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Abstract 

Background:  An external control arm is a cohort of control patients that are collected from data external to a single-
arm trial. To provide an unbiased estimation of efficacy, the clinical profiles of patients from single and external arms 
should be aligned, typically using propensity score approaches. There are alternative approaches to infer efficacy 
based on comparisons between outcomes of single-arm patients and machine-learning predictions of control 
patient outcomes. These methods include G-computation and Doubly Debiased Machine Learning (DDML) and their 
evaluation for External Control Arms (ECA) analysis is insufficient.

Methods:  We consider both numerical simulations and a trial replication procedure to evaluate the different statisti-
cal approaches: propensity score matching, Inverse Probability of Treatment Weighting (IPTW), G-computation, and 
DDML. The replication study relies on five type 2 diabetes randomized clinical trials granted by the Yale University 
Open Data Access (YODA) project. From the pool of five trials, observational experiments are artificially built by replac-
ing a control arm from one trial by an arm originating from another trial and containing similarly-treated patients.

Results:  Among the different statistical approaches, numerical simulations show that DDML has the smallest bias 
followed by G-computation. In terms of mean squared error, G-computation usually minimizes mean squared error. 
Compared to other methods, DDML has varying Mean Squared Error performances that improves with increasing 
sample sizes. For hypothesis testing, all methods control type I error and DDML is the most conservative. G-computa-
tion is the best method in terms of statistical power, and DDML has comparable power at n = 1000 but inferior ones 
for smaller sample sizes. The replication procedure also indicates that G-computation minimizes mean squared error 
whereas DDML has intermediate performances in between G-computation and propensity score approaches. The 
confidence intervals of G-computation are the narrowest whereas confidence intervals obtained with DDML are the 
widest for small sample sizes, which confirms its conservative nature.

Conclusions:  For external control arm analyses, methods based on outcome prediction models can reduce estima-
tion error and increase statistical power compared to propensity score approaches.
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Background
There is an increasing interest in using external control 
arms (ECA) as a source of evidence to assess treatment 
efficacy. An ECA consists of a cohort of patients that 
serve as controls to an intervention arm from a clinical 
trial, and these control patients are collected from data 
sources external to the single-arm trial [1, 2]. After 
running a single-arm phase 2 study, usage of ECA is 
relevant to reduce false positive rates [3]. ECAs are 
also relevant to supplement randomized trials when 
randomization is unethical or when it is difficult to 
recruit patients, typically for rare diseases or in precision 
oncology where recruitment relies on biomarkers [4].

However, causal inference in non-randomized 
studies such as ECA is prone to confounding bias [5, 6]. 
Without randomization, estimation of treatment effect 
can be biased partly because of differences between the 
characteristics of patients in the two arms. Methods 
based on propensity scores are well established to account 
for confounding factors [7–10]. Propensity scores relies 
on the exposure model that provides a mapping between 
patient characteristics and the probability to be in the 
external arm. As an alternative, there are several methods 
that require prediction of clinical outcomes based on 
covariates and on treatment [11, 12]. In epidemiology, 
G-computation is such an alternative, and it is based 
on the counterfactual framework in which we posit that 
we can predict a patient outcome if the patient would 
have been enrolled in the control arm instead of the 
experimental one or vice-versa, making the inference 
of a causal effect theoretically possible [11]. With the 
advent of causal inference in machine learning, the 
counterfactual framework has been re-investigated and 
new methods were proposed including doubly debiased 
machine learning [12], which addresses bias of machine 
learning estimators. Here, we consider both synthetic 
simulations and data of clinical trials to evaluate 
statistical properties of both propensity score and 
outcome prediction methods. Evaluated methods seek 
to estimate the average treatment effect on the treated 
(ATT), which is defined as the benefit of the investigated 
treatment when averaged over the characteristics of the 
individuals originating from the intervention arm of the 
clinical trial.

The first class of statistical methods relies on 
propensity scores that are computed after learning an 
exposure model e, which relates individual covariates to 
the probability to lie in the experimental arm. Exposure 
model can be estimated using a logistic regression. 
Treatment effect is then estimated using patients 
matching and/or weighting, such as the distribution of 
the propensity scores should be the same in both arms. 
Rosenbaum an Rubin [13] showed that if positivity and 

conditional ignorability hold, then conditioning on the 
propensity score allows to obtain unbiased estimates of 
average treatment effects [14]. Conditional ignorability 
means that there are no unmeasured confounders. 
Mathematically, it states that given a set of covariates X, 
treatment assignment T is independent of the potential 
outcomes ( Y 0,Y 1 ) that would be realized when the 
treatment T is equal to 0 (control) and 1 (investigated 
treatment). The second assumption is positivity and it 
assumes that 0 < P(T = 1|X) < 1 , for all values of X, 
which means that every subject has a nonzero probability 
to receive the control treatment and the investigated 
treatment. If the exposure model is misspecified, 
potentially because parametric assumptions of logistic 
regression are not valid, then estimators of treatment 
effect might be biased [15].

The second class of methods, outcome prediction 
methods, relies on the outcome model µ0 , sometimes 
named Q-model, which is the conditional expectation of 
the clinical outcome based on covariates X [11]. Because 
we focus on the estimation of the average treatment 
effect on the treated (ATT), the nuisance function µ0 
corresponds to the expected outcome for a patient 
enrolled in the control arm (see Section 2). By contrast, 
estimation of the average treatment effect (ATE) would 
have required outcome prediction as function of both 
the treatment and the covariates, which is the standard 
definition of the Q model [11]. Fitting the Q model can 
be done with flexible machine learning models such 
as boosted trees or neural networks [16, 17]. Machine 
learning models can be trained using regularization to 
limit overfitting. However, while reducing variance of 
estimators, regularization can bias estimation of outcome 
model that can in turn bias estimation of treatment effect 
[12]. Doubly debiased machine learning (DDML) is 
related to G-computation but it further accounts for the 
possible bias of machine learning outcome models [12]. 
DDML requires to estimate both the exposure model 
e and the outcome model µ0 , and flexible models can 
be fitted to infer both e and µ0 , which are considered 
as nuisance parameters [18]. DDML is an instance of a 
doubly robust estimator because it requires that only one 
of the exposure and outcome models need be correctly 
specified in order to obtain an unbiased estimator of 
treatment effect. To provide unbiased estimation of 
treatment effect, DDML relies on Neyman orthogonal 
scores and on cross fitting, which is a sample splitting 
approach [12].

There is a lack of studies based on clinical trial 
data that compares propensity score approaches and 
methods based on outcome modelling. Propensity score 
matching and weighting are two common methods 
used to provide evidence of drug effectiveness and we 
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seek to evaluate to what extent statistical analysis can 
be improved with outcome based modelling. Numerical 
simulations suggest that G-computation reduces bias 
and variance of causal inference estimate compared 
to propensity-score approaches [19, 20]. Another 
simulation study finds that DDML was among the top 
performers methods to estimate average treatment effect 
[21]. However, comparisons based on actual trial data 
are insufficient. Here we consider an internal replication 
framework for evaluation of causal inference methods 
[22]. It is based on comparisons between randomized 
studies that provide ground truths for treatment effect 
and artificial non-randomized studies consisting of the 
grouping of the experimental arm and of the standard-
of-care arm, which are derived from two different 
clinical trials [23]. An internal replication framework 
was used for instance to demonstrate that propensity 
score matching is highly sensitive to baseline covariates 
included in the exposure model [24]. Internal replication 
framework are not the only setting to compare results 
from RCT and from observational data. Several 
studies compared results obtained from observational 
data to the conclusions obtained from randomized 
experiments, which are considered as ground truth 
[25–28]. However, heterogeneity of treatment effect can 
explain the difference of efficacy measured in a RCT and 
observational setting [29, 30]. By contrast, there is no 
expected difference of treatment effect (ATT) in internal 
replication studies when comparing efficacy obtained 
from randomized and non-randomized experiment [22]. 
Our internal replication study is based on data from the 
YODA project, which includes a pool of type 2 diabetes 
randomized clinical trials sharing arms with the same 
treatment delivered to patients (Canagliflozin) [31, 32].

Methods
Average treatment effect on the treated (ATT)
Generally, the primary quantity of interest in interven-
tional clinical trials is the efficacy of an investigated treat-
ment compared to another standard of care or placebo 
treatment. Formally, from the study cohort comprising 
of two groups, each exposed to a different treatment T 
(0 for control, 1 for experimental treatment), the tar-
get is to infer the average treatment effect on the treated 
(ATT). The ATT corresponds to the difference between 
the outcome of a patient treated with the experimental 
drug and a control patient when averaging over baseline 
clinical attributes X of patients belonging to the experi-
mental treatment arm. Using the formalism of potential 
outcomes, the ATT is defined as [33]

ATT = E

[

Y 1 − Y 0|T = 1
]

,

where Y 0 (respectively Y 1 ) is the potential outcome for 
a unit that undergoes treatment 0 (respectively 1). The 
observed outcome Y can be expressed as

For a given patient, only one of the two potential 
outcomes is realized and observed, the other is named a 
counterfactual outcome. The ATT estimand is different 
from the average treatment effect that is obtained as

If either the propensity score e(X) = E[T |X] is 
constant (randomization) or the Conditional Average 
Treatment Effect CATE = E Y 1 − Y 0|X  is constant 
(no heterogeneity), then ATT and ATE are equal. In 
the following, we will also denote by µ0 = E

[

Y 0|X
]

 , the 
conditional expectation of the outcome for patients in 
the control arm.

Estimators of the average treatment effect of the treated
The problem of causal inference for external control arm 
analysis revolves around the two populations’ prognosis 
characteristics not being of equal distribution in the two 
arms. A solution to balance populations’ characteristics 
is to reweight or choose units such that the two result-
ing virtual populations match as closely as possible. To 
balance populations, the exposure model e(·) should be 
estimated when considering propensity score matching 
(PSM) and Inverse Probability of Treatment Weight-
ing (IPTW). The PSM estimator selects matched units 
in each group whereas IPTW re-weights units based on 
functions of the propensity score, which leads to the fol-
lowing estimator [34, 35]

where Xi,Yi,Ti are the covariates, outcome, and 
treatment for the ith individual, 1, . . . , n1 are the indices 
of the individuals in the experimental arm, n1 + 1, . . . , n 
are the indices of the individuals in the external arm, 
n, n1 are the sample sizes for the whole sample and the 
experimental arm only, and ê is an estimator of the 
exposure model.

For propensity score matching, we consider a greedy 
nearest neighbor algorithm without replacement with 
a caliper as an hyper-parameter. The algorithm consists 
in selecting the pairs of one treated patient and one 
control patient with the closest propensity score values. 
The algorithm iterates until there is no patient left in 
the treated arm or if the propensity score distances of 

Y = Y 1T + Y 0(1− T ).

ATE = E

[

Y 1 − Y 0
]

.

ˆATTIPTW = 1

n1

n
∑

i=1

Yi

(

Ti −
ê(Xi)(1− Ti)

1− ê(Xi)

)

,
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the non-selected individuals are greater than a caliper 
of 0.25. The patients that have not been selected are 
discarded from the downstream efficacy analysis.

The first estimator based on outcome prediction 
we consider is the G-computation estimator [19, 36]. 
G-computation does not rely on estimation of the 
propensity score but on the the conditional expectation 
of the outcome µ0 . For each treated patient defined by 
his covariates X and outcome Y, we can predict a control 
counterfactual outcome µ̂0(X) , and the G-computation 
estimator is defined as the average over the experimental 
arm of the difference between the measured and 
counterfactual outcome

where µ̂0 is an estimator of the nuisance function.
Machine learning estimators can be biased in order 

to avoid overfitting and this is especially true when 
the dimension of the covariates X is large [37]. Dou-
bly debiased machine learning (DDML) accounts for 
the bias of the G-computation estimator, which can 
result from the bias of a machine learning estima-
tor, µ̂0 , for µ0 [12]. A core principle of DDML is to 
consider a sample splitting approach to estimate and 
account for the bias of the machine learning estima-
tor of the outcome model. The dataset is split into a 
training set and an auxiliary set. The training set is 
used to fit two machine learning models to learn the 
outcome and exposure models µ0 and e. The ATT 
estimator is obtained by subtracting to the G-compu-
tation estimator evaluated on the auxiliary dataset an 
estimate of its bias

where ñ, ñ1 are the sample sizes for the whole auxiliary 
dataset and the control arm part of this dataset. Because 
the estimator depends on actual splitting, we consider 
an averaging procedure over multiple splits [12]. In the 
Appendix, we describe the averaging procedure and the 
estimation procedure for the variance.

Finally, we compute an unadjusted estimator that con-
sists of the difference between the mean of the clinical 
outcomes Y in each arm. This estimator measures the 
level of bias that is expected when not accounting for 
confounding factors. If the data include confounding that 
may impact causal inference, the unadjusted estimator 
should be biased.

(1)ˆATTGC = 1

n1

n1
∑

i=1

(Yi − µ̂0(Xi)),

(2)

̂ATTDDML = ̂ATTGC −
1

ñ1

ñ
∑

i=1

ê(Xi)

1 − ê(Xi)
(1 − Ti)(yi − 𝜇̂0(Xi)),

Variance, confidence intervals, and regularisation
To estimate variance and confidence intervals we con-
sider non-parametric bootstrap for both the propensity 
score approach and G-computation. The bootstrap pro-
cedure is applied based on 300 replicates of the original 
dataset. For G-computation, bootstrap includes train-
ing of the functions µ0 and e and for propensity score 
approaches, it includes only training of the propensity 
score function e. For DDML, we consider a sample-
splitting approach [12], and the estimation procedure is 
detailed in the Appendix.

For all methods, we consider linear regression and 
logistic regression with all covariates to fit µ0 and e. To 
train the propensity score model e, we consider ridge 
regression, and to train the outcome model µ0 , we con-
sider lasso regression. For G-computation, regularisa-
tion parameters were learned using cross-validation. For 
DDML, regularisation parameters were learned using 
nested cross-validation because of the internal cross-val-
idation procedure described in the Appendix. Machine 
learning operations were performed using the Scikit-
learn Python library [38].

Synthetic simulations
We consider two scenarios of simulations to benchmark 
estimators. The first scenario assumes an homogeneous 
treatment effect and includes confounding factors 
because both the exposure and the outcome models are 
linear functions of several of the 20 simulated covariates. 
The second scenario further assumes an heterogeneous 
treatment effect by including interaction between 
treatment and covariates to model outcomes.

Experiments are based on synthetic data with a binary 
exposure T and 20 covariates X. The numbers of patients 
(including patients in both arms) of 250, 500 and 1000, 
were chosen to be in the same order of magnitude as 
external control arm analyses. The simulations rely on 
two scenarios differing by the potential outcomes ( Y 0 , Y 1 ) 
generation. For both scenarios, the exposure model is a 
linear function of 5 of the 20 covariates.

where βj ∼ U([−1, 1]) , X ∼ N (0,�) with � a random 
sparse symmetric definite positive matrix simulated 
for every simulated data using the scikit-learn function 
make_sparse_spd_matrix with an α value of 0.8, and 
where X (j) is the jth element of the vector of covariates 
X. In the first scenario, the potential outcomes are sparse 
linear functions of the covariates and the treatment effect 
is homogeneous among the patients. To make it sparse, 

logit(E[T |X]) = 1√
5

5
∑

j=1

βjX
(j),
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half of the variables are randomly sampled and the cor-
responding coefficient is set to zero,

where ǫ ∼ N (0, 1) , � is a random permutation of the 
covariate indices and θ ∼ N (0, 0.4) or θ = 0 for the null 
hypothesis. We chose a variance of 0.4 because we have 
found in simulations that this value induces a level of 
confounding that biases the unadjusted estimator, and 
which can be handled with causal inference approaches.

The second scenario includes a term of interactions 
to model an heterogeneity of treatment. The outcome is 
obtained as follows :

where ǫ ∼ N (0, 1) , �1,�2 are random permutations 
of the covariate indices, and θ is sampled such that 
ATT ∼ N (0, 0.4) or ATT = 0.

To evaluate the estimators, the following metrics 
were considered : bias, mean absolute error (MAE), 
mean squared error (MSE), average confidence interval 
length measured by the variance of a matched Gaussian 
distribution, type I error and power.

Internal replication study
The internal replication study is based on data from five 
randomized clinical trials assessing the efficacy of Cana-
gliflozin in patients with type 2 diabetes [39–43]. Access 
to the trials, shortly described in Table  1, was granted 
through the Yale University Open Data Access (YODA) 

y = f (X ,Ω) + �T + �, with f (X ,Ω) =
1

√

10

10
�

j=1

xΩ(j),

y = (1− T )f (X ,�0)+ Tf (X ,�1)+ θT + ǫ,

Project [31, 32]. Experiments are restricted to the set of 
patients that share similar background therapy and inclu-
sion/exclusion criteria in order to make causal infer-
ence valid because of the positivity assumption. A set of 
40 baseline covariates were selected by a clinician and 
considered as confounding factors (see Appendix). The 
primary endpoint is change in HbA1c (glycated hemo-
globin) between baseline and 12 weeks, which is available 
in all trials. Patients with missing outcome are not con-
sidered in the analysis.

From the pool of five trials, an observational setting is 
built by replacing a control arm in one trial by another 
trial arm composed of patients that were given the 
same treatment. This procedure is replicated by varying 
the trial of interest. Estimation obtained in the non-
randomized setting can be compared to the treatment 
effect obtained in the well randomized setting.

We conduct two categories of internal replication 
studies. For each experiment, the experimental arm 
and the control arm are extracted from different trials. 
In the first category, the experimental and control 
treatments are the same. In this negative control setting, 
the treatment effect on the treated is null regardless of 
the underlying population [44]. The negative control 
study is based on 9 non-randomized comparisons. 
The ground truth of a null effect being known, the 
comparison between the estimators is performed using 
the following metrics: the mean absolute error (MAE), 
the mean squared error (MSE), the width of confidence 
intervals, and the coverage rates for the 95% confidence 
intervals.

Table 1  Description of the five type 2 diabetes clinical trials used for the internal replication study. We report only the trial-specific 
inclusion criteria

Trial Nb. patients Inclusion criteria Arms Background therapy

NCT01106625 [39] 469 Canagliflozin 300 Metformin and Sulphonylurea

Sitaglipin 100

NCT01137812 [40] 755 Canagliflozin 300 Metformin and Sulphonylurea

Canaglifozin 100

Placebo

NTC01106651 [41] 659 Age: 55 to 80 y.o. Canagliflozin 300 Metformin and

Canaglifozin 100 Sulphonylurea (357 patients)

Placebo Metformin (302 patients)

NCT01106677 [42] 1284 Canagliflozin 300 Metformin

Canaglifozin 100

Sitaglipin 100

Placebo

NCT00968812 [43] 1450 45≥BMI≥22 Canagliflozin 300 Metformin

Canaglifozin 100

Glimepiride 100
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In the second category of experiments, the experi-
mental and control treatments are different and an RCT 
estimate is available from one of the five trials listed 
in Table 1. In this RCT replication setting, a reference 
treatment effect and confidence intervals are available 
from the RCT but the true treatment effect is unknown. 
The RCT replication study is based on 19 non-rand-
omized comparisons. Evaluation relies on previously 
proposed metrics [45]:

•	 Pseudo bias is defined as the difference between the 
randomized treatment effect estimation and the non-
randomized estimation;

•	 Pseudo mean squared error is defined as the squared 
difference between the randomized effect estimation 
and the non-randomized estimation, averaged over 
the different combinations of trials;

•	 Estimate agreement measures the percentage of 
time when treatment effect estimated in the non-
randomized setting lies within the 95% confidence 
interval of the randomized trial;

•	 Regulatory agreement is the percentage of time the 
cutoff P < 0.05 obtained with the non-randomized 

experiments agrees with the RCT result about 
P < 0.05.

Results
Synthetic simulations
Type I error rates and statistical power are evaluated 
with simulations using P < 0.05 as a decision cutoff. 
The unadjusted estimator has an inflated type I error 
ranging from 10− 20% when n = 250 to 30− 40% when 
n = 1000 showing that simulations include a confound-
ing bias (Fig.  1). The statistical power obtained with 
the unadjusted estimator is of poor relevance because 
of its inflated type I error. All methods that adjust for 
confounding bias properly control type I error (Fig.  1). 
G-computation has a type I error of 5% whereas DDML is 
more conservative.

When considering G-computation, power is increased 
by 0− 10% when compared to propensity-score 
approaches (Fig.  1). By contrast, the power of DDML 
is not always larger than the ones of propensity-score 
approaches. The power of DDML is smaller that the 
ones obtained with propensity score approaches when 

Fig. 1  Type I error rate and power evaluated with Monte Carlo simulations of the five estimators included in the simulation study. Each dot 
corresponds to a simulation study that includes 300 replicates. The horizontal dashed line corresponds to the expected type I error rate of 5%
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n = 250 , of comparable values at n = 500 , and larger 
when n = 1000 . As expected, the power of each method 
increases with increasing sample size.

Statistical properties of the different estimators are 
also compared using Mean Absolute Error (MAE) and 
the Mean Squared Error (MSE) (Fig. 2). At n = 250 , PSM 

generally achives the smallers errors. However, as for 
IPTW, their errors decrease more slowly as a function of 
sample size compared to outcome modelling methods. At 
n = 1, 000 , outcome modelling approaches achieve the 
smallest errors.

Fig. 2  Logarithm of the Mean Absolute Error (MAE) and Mean Squared Error (MSE) of the five estimators included in the simulation study. Each dot 
corresponds to a simulation study that includes 300 replicates

Fig. 3  Logarithm of the bias of the five estimators included in the simulation study. Each dot corresponds to a simulation study that includes 300 
replicates
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To have a finer look at the different properties of 
ATT estimators, we investigate their bias (Fig.  3). As 
expected by construction of the DDML estimator, its 
bias is inferior to the bias of G-computation. The bias 
of propensity score methods was larger than the ones of 
outcome prediction methods. The bias of outcome pre-
diction method monotonically decreases as a function 
of sample size, which is not always the case of propen-
sity-score methods.

We investigate the width of the confidence intervals by 
computing the variance of a Gaussian distribution which 
95% C.I. match the observed 95% C.I. width (Fig.  4). 
G-computation produces the narrowest confidence 
intervals and as expected their width decreases with 
increasing sample sizes. The width decrease is more 
pronounced for DDML. At n = 250 , DDML produces the 
widest confidence intervals of all methods whereas for 
n = 1, 000 , its C.I. width is inferior to the ones obtained 
with propensity score methods.

Last, we compare results obtained in the scenarios 
with and without interactions between treatment and 
covariates. The relative ranking of the different methods 
remains similar, albeit a difference about DDML rela-
tive performance. When n = 1000 , DDML has a power 
similar to the propensity-score methods in the linear 
framework whereas it outperforms these methods in 
the scenario with an interaction between treatment and 
covariates (Fig. 4).

Internal replication study
The internal replication study confirms simulation 
results. G-computation has the smallest MSE and MAE 
errors for both null and trial replication (Fig. 5, Tables 2 

and 3). By contrast the unadjusted approach has the 
worst performance in terms of MAE and MSE. The two 
propensity score methods and DDML have intermedi-
ate performances (Tables  2 and 3). For null replication, 
DDML has better performance than IPTW, and PSM 
has the worst performance (Table 2). For trial replication, 
DDML has better performance than IPTW, and PSM has 
the better or worst performance of the three methods 
depending on the criterion used for evaluation (Table 3).

Width of confidence intervals also varies between 
methods (Tables  2 and 3). The G-computation method 
has the smallest width of C.I., the DDML methods 
has the largest width and the C.I. widths obtained 
with propensity-score methods are in between. The 
results mimic what is found at n = 250 for the synthetic 
simulations; the smallest width of C.I is found with 
G-computation and the largest one is obtained with 
DDML (Fig. 4).

We also investigate coverage for the null replication 
(Table 2). The unadjusted method has the lowest coverage 
(7/9) whereas the propensity-score methods and DDML 
have complete coverage (9/9). The G-computation has 
intermediate coverage (8/9) reflecting its narrower 
confidence intervals.

In terms of estimate and regulatory agreement for the 
trial replication experiment, DDML has better agreement 
with trial results followed by G-computation (Table  3). 
However, differences between the two methods are small; 
there is regulatory agreement for 16 out of 19 trials with 
DDML whereas there is regulatory agreement for 15 out 
of 19 trials with the G-computation method. Agreement 
with trial results is inferior for propensity-score methods.

Fig. 4  Log width of the 95% Confidence Intervals (C.I) for the different methods. To measure the log width, we compute the logarithm of the 
variance of a Gaussian distribution which 95% C.I. would match the observed C.I. Each dot corresponds to a simulation study that includes 300 
replicates
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Discussion
Based on both synthetic simulations and a replication 
study of completed randomized trials, we show that 
statistical methods based on outcome prediction models 
estimate treatment effect (ATT) more precisely than 
propensity-score methods, which confirms previous 
simulation results [19, 21]. Outcome prediction methods 
have correct type I errors while their power is generally 
greater than power of propensity score approaches. 
G-computation methods have increased power compared 
to propensity score approaches whatever the sample size. 
The results are more tempered for the DDML approach 
that explicitly accounts for the bias of machine learning 
models. For small sample sizes of n = 250 individuals, 
power of DDML can be reduced compared to propensity 
score methods whereas it is comparable to the power 
of G-computation for large sample size of n = 1000 
patients.

Fig. 5  Results of the two replication experiments. Each point corresponds to an observational experiment. For the 9 null replication experiments, 
the expected target ATT is 0 and for the 19 RCT experiments, the expected target ATT is the RCT estimate. The larger point is the mean of the points 
and the bar extends to the mean plus or minus two times the standard deviation. For each method, the position on the x-axis does not matter and 
random perturbation on the x-axis is added to the points to allow optimal visualisation

Table 2  Results of the negative control experiments when the 
experimental and control arms are the same. MSE and MAE are 
respectively the mean squared error and the mean average error 
between the ATT estimation and the ground truth, which is null. 
Coverage is the percentage of confidence intervals that contain 
zero

MSE(x1000) MAE(x100) C.I. 
width 
(x1000)

Coverage(%)

Unadjusted 8.73 7.62 24.9 78% (7/9)

PSM 6.46 6.79 28.3 100% (9/9)

IPTW 4.79 5.91 27.9 100% (9/9)

G-computation 3.53 4.79 22.0 88% (8/9)

DDML 4.72 5.70 28.9 100% (9/9)
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There are marked differences between the results 
obtained with G-computation and DDML. As expected 
by construction of the DDML estimator, its bias is 
smaller than the bias of G-computation, which is in turn 
smaller than the bias of propensity score approaches. 
Another marked difference concerns the estimation 
of variance in order to compute confidence intervals. 
The sample splitting approach overestimates variance 
of DDML estimator. As a consequence, the widths 
of confidence intervals for DDML are increased that 
explains why type I errors are below the 5% threshold 
rate. DDML being conservative comes at a price of a 
10− 15% reduction of power compared to G-computa-
tion when the sample size is small ( n = 250).

In practice, choosing between DDML and G-compu-
tation in a setting with one or several dozens of con-
founding variable can be guided by sample size. The 
sample sizes for external control arms can have differ-
ent orders of magnitude ranging from dozens to thou-
sands of patients [46]. In oncology, after application 
of inclusion and exclusion criteria, sample size can be 
smaller than n = 100 [47] where G-computation should 
be preferred, but can also exceed n = 500 where DDML 
can be preferred [48].

A second factor, out of the scope of this paper and 
potentially influencing the choice between DDML and 
G-computation, is the dimension of confounding covari-
ates. Our numerical simulations were designed to rep-
licate the current setting of ECA, where adjustment is 
done on a few clinical and demographic covariates [47]. 
This scenario with 10-50 covariates and a few hundreds 
of individuals was also mimicked in our internal repli-
cation study. However, in future applications of external 
control arms, confounding variables can be high dimen-
sional data such as genomics, imaging data, or Electronic 
Health Record Data [49]. When risk of bias exists because 
of regularization, the DDML estimator is a promising 
alternative to G-computation and a comparison of the 
two estimators in this setting would be insightful.

We trained the propensity score and outcome models 
with lasso regression and ridge regression respectively. 
Some studies [50, 51] suggest the potential benefit of 
using random forests, and boosted CART to estimate 
the propensity score, reducing bias in treatment effect 
estimation. The choice of methodology to derive the 
propensity score and outcome models may impact the 
relative performance of the methods under comparison 
and represents an important research direction.

External control arm (ECA) analysis considerably 
reduces the risks of false positive errors of single 
arm-trial because it adjusts for the clinical profiles 
of patients [3]. However, ECA analyses, and more 
generally RWE analyses, do not fully reproduce 
results of randomized studies [48, 52, 53]. Therefore, 
it provides a valuable and less liberal estimation of 
efficacy than single arm studies [3] but it is not a 
substitute for large randomized studies. In this paper, 
we have shown that machine learning methods such 
as G-Computation and DDML, can improve external 
control arm analyses by increasing statistical power 
while preserving type I error.

Conclusions
For external control arm analysis, confounding factors 
might bias estimation of treatment efficacy because 
of lack of randomization. To account for confounding 
factors, propensity score approaches such as IPTW and 
PSM are the preferred statistical methods. However, 
our analysis based on synthetic and RCT data shows 
that methods based on prediction of clinical outcomes, 
such as G-computation and DDML, are more powerful 
while having correct type I errors. For a typical ECA 
setting in oncology with ten confounding covariates 
and a hundred of patients, G-computation is the most 
powerful method. More powerful ECA analyses to detect 
significant treatment effects for newly developed drugs 
can be obtained by choosing statistical methods based on 
computational prediction of clinical outcomes.

Table 3  Results of the RCT replication experiments. Pseudo MSE and MAE are respectively the pseudo mean squared error and the 
pseudo mean average error obtained by replacing the unknown ground truth with the RCT estimate. Estimate agreement is the 
percentage of RCT 95% confidence intervals that contain ATT estimation. Regulatory agreement is the percentage of time the cutoff 
P < 0.05 obtained from the non-randomized experiments agrees with the RCT result about P < 0.05

Pseudo 
MSE(x1000)

Pseudo 
MAE(x100)

C.I. Width(x100) Estimate Agreement Regulatory Agreement

Unadjusted 7.94 7.30 25.1 84.2% (16/19) 73.7% (14/19)

PSM 4.51 6.15 29.0 89.5% (17/19) 73.7% (14/19)

IPTW 5.75 5.86 28.5 89.5% (17/19) 78.9% (15/19)

G-computation 3.26 4.68 25.9 100% (19/19) 78.9% (15/19)

DDML 4.70 5.60 31.3 100% (19/19) 84.2% (16/19)
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Appendix
Method to compute DDML estimator and its variance. To 
take into account the variability of the splitting procedure 
in the computation of the DDML estimator (Eq. (2)), the 
split is repeated S × K  times by repeating S K-fold cross-
validation procedures. For a cross-validation scheme, 
the aggregated estimator is the average of the estimators 
obtained using the kth-fold, k = 1, . . . ,K  , as the auxiliary 
dataset

where νs,k is the ATT estimator ˆATTDDML (Eq. (2)) for 
the sth cross-validation repetition, considering the kth 
fold as the auxiliary dataset, and the remaining folds 
to train the two machine learning models. The overall 
estimate is obtained as

The variance of ν̂ is estimated with

where

We always consider 3-fold cross validation. In the Monte 
Carlo simulations, we consider S = 20 repetitions, and in 
the internal replication, we consider S = 10 repetitions.

List of the variable included in the propensity score/outcome 
model. Serum Albumin, Alkaline phosphatase, Alkaline 
transaminase, Aspartate transaminase, Basophils/Leuko-
cytes, Biliburin, Blood Urea Nitrogen, Calcium, Cholesterol, 

ν̂s =
1

K

K
∑

k=1

ν̂s,k ,

ν̂ = 1

S

S
∑

s=1

ν̂s.

σ̂ 2 = 1

S

S
∑

s=1

(

σ̂ 2
s +

(

ν̂s − ν̂
)2
)

,

σ̂ 2
s = 1

K

K
∑

k=1

(ν̂s,k − ν̂s)
2.

Creatine Kinase, Chloride, Serum Creatinine, Eosinophils, 
Glomerular Filtration Rate Corrected, Gamma-Glutamyl 
Transferase, Blood sugar level, Plasma Glucose, Hemoglobin 
A1C, HDL Cholesterol, Hemoglobin, Potassium, LDL, Lym-
phocytes, Lymphocytes/Leukocytes, Magnesium, Neutro-
phil, Phosphate, Platelets, Protein, Sodium, Triglycerides, 
Diastolic Blood Pressure, Systolic Blood pressure, Pulse 
Rate, Weight, Age, Sex, Race Black or African American, 
Race other, Race white, Zone asia pacific, Zone central South 
America, Zone north America, Tabacco use, Concomitant 
medication diabetes, Previous concomitant medication anti-
hyperglycemic, previous concomitant therapy (Table 4).
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