment arm with 
a fixed total sample size for minimization of the vari-
ance of the effect estimation with an existing network. 
Design the new trial with the existing network to 
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achieve a desired power section explores the approach 
to calculating the required sample sizes for a new trial 
with the existing network to achieve a desired power.

Comparative effect size estimation in a traditional 
three‑arm trial
Suppose we need to conduct a new three-arm trial 
comparing treatment A, B and Z on a binary outcome, 
where A and B are treatments that already exist in the 
network (for example, A is negative control and B is ref-
erence treatment) and Z is a new treatment. Here we 
discuss a standard three-arm trial design with simple 
random sampling from the study population and ran-
dom allocation to treatment groups. The study popula-
tion should be chosen to be consistent with the studies 
in the existing NMA. Suppose the total sample size 
available for the new trial is fixed, denoted by n, and we 
are most interested in the comparison of Z to B. Let the 
number of samples assigned to treatment A, B, and Z 
in the new trial be nA , nB , and nZ , respectively, under 
the condition nA + nB + nZ = n . Let ri denote the num-
ber of events among the subjects that have taken the ith 
treatment, i ∈ {A,B,Z} . Then the number of events fol-
lows a binomial model,

where πi is the probability of event for treatment i. Utiliz-
ing a logistic model,

the maximum likelihood estimation approach can be 
used to estimate the coefficients β = (β1,β2,β3)

′ and 
obtain the Hessian matrix. In Eq. 1, β1 is the log odds of 
the probability of events in subjects that have taken treat-
ment A; β2 and β3 are the log odds ratios of treatment 
B over A and Z over A, respectively. Compared to the 
general notation of treatment effect in NMA literature, 
where µXY  denotes the log odds ratio of treatment Y over 
treatment X for any two treatments Y and X, we have the 
equivalences µBA = β2 , µZA = β3 and µBZ = β3 − β2 . 
The estimation variance of the comparative effect size of 
treatment Z to B, µBZ , is

where pi = ri/ni, i ∈ {A,B,Z}.
Under the condition that nB + nZ is fixed and 

pB = pZ , it can be shown by the inequality of arith-
metic and geometric means that Var(µ̂BZ) is mini-
mized when nB = nZ . Hence, without evidence from 
the existing network, an equal allocation approach 

ri ∼ binomial(ni,πi),

(1)log(
πi

1− πi
) = β1 + β2I(i=B) + β3I(i=Z),

(2)Var(𝜇̂BZ ) = Var(𝛽3 − 𝛽2) =
1

nBpB(1 − pB)
+

1

nZpZ (1 − pZ )
,

will minimize the variance if B and Z have the same 
efficacy.

Comparative effect size estimation of the new trial 
with existing fixed effects NMA model
Consider a network of T treatments involving treat-
ment A and B with J studies, and nj arms in the jth 
study, j = 1, ..., J  . Note that not all studies compare all 
treatments. For example, in a network with three treat-
ments, studies comparing only pairs of treatments can 
also be included. There are 

(T
2

)

 possible pairwise com-
parisons in the network, each associated with a com-
parative treatment effect parameter. We denote the set 
of comparative treatment effect parameters by µf  . Let 
µb = (µAB,µAC ,µAD, ...)

′ be a sub-vector of µf  of length 
T − 1 that involves the comparative effect parameters 
of all treatments to a baseline. Here the baseline is 
assumed to be treatment A which is the negative con-
trol, however the choice of baseline treatment does not 
impact the results of NMA [15]. The vector µb is the 
vector of basic parameters. We assume that the transi-
tivity and consistency assumptions are met for a net-
work meta-analysis [16–18]. In particular, under the 
consistency assumption, the vector µf  representing 
the comparative treatment effects between all pairwise 
comparisons is a linear combinations of µb . For exam-
ple, µBC = µAC − µAB.

In a fixed effects NMA we assume that there is one 
comparative effect size underlying the trials for each 
comparison. It follows that all of the differences in the 
observed comparative effect sizes of a pairwise compar-
ison are due to random variation (sampling error) [19]. 
Let yj denote the observed comparative effect size for the 
jth study, yj = (yj,1, ..., yj,nj−1)

′ , and y = (y′1, ..., y
′
J )
′ . Let 

µj be the vector of the comparative effect sizes of study 
j, µj = (µj,1, ...,µj,nj−1)

′ , and µ = (µ′
1, ...,µ

′
J )
′ . Then we 

have

where ǫj represents the vector of errors of study j. ǫj is 
assumed to be normally distributed and independent 
across studies and its covariance is cov(ǫj ) = Sj . Sj is a 
matrix of size (nj − 1)× (nj − 1) and is a scalar if study 
j only has two arms. The distribution of y is MVN(µ, S), 
where MVN stands for multivariate normal distribution; 
S is a block diagonal matrix with each block Sj , j = 1, ..., J  . 
Since µ is also a linear combination of µb , it can be writ-
ten as µ = Xµb , where X is the design matrix of size 

J
j=1 nj × (T − 1) . Each row of X corresponds to one 

study specific comparison and the columns represent the 
basic parameters, and 1, 0, and -1 are the possible val-
ues in the design matrix. If one row of X only has one 

yj = µj + ǫj , j = 1, ..., J ,
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element of 1 and other elements are 0, then this study 
specific comparison is a basic comparison. If 1 and -1 
occur in one row, then the comparative effect parameter 
of the corresponding comparison is a functional param-
eter. The distribution of y is then MVN

(

Xµb, S
)

. The 
maximum likelihood estimate of µb and its variance are

Now consider designing the new trial comparing A, B and 
Z with the existing network. Since treatment A and B are 
included in the network, we can borrow some informa-
tion from the existing network to improve the precision 
of estimate of the effect of treatment Z compared to B. 
Evidence can be borrowed from the network for compar-
ing Z and B since the indirect comparison Z-A-B can be 
constructed. By borrowing information from the indirect 
comparison Z-A-B, the standard error of the estimate of 
the comparative effect size of Z to B could decrease. Let 
the variance of the estimate of the comparative effect size 
of B to A calculated from the existing network be σ 2

AB,exg , 
where the subscript exg represents the existing network. 
Let the within-study variance of the three comparisons in 
the new trial be σ 2

AB, σ
2
BZ , σ

2
AZ . Without loss of generality, 

A is assumed to be the baseline treatment in the NMA. 
Then, the new trial is added to the existing network to 
become an updated network. The variance-covariance 
matrix of the new trial, denoted by Snew , the variance-
covariance matrix of the updated network, S∗ , and the 
updated design matrix, X∗ are

where Xnew and Qnew are separate parts of the design 
matrix of the new trial [20]. The columns in Xnew are for 
the previous basic parameters while Qnew is a 2× 1 vector 
of design for the new basic parameter µAZ . The estimate 
of comparative effect size of Z to B is µ̂BZ = µ̂AZ − µ̂AB . 
From the formula 3 and 4, the variance of µ̂BZ is then 
given by

By comparing Eq. 2 with Eq. 5, we can find that under the 
even allocation condition where nA = nB = nZ , Var(µ̂BZ) 
in Eq.  5 is less than that in Eq.  2 because of the third 
term in Eq. 5. This amount of reduction in variance is the 

(3)
µ̂b = (X ′S−1X)−1X ′S−1y,

Var(µ̂b) = (X ′S−1X)−1.

(4)Snew =

[

σ 2
AB

σ 2
AB+σ 2

AZ−σ 2
BZ

2
σ 2
AB+σ 2

AZ−σ 2
BZ

2 σ 2
AZ

]

, S∗ =

[

S 0

0 Snew

]

, X∗ =

[

X 0

Xnew Qnew

]

,

(5)
Var(𝜇̂BZ ) =

1

nBpB(1 − pB)
+

1

nZpZ (1 − pZ )

−
1

[nBpB(1 − pB)]
2(𝜎2

AB,exg
+

1

nApA (1−pA )
+

1

nBpB (1−pB )
)
.

contribution of borrowing information from the existing 
network.

Optimal sample allocation with a fixed total sample size
In "Comparative effect size estimation of the new trial 
with existing fixed effects NMA model" section, we 
showed that under the even allocation condition, the 
variance of the comparative effect size of interest can be 
reduced. Whether the even allocation condition is the 
optimal sample allocation strategy in terms of minimiz-
ing the variance remains unknown. The variance formula 
is a function of the allocation: Var(µ̂BZ) = f (nA, nB, nZ) . 
Based on its derivation, the allocation strategy for the 
new trial is an optimization problem given by:

We set the constraint on the minimum number of sam-
ples for each treatment to be 10 to ensure the statistical 
inference on the new trial is based on a reasonable num-
ber of subject in each group. Without this constraint 
samples size of 1 is a possible solution mathematically, 
which is not practically feasible though, especially when 
the outcome is binary. The constraint value 10 can be 
changed to other appropriate numbers, such as 3 or 
5, depending on the exact trial study scenario. Closed 

form solutions do not exist for minimizing this func-
tion. Therefore, nonlinear optimization methods can be 
used for obtaining the optimal allocation. In particular, 
we utilize the “differential evolution optimization” [21]. 
Although this optimization method is used over a contin-
uous space, the integer solution can be obtained by enu-
merating all possible integers around the global solution.

Design the new trial with the existing network to achieve 
a desired power
Optimal sample size allocation can be used to minimize 
the standard error of the estimates of the comparison of 
interest to maximize the power given a fixed total sample 
size; and it can also be used to minimize the total sam-
ple size given a desired power. We illustrate this with a 

(6)
minimize f (nA , nB , nZ ) =

1

nBpB (1−pB )
+

1

nZpZ (1−pZ )
−

1

[nBpB (1−pB )]
2 (�2

AB,exg
+

1

nApA (1−pA )
+

1

nBpB (1−pB )
)

s.t nA + nB + nC = n
nA, nB and nC ≥ 10
nA, nB and nC are positive integers.
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non-inferiority example. If the research question is about 
non-inferiority, then the hypotheses are

where M is the non-inferiority margin which is speci-
fied in advance. The power of testing the non-inferiority 
hypothesis is given by

where �(·) is the standard normal cumulative distribu-
tion function; Zα/2 is the upper α/2 th quantile of the 
standard normal distribution.

If the research question is about detecting a difference, 
then let the null hypothesis H0 and alternative H1 be 
µAZ = 0 and µAZ  = 0 , respectively. Once the minimized 
variance of µ̂AZ is obtained, the power is given by

Note that in a three-arm trial it is not possible to maxi-
mize the testing power of two comparisons simultane-
ously. With a predefined power, one can calculate the 
corresponding standard error and then numerically back-
calculate the sample size and its allocation.

R shiny application
The formulae above outline the basis for the sample size 
and/or power calculation. Moreover, to facilitate using 
these formulae we also provide anR shiny​ app(https://​
amoco​nnor.​shiny​apps.​io/​NMA-​three-​arms-​sample-​
size/) that enables users to implement the proposed 
method. The instructions for data formatting and 
requirements can be found in the R-shiny app. Users can 
upload a NMA dataset and select the control and refer-
ent treatments to be included in the new trial. Users can 
also specify the comparison of interest, type of testing 
(e.g. superiority, non-inferiority or bioequivalence), and 
trial restriction (e.g. fixed total sample size or a desired 
power). Based on the data and the settings, this applica-
tion can automatically calculate the optimal sample size 
allocation.

Application and Simulation
Here we discuss an application to use of antibiotics for 
the treatment of bovine respiratory disease (BRD) and 
conduct a simulation study to assess the performance of 
the proposed methods to design a new trial while bor-
rowing information from the existing NMA and compare 
it to traditional methods.

H0 : µBZ >= M, H1 : µBZ < M,

(7)Power = �(−
µBZ −M

√

Var(µ̂BZ)
− Zα),

(8)Power = Φ(
𝜇
AZ

√

Var(𝜇̂
AZ

)
− Z𝛼∕2) + Φ(−

𝜇
AZ

√

Var(𝜇̂
AZ

)
− Z𝛼∕2).

Application
In this section, the dataset comes from a previously pub-
lished network meta-analysis and consists of 98 trials, each 
comparing a subset of 13 treatments of antibiotics for BRD 
[22, 23]. Most trials contain two arms, except for eight 
three-arm trials. The outcome is the dichotomous disease 
status, and the log odds ratio of the outcome is used to 
compare treatments, where a negative comparative effect 
size of treatment A to B indicates that A is better. A net-
work plot is shown in Fig. 1. Note that most of the trials 
in the network involve comparisons with negative control.

In BRD, three-arm designs are common because BRD 
is a disease syndrome with complex etiology that can 
involve bacteria and virus agents [24–26]. The causes are 
not established in individual trials or animals. Therefore, 
it is feasible that in any particular trial population, the 
disease might be viral in origin and resistant to antibiotic 
treatment. In such a study population with viral-based 
BRD, we would expect recovery to be the same in both 
treatment groups and the negative control, thus the inclu-
sion of a negative control would help to document that 
no treatment was effective. Due to this situation, even 
historical data is unlikely to provide a sufficient rationale 
for the omission of a negative control for non-inferiority 
studies because BRD is unique in each population.

Suppose, researchers of BRD would like to conduct a 
new three-arm trial with a new treatment Z and two treat-
ments existing in the current network, as illustrated in 
Fig. 2. In the following subsections, we will discuss several 
scenarios in which the new three-arm trial is going to be 
conducted. For each scenario, our proposed method is uti-
lized first to calculate the optimal sample size allocation. 
The new trial data is then generated and analysed follow-
ing the procedure described in "Simulation data generation 
and analysis procedure" section using both the proposed 
optimal allocation and the traditional even allocation. Trial 
scenario 1: testing non-inferiority section discusses appli-
cation and performance of our proposed methodology 
using example trial scenarios for testing non-inferiority. 
Last, an application of our proposed method in a trial sce-
nario for testing superiority is discussed in "Trial scenario 
2: testing superiority" section. As discussed previously, the 
network meta analysis in this section is performed using a 
fixed effect contrast-based model.

Simulation data generation and analysis procedure
A summary of the procedure to generate and analyze the 
new trial data is described as follows: 

1	 From a network meta-analysis of the existing net-
work, the expected probability of the outcome in 

https://amoconnor.shinyapps.io/NMA-three-arms-sample-size/
https://amoconnor.shinyapps.io/NMA-170three-arms-sample-size/
https://amoconnor.shinyapps.io/NMA-170three-arms-sample-size/
https://amoconnor.shinyapps.io/NMA-170three-arms-sample-size/
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treatment A and B, respectively πA and πB , can be 
estimated. The expected probability of the outcome 
in treatment Z, πZ , can be obtained either from a 
preliminary study or from an expert.

2	 Data representing the new study is generated by 
simulating ri samples from a binomial distribution 
Binom(ni, pi ), i ∈ {A,B,Z} , where ri is the number of 
outcome events in treatment i.

3	 The simulated data can be analysed by a generalized 
linear model and the point estimate and standard 
error of the comparative effect size (log odds ratio) of 
treatment Z to B can be obtained from the result.

4	 The result of the analysis of the new study is then 
added to the existing network, which is then re-ana-
lysed.

5	 The hypothesis test on which decisions are to be 
based for the comparative effect size of treatment 
Z to B is then considered and whether the null is 
rejected at a specified significance level ( α = 0.05 in 
this paper) is noted.

6	 Steps 2-5 are repeated (10,000 in this paper) and the 
outcome of each hypothesis test (step 5) is recorded. 
The results are summarized and reported as power 
or type I error rate for hypothesis testing.

The criteria for superiority of a treatment to the negative 
control is that the upper limit of the 95% one-sided con-
fidence interval of the log odds ratio of the treatment to 
the negative control is lower than zero. The criteria for 
non-inferiority of the new treatment to the reference 
treatment is that the upper limit of the 95% one-sided 
confidence interval (the lower limit is −∞ because the 
non-inferiority test is one-sided) of the log odds ratio 
should be lower than a predefined non-inferiority margin 
M (as in Eq. 7) which is set to be 0.2 in the application of 
testing non-inferiority.

In "Trial scenario 1: testing non-inferiority" section, 
we illustrate applications of our methodology using 
an example of assessing non-inferiority. In the first 
application, we assume the total sample size is fixed, 

Fig. 1  Bovine respiratory disease (BRD) network consisting of 13 antibiotics treatments
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and in the second application we assume a desired 
power is needed. The new three-arm trial has a nega-
tive control (NC), enrofloxacin (ENFO) and the new 
treatment Z. In this simulation, we assume that Z 
is non-inferior to ENFO and it has exactly the same 
probability of the outcome, in this case recurrence 
of disease, as ENFO. The probability of the outcome 
in the NC group ( pNC ) is 0.681 and is estimated by 
∑

j rj/
∑

j nj , where j is the jth trial that includes NC. 
The probability of the outcome in the ENFO group 
( pENFO ) is calculated from the log odds ratio of NC 
to ENFO, denoted by LORENFO,NC , which is obtained 
from the fixed network meta-analysis model analysis. 
That is pENFO = pNC ⋅ e−LORENFO,NC ∕(pNC ⋅ e−LORENFO,NC + 1 − pNC ) = 0.2229 , where 
LORENFO,NC = 2.007 . Another quantity obtained from 
the fixed network meta-analysis model is the standard 
error of LORENFO,NC which plays a role in determining 
the optimal sample allocation.

In "Trial scenario 2: testing superiority" section, we 
show that the methodology can be applied to superiority 
trials.

Trial scenario 1: testing non‑inferiority
Fixed total sample size
In this example, the total sample size available for all 
three treatments are 2400, 3000, or 3600. Large sam-
ples sizes are not unexpected for a test of equivalence 
for a highly effective treatment. For each total sample 
size limit we compare three scenarios: even allocation of 
study subjects without the existing network, even allo-
cation of study subjects with the existing network, and 
optimal allocation of study subjects with the existing net-
work. Under the null hypothesis when testing non-infe-
riority, the new treatment Z is classified as non-inferior 
(reject the null hypothesis) to the ENFO in terms of effi-
cacy if the upper boundary of the 95% confidence interval 

Fig. 2  A new three-arm trial with a new treatment Z and two existing treatments
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of the estimates of the log odds ratio of Z to ENFO is less 
than 0.2. For example if the upper limit of 95% confidence 
interval is 0.1 we would reject the null and conclude Z 
is non-inferior to ENFO. The null hypothesis of testing 
non-inferiority is that Z is inferior to ENFO. To assess the 
type I error rate, we set the comparative effect size of Z to 
ENFO to 0.2 which is equal to the predefined non-infe-
riority margin and then back-calculate the probability of 
retreatment of Z which is 0.2613. The difference is prob-
ability of retreatment of Z and ENFO indicates that Z is 
inferior to ENFO. The type I error rate of testing non-
inferiority from the simulations are reported in Table 1. 
The type I error rate is well controlled for all scenarios.

To assess the power of a study with a fixed sample 
size, the comparative effect size of Z to ENFO is set 

to 0 which means these two treatments have the same 
probability of retreatment , 0.2229 to ensure Z is indeed 
non-inferior to ENFO. The power analysis results are 
shown in Table  2. In the even allocation strategy, the 
power of the non-inferiority comparison between Z 
and ENFO in the network meta-analysis with the new 
trial is about 8% higher than that in the single trial anal-
ysis for all sample sizes listed. It means that the indi-
rect evidence from the comparison between NC and 
ENFO in the existing network, as a part of the indirect 
evidence, does contribute to reduce the standard error 
of the estimate of the comparative effect size of Z to 
ENFO. The non-inferiority power with optimal sam-
ple allocation is about 7% higher than the even alloca-
tion strategy for all these three sample sizes. Utilizing 

Table 1  Type I error rate of testing non-inferiority for different fixed sample sizes under different sample allocation scenarios. pNC is 
the probability of retreatment after beef cattle being treated with negative control. ENFO is enrofloxacin; Z is the new treatment. The 
log odds ratio of Z to ENFO is 0.2 which indicates Z is inferior to ENFO. Sample allocation is the number of samples assigned to each 
treatment. For example, (87, 1140, 1173) means the number of samples assigned to NC, ENFO, and Z are 87, 1140, and 1173

total sample size pNC pENFO pZ sample allocation (NC, 
ENRO, Z)

with existing 
network

non-
inferiority 
type I error

2400 0.681 0.2229 0.2613 (800, 800, 800) No 4.24%

2400 0.681 0.2229 0.2613 (800, 800, 800) Yes 3.83%

2400 0.681 0.2229 0.2613 (87, 1140, 1173) Yes 4.02%

3000 0.681 0.2229 0.2613 (1000, 1000, 1000) No 3.87%

3000 0.681 0.2229 0.2613 (1000, 1000, 1000) Yes 3.32%

3000 0.681 0.2229 0.2613 (87, 1448, 1465) Yes 3.91%

3600 0.681 0.2229 0.2613 (1200, 1200, 1200) No 3.85%

3600 0.681 0.2229 0.2613 (1200, 1200, 1200) Yes 3.28%

3600 0.681 0.2229 0.2613 (87, 1757, 1756) Yes 3.66%

Table 2  Power of testing non-inferiority for different sample sizes under different sample allocation scenarios. Sample size is the total 
number of samples available in the new trial. pNC is the probability of retreatment after beef cattle being treated with negative control. 
ENFO is enrofloxacin; Z is the new treatment. Sample allocation is the number of samples assigned to each treatment. For example, 
(87, 1108, 1205) means the number of samples assigned to NC, ENFO, and Z are 87, 1108, and 1205

total sample size pNC pENFO pZ sample allocation (NC, 
ENFO, Z)

with existing 
network

non-
inferiority 
power

2400 0.681 0.2229 0.2229 (800, 800, 800) No 50.43%

2400 0.681 0.2229 0.2229 (800, 800, 800) Yes 58.28%

2400 0.681 0.2229 0.2229 (87, 1108, 1205) Yes 65.40%

3000 0.681 0.2229 0.2229 (1000, 1000, 1000) No 58.33%

3000 0.681 0.2229 0.2229 (1000, 1000, 1000) Yes 67.07%

3000 0.681 0.2229 0.2229 (87, 1408, 1505) Yes 73.06%

3600 0.681 0.2229 0.2229 (1200, 1200, 1200) No 65.17%

3600 0.681 0.2229 0.2229 (1200, 1200, 1200) Yes 73.65%

3600 0.681 0.2229 0.2229 (87, 1708, 1805) Yes 80.51%
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the optimal allocation based on the existing network 
improves the power further. Hence, from even alloca-
tion without the existing network to optimal allocation 
with the existing network, the non-inferiority power 
increases in two ways. One is to borrow information 
from the indirect comparison; the other is to optimize 
sample assignment.

Specific desired power
It is a common practice to specify a desired power of 
testing the research hypothesis in designing a new trial. 
Here we set the desired power to be 80% as an exam-
ple for illustration purposes. The standard error needed 
to reach the 80% power is back calculated from Eq.  7 
for the same non-inferiority scenario as in the previ-
ous subsection. It is then used to determine the needed 
total sample size based on Eq.  6 for analyses with the 
existing network and Eq.  2 for analyses without the 
existing network. Table  3 shows the total sample size, 
sample allocation and power obtained from the 10,000 
simulated trials under this scenario. Using the existing 
network and uneven allocation enables a substantially 

smaller sample size which is 3559, about 40% less than 
the one without the existing network (5355).

Trial scenario 2: testing superiority
Here we utilize the same BRD data to illustrate our pro-
posed method for assessing superiority with an example 
new three-arm trial. The new three-arm trial involves 
NC, treatment Ceftiofur Sodium (CEFTS), and a new 
treatment of interest Z. The new treatment Z is supposed 
to have the same efficacy as CEFTS and the research 
question of interest is to detect a difference between the 
new treatment Z and NC. Here we set the new treatment 
to have the same efficacy as CEFTS instead of ENFO 
(which was used in previous illustrations) because the 
difference between CEFTS and NC is moderate so that 
it gives good example for illustrating the difference in 
testing power between methods. The powers of testing 
superiority based on simulation results for different sam-
ple sizes and under different sample allocation strategies 
are shown in Table 4. As with the previous example, the 
increase in power benefits from two aspects, the exist-
ing network and the optimized sample allocation. The 
increase in power, which is not fixed, is related to the 

Table 3  Calculated sample size needed under different sample allocation scenarios to reach 80% non-inferiority power.Sample size is 
the total number of samples available in the new trial. pNC is the probability of retreatment after beef cattle being treated with negative 
control. ENFO is enrofloxacin; Z is the new treatment. Sample allocation is the number of samples assigned to each treatment. For 
example, (87, 1687, 1785) means the number of samples assigned to NC, ENFO, and Z are 87, 1687, and 1785

total sample size pNC pENFO pZ sample allocation (NC, 
ENRO, Z)

allocation type with existing 
network

non-
inferiority 
power

5355 0.681 0.2229 0.2229 (1785, 1785, 1785) even No 80.01%

4584 0.681 0.2229 0.2229 (1528, 1528, 1528) even Yes 80.00%

3559 0.681 0.2229 0.2229 (87, 1687, 1785) uneven Yes 80.02%

Table 4  Power of testing superiority of Z to NC for different total sample sizes under different sample allocation scenarios. Sample 
size is the total number of samples available in the new trial. pNC is the probability of retreatment after beef cattle being treated with 
negative control. CEFTS is Ceftiofur Sodium; Z is the new treatment. Sample allocation shows the number of samples assigned to each 
treatment. For example, (30, 31, 59) means the number of samples assigned to NC, CEFTS, and Z are 30, 31, and 59

total sample size pNC pCEFTS pZ sample allocation (NC, 
CEFTS, Z)

with existing 
network

superiority Z to NC

60 0.681 0.4303 0.4303 (20, 20, 20) No 31.97%

60 0.681 0.4303 0.4303 (20, 20, 20) Yes 45.37%

60 0.681 0.4303 0.4303 (10, 20, 30) Yes 47.81%

120 0.681 0.4303 0.4303 (40, 40, 40) No 64.48%

120 0.681 0.4303 0.4303 (40, 40, 40) Yes 74.43%

120 0.681 0.4303 0.4303 (30, 31, 59) Yes 78.13%

180 0.681 0.4303 0.4303 (60, 60, 60) No 80.56%

180 0.681 0.4303 0.4303 (60, 60, 60) Yes 89.54%

180 0.681 0.4303 0.4303 (61, 31, 88) Yes 92.89%
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total sample size, the log odds ratio of the treatments of 
interest and the existing network. For example, the power 
goes from 31% to 48% given the sample size is 60 while 
the difference in power is only 12% if the sample size is 
180. The gain in power from the optimal sample alloca-
tion compared to the even allocation is about 3% in all 
three sample size scenarios. Similar to the non-inferiority 
example, the fixed power situation can also be applied 
in this superiority example to determine the total sam-
ple size to reach a certain power. Note that the sample 
allocation ratio of NC to Z changes dramatically as the 
sample size goes from 60 to 180. This is because in the 
superiority testing, NC is included in the comparison 
of interest. When the sample size is 60, the information 
from the indirect comparison NC-CEFTS-Z is more 
than that from the direct. Therefore, nearly all samples 
are allocated to CEFTS and Z. Because we set the mini-
mum number of samples for each treatment to be ten in 
the optimal allocation strategy, there are still ten samples 
allocated to NC, which is used to rationalize the three-
arm trial. As the sample size increases, information from 
the direct comparison becomes dominant hence the allo-
cation optimization puts more weight on both treatments 
which are NC and Z in the comparison of interest.

Discussion
In this paper, a sample allocation strategy is proposed to 
improve the power of a new trial by leveraging evidence 
from an existing network meta-analysis when the total 
sample size is fixed. The results clearly show that if a prior 
network is available it is feasible to reduce the required 
sample size or increase the power if the prior network of 
evidence is utilized. Given the importance of maximizing 
the value of prior research and efficiently using current 
resources, the approach we propose has the potential to 
help researchers as they design experiment [27]. Further, 
this approach to trial design is entirely consistent with 
ethical animal use guidelines to replacement, reduc-
tion and refinement, by reducing the number of animals 
required for animal research [28].

Network meta-analysis provides a quantitative frame-
work to enlighten the design of new trials [6]. Several 
prior studies have discussed approaches to planning 
future studies based on the existing meta-analysis or 
network meta-analysis [2, 4, 6]. These papers focus 
on designing a new trial within the network frame-
work which means the treatments in the new trial are 
already in the existing network. While in our work, the 
focus is on trials with a treatment arm which has not 
been included in the existing network. Additionally, our 
work considers leveraging evidence from the network 
meta-analysis while most of the literature in this topic 
addresses how the existing network provides guidance 

on new trials. Moreover, in this paper, we optimize sam-
ple allocation to improve the power of the comparison of 
interest in the new trial given the sample size fixed.

The goal of this paper is to improve the power of a new 
trial by borrowing information from an existing network. 
The extent of improvement depends on many aspects 
such as the sample size, the precision of estimates in 
the existing network, etc. If the prior network is small 
it is possible that the improvement in power is minimal 
compared with the even allocation scenario without the 
existing network. Additionally, it is possible that the opti-
mal allocation is extremely unbalanced (e.g. one sample 
allocated to NC in row three of Table 4) since the goal is 
only to maximize the power while the extremely unbal-
anced allocation may not be viable in reality. In these 
cases, it is suggested the new trial designer balance the 
benefit and cost of using an optimal allocation strategy. 
Although we suspect there may be resistance to the use 
of such method, particularly if the sample allocation is 
very uneven (e.g. very few samples in one treatment), this 
method provides researchers with an option to improv-
ing the power of the new trial, especially for trials with 
limited number of samples available.

Limitations
Same as all methodologies on NMA, our proposed 
method is also based on the general NMA assumptions, 
namely exchangeability, transitivity and consistency. The 
consistency assumption is a form of exchangeability and 
states that the direct and indirect evidence are in agree-
ment. Such assumption may not always be plausible in 
practice. When heterogeneity is present, NMA analyses 
and results based on the consistency assumption are sub-
ject to bias. Assumption similar to the consistency has 
been studied in the context of supplementing new clini-
cal trials with historical control data [29]. One important 
feature of such work is to discount historical informa-
tion relative to information from the new trial, to avoid 
potential biases. It has been shown that there is difficulty 
in determining the appropriate degree of discounting the 
historical [30, 31]. Galwey [31] has also shown that con-
clusions can be highly sensitive to assumptions about dif-
ferences between the historical and the new data.

Future directions
Both fixed effects and random effects NMA models 
have been widely used in literature [1, 2, 5, 19], with the 
major difference being that the random effects NMA 
model contains a random effect of between study varia-
tion. This between study variation in the new treatment 
can not be assessed without NMA when there is only 
one new trial that contains the new treatment. We thus 
develop our proposed methodology in the framework 
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of fixed effects NMA so that the scope of inference are 
comparable to the traditional standalone approach to 
analyzing the single new trial. It is possible to derive 
formulas in the framework of random effects NMA 
based on the same concepts as presented in this paper, 
which might be of interest to some researchers, espe-
cially when multiple new trials that contain the new 
treatment are being planned. Homogeneous between-
study variance is a key assumption and needs to be 
assessed in constructing in random effects NMA mod-
els [32].

Methods exist for detecting and addressing the 
inconsistency in the context of NMA, e.g., the ‘incon-
sistency factors’ model, and the inconsistency degrees 
of freedom (ICDF) [33]. Van Rosmalen et al. [34] used 
simulation studies to show that methods estimating 
parameters for the between-trial heterogeneity gener-
ally offer the best trade-off between power, precision 
and type I error. It would be feasible to extend our 
proposed method to inconsistency NMA models that 
would accommodate and estimate the inconsistency 
parameters.

The proposed study can be extended to neutrosophic 
statistics [35, 36] which is the extension of classical statis-
tics and is applied when the data is coming from a com-
plex process or from an uncertain environment.
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