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Abstract 

Background:  Clinical prediction models are often not evaluated properly in specific settings or updated, for instance, 
with information from new markers. These key steps are needed such that models are fit for purpose and remain 
relevant in the long-term. We aimed to present an overview of methodological guidance for the evaluation (i.e., vali-
dation and impact assessment) and updating of clinical prediction models.

Methods:  We systematically searched nine databases from January 2000 to January 2022 for articles in English with 
methodological recommendations for the post-derivation stages of interest. Qualitative analysis was used to summa-
rize the 70 selected guidance papers.

Results:  Key aspects for validation are the assessment of statistical performance using measures for discrimination 
(e.g., C-statistic) and calibration (e.g., calibration-in-the-large and calibration slope). For assessing impact or usefulness 
in clinical decision-making, recent papers advise using decision-analytic measures (e.g., the Net Benefit) over simplistic 
classification measures that ignore clinical consequences (e.g., accuracy, overall Net Reclassification Index). Com-
monly recommended methods for model updating are recalibration (i.e., adjustment of intercept or baseline hazard 
and/or slope), revision (i.e., re-estimation of individual predictor effects), and extension (i.e., addition of new markers). 
Additional methodological guidance is needed for newer types of updating (e.g., meta-model and dynamic updating) 
and machine learning-based models.

Conclusion:  Substantial guidance was found for model evaluation and more conventional updating of regression-
based models. An important development in model evaluation is the introduction of a decision-analytic framework 
for assessing clinical usefulness. Consensus is emerging on methods for model updating.

Keywords:  Prediction model, Model evaluation, Validation, Impact assessment, Discrimination, Calibration, Clinical 
usefulness, Model updating
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Background
Clinical prediction models are tools that predict health 
outcomes either at present (diagnostic) or in the future 
(prognostic) [1, 2]. Such models are commonly based on 

regression analyses of multiple variables (predictors) and 
increasingly on more computationally-intensive machine 
learning algorithms. In this era of personalized medi-
cal decision-making, models have become ubiquitous to 
support clinicians in predicting individualized (absolute) 
risk using a combination of patient and disease charac-
teristics [2]. For example, the PREDICT tool [3] based on 
clinicopathologic variables is extensively recommended 
for estimating the survival of women with early-stage 
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breast cancer following their surgical resection [4, 5]. An 
abundance of models is also available for cardiovascular 
risk prediction, including the Framingham, SCORE, and 
QRISK models [6]. When applied and communicated 
properly, (risk)  predictions from models allow patients 
and clinicians to weigh the pros and cons of available 
options (e.g., adjuvant therapies for breast cancer, or 
preventive actions related to behavior or medication for 
cardiovascular disease) and can thereby support shared 
decision-making [7].

It is widely acknowledged [1, 2, 6, 8–10] that sev-
eral steps must be taken to ensure that a sufficient level 
of evidence exists before adopting a prediction model 
in clinical practice (Fig.  1). Assessment of validity and 
impact generally constitute model “evaluation,” where 
the appropriateness and clinical consequences, respec-
tively, of a model are examined [2, 8]. For instance, we 
may be interested in the suitability of PREDICT, a model 
derived from a predominantly white patient population, 
for multi-ethnic Asian patients [11]. We may also want 
to study how cardiovascular risk models influence clini-
cal decision-making and patient outcomes, if at all [12]. 
After derivation, a model may be updated or re-specified, 
for instance, to incorporate new information from novel 
markers [13]. For example, PREDICT had been updated 
to incorporate a tumor proliferation marker (Ki-67) and 

several  additional receptors (HER2 and progesterone) 
[14–16].

The illustrative examples mentioned so far are excep-
tions to the rule, as most models do not go beyond the 
initial development stage [6, 9, 17–20]. Reviews often find 
methodological shortcomings in validation studies [21–
24] despite the publication of many methodological arti-
cles and reporting guidelines, foremost the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis (TRIPOD) statement [25]. 
A topical example is the hundreds of models for SARS-
CoV-2 (COVID-19), most of which are deemed useless 
due to inappropriate derivation and evaluation (i.e., cali-
bration is ignored) [26]. Some less than ideal measures, 
such as the overall Net Reclassification Index (NRI), also 
remain popular in the medical literature despite being 
subject to severe statistical critique in the last decade 
[27–29]. On the same note, empirical evidence for the 
impact or usefulness of prediction models remains scarce 
[17, 30], perhaps due to the persisting ambiguity relating 
to the definition of the terms and confusion regarding 
applicable methods [31, 32]. Further clarification of ter-
minologies and methods for model evaluation may ben-
efit applied researchers.

Another widely recognized issue in prediction research 
is the incessant de novo derivation of models instead 

Fig. 1  Framework from derivation to implementation of clinical prediction models. The focus of this systematic review is on model evaluation 
(validation, impact assessment) and updating
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of refinement of existing ones [6, 18, 19]. Re-derivation 
(when acceptable models are already available) wastes 
research resources and potentially useful prior infor-
mation. Moreover, unless settings completely differ, re-
derivation may yield models with a similar set of core 
predictors for the same outcome. This then results in 
redundant models competing to address the same clini-
cal problem. For breast cancer prognostication, around 
60 models currently exist, of which the majority have 
the same set of predictors [18]. Likewise, a similar set of 
predictors can be found in over 300 models predicting 
cardiovascular disease risk [6], in over 40 models predict-
ing prognosis for esophageal or gastric cancer [19], and 
so on. There is a clear need to stimulate research beyond 
model derivation, in particular towards studies that can 
be used to optimize existing prediction models for new 
settings [6, 18, 33]. A comprehensive summary of meth-
ods for model updating, including for newer types (e.g., 
meta-model [34] and dynamic updating [35]), is currently 
lacking.

We therefore aim to provide an overview of methodo-
logical guidance for the post-derivation stages of clinical 
prediction models. Specifically, we focus on methods for 
examining an existing model’s validity in specific settings, 
impact or usefulness in medical care, and model updat-
ing. Where appropriate, we outline consensus on defini-
tions to support the methodological discussion, and we 
highlight gaps that require further research.

Methods
Literature search
We performed a systematic literature search in MED-
LINE, Embase, Web of science core collection, Episte-
monikos, Guidelines International Network, National 
Institute for Health and Care Excellence, Scottish Inter-
collegiate Guidelines Network, the STRengthening Ana-
lytical Thinking for Observational Studies initiative, 
and Google scholar in consultation with an experienced 
information specialist (W.S.) and a topic expert (E.W.S.). 
Snowballing was also conducted through references of 
shortlisted articles. Additional details (e.g., search terms, 

PRISMA workflow, PRISMA checklist) are available in 
the supplementary file (Additional file 1).

Selection procedure and data synthesis
Articles were included if they 1) provided methodologi-
cal “guidance” (i.e., standards, guidelines, frameworks, 
strategies, or recommendations) in model validation, 
impact assessment, or model updating; 2) were written 
in English; and 3) were published between January 2000 
and January 2022. Abstracts, protocols, correspondence, 
supporting literature, and commentaries were excluded, 
as well as papers that discussed only one statistical tech-
nique or provided guidance not generalizable outside of 
a specific disease area. Initial selection based on title and 
abstract were conducted independently by two research-
ers (M.A.E.B. and E.G.E.), and any discrepancies were 
resolved through consensus meetings. Descriptive data 
(i.e., author(s), title, journal, case-study domain, codes/
script availability, methodological topic(s) discussed) 
were extracted, and thematic analysis was used for sum-
marization. Full text assessment and data extraction were 
performed by one researcher (M.A.E.B.). The results were 
reviewed by three researchers (E.W.S., M.K.S., E.G.E.) 
separately.

Ethics statement
Ethics approval was not required for this review.

Results
The search identified a total of 16,207 unique records 
(Additional file  1). After initial screening based on title 
and abstract, this number was reduced to 131 records. 
Snowballing from reference citations of shortlisted arti-
cles and expert consultation added an additional 51 
records. After full text-assessment, 70 articles were 
included (Additional file 2). Approximately half of these 
(n = 34) were published in technical (statistical, bioinfor-
matics, or methods research) journals. Many included at 
least one case-study (n = 43), often in the cardiovascular 
(n = 18) or cancer (n = 13) domain. Few articles included 
codes or scripts (n = 8), or mentioned that these were 

Table 1  Definitions of some common terms used in this review

Clinical prediction models - sometimes referred to as clinical prediction rules, prediction algorithms, or risk scoring tools, are evidence-based tools 
that can aid in personalized medical decision making
Evaluation - assessment of model validity (statistical performance) and impact (clinical performance)
Updating - adjustment or re-specification of a model, e.g., to improve its performance in new data or incorporate new markers
Overfitting - when model predictions are not valid for new subjects due to parameter uncertainty (i.e., uncertainty in predictor effects) or model 
uncertainty (e.g., selection of predictors may be biased) in the derivation data
Shrinkage - a correction factor that can be applied to a model to address overfitting
Case-mix - distribution of outcome and subject characteristics
Calibration drift - miscalibration over time due, e.g., to changes in case-mix or clinical practice
Decision analysis - a method used to assess clinical usefulness that takes into consideration different decisions or actions based on a clinical thresh-
old or range of plausible thresholds
Individual participant data (IPD) - raw, not aggregated or summarized, data
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available upon request (n = 4). In the following sections, 
we present a summary of the retrieved methodological 
guidance. A glossary of common terms used throughout 
this review is available in Table 1.

Validation
What is validation?
“Validation” is the process of assessing model perfor-
mance in specific settings [13, 17, 25, 36–67]. Two types 
of validation are distinguished in the literature (Fig. 2).

Internal validation evaluates the reproducibility of 
model performance in subjects from the same data 
source or underlying population as the derivation data 
[17, 25, 36–38, 41–43, 48–52, 54–56, 60–62, 67]. Fre-
quently recommended approaches for this type of vali-
dation are resampling techniques such as bootstrapping 
[17, 25, 36–39, 41, 42, 48–52, 55, 56, 58, 60, 61, 64, 67] 
or cross-validation [13, 17, 25, 37–39, 42, 45, 48, 49, 52, 
55, 56, 60, 61, 64, 67]. These enable researchers to assess 
the extent of overfitting (Table 1) in model performance 
and adjust for it if necessary, for instance by applying a 
shrinkage correction factor [13, 25, 37, 48]. Data splitting 
or split sampling, where a dataset is divided into train-
ing (derivation) and test (validation) subsets, is not rec-
ommended as it constrains the sample size at both model 
derivation and validation, leading to imprecise estimates 
of predictive performance [36, 37, 42, 45, 51, 52, 56–58, 

60, 61, 64]. Internal validation techniques based on resa-
mpling do not have this constraint regarding sample size 
[25, 38, 51, 56, 60, 61, 64, 67].

External validation evaluates the generalizability or 
transportability of model performance to subjects from 
different but plausibly related settings [17, 25, 36–39, 41–
43, 46, 48, 50–52, 54–58, 60–67]. Common approaches 
for external validation are “temporal validation” (i.e., 
validation in subjects from more recent time periods) 
[17, 25, 36, 37, 41–44, 50, 52, 54–56, 60–62, 64, 67], 
“geographic-” or “spatial validation” (i.e., validation in 
different locations) [25, 36, 37, 41, 43, 50, 52, 54–56, 60, 
61, 67], and “domain validation” (i.e., validation in differ-
ent clinical domains or settings, e.g., validating a model 
derived in secondary care in a primary care setting) [41, 
50, 55, 61, 67]. Temporal validation is sometimes referred 
to as a weak form of external validation as there is only 
a difference in calendar time between the derivation and 
validation datasets [42, 61, 64]. It can be defined as a 
form of data splitting using time period as a selection cri-
terion [37]. Domain validation is regarded as the strong-
est form of validation as it allows assessment of model 
performance in very different settings [41, 50, 52, 56].

When should validation be performed?
At the minimum, a derived model must be internally vali-
dated [17, 25, 41, 43, 48, 50–52, 60, 61]. Internal validity 

Fig. 2  A summary of methodological guidance for model validation. Internal validation is the minimum requirement for clinical prediction models. 
External validation is recommended to evaluate model generalizability in different but plausibly related settings. Designs for validation studies 
differ in strength (e.g., temporal validation is a weak form of validation, and data splitting is discouraged). Examination of two validation aspects 
(discrimination and calibration) is recommended for assessing statistical performance irrespective of the type of validation. Clinical usefulness is a 
common area between validation and impact assessment, and its examination is advised for assessing the clinical performance of models intended 
to be used for medical decision-making
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is a prerequisite for external validity, and external validity 
is a prerequisite for implementation in a new setting [17, 
36, 37, 41, 48, 50–52, 54, 58, 60, 61, 64–66]. There is no 
consensus regarding how many cumulative validations 
are necessary to claim that a model has been sufficiently 
validated. Different settings can involve different contexts 
(e.g., practices, measurements) and case-mixes, which 
may affect model generalizability [37, 41, 42, 44, 54, 55, 
64]. A model found to perform well in a primary (general) 
care setting, for example, needs additional validation in a 
secondary (more specialized) care setting, and vice versa 
[41, 44, 54]. Another relevant consideration is sample size 
[36, 37, 39, 41, 54, 60, 65, 66]. A rule of thumb requir-
ing at least 100 events and 100 non-events (or even 200 
events and 200 non-events) has been suggested to have 
sufficient (80%) power to detect if the predictive accuracy 
is different from a pre-specified null hypothesis value 
(e.g., calibration intercept of 0 and calibration slope of 1) 
[41, 57, 59–61, 64, 65, 67]. More sophisticated methods 
that additionally consider assumptions regarding the vali-
dation data (e.g., expected distribution of events and cen-
soring) are now available [63, 65, 66]. Rather than power 
calculation, these newer methods focus on precise esti-
mation of performance measures [65, 66].

How can validity be assessed?
External validation is ideally conducted by independent 
researchers [17, 25, 36–38, 42–45, 52, 54, 58, 60–65, 67]. 
For an impression of model generalizability, it is recom-
mended to compare the contexts of the derivation and 
validation data [36, 37, 39, 44, 54, 55, 57, 61, 64]. Some 
differences may exist (e.g., different practices or data col-
lection methods, such as radiology or pathology grading, 
pre-analytical work-up for laboratory measurements) 
that warrant external validation [36, 56, 61]. Comparing 
case-mixes (including outcome distribution) is useful as 
a first step [36, 55, 58, 64]. Case-mix heterogeneity (e.g., 
difference in prognosis or disease severity) may support 
that the validation is a stronger test for transportability 
rather than reproducibility [13, 37, 41, 42, 44, 48–50, 54–
57, 59–61, 64].

Several performance aspects can be examined in a vali-
dation study, with various measures proposed for each 
(see Additional file 3 for a more complete list):

1.	 Discrimination: A model discriminates well if it can 
separate subjects with different outcomes (e.g., sub-
jects with and without events) [40, 47, 48, 51, 52, 54, 
57, 61, 64–67]. The ideal model predicts risks close 
to 100% in subjects with the outcome and close to 
0% in subjects without the outcome [38, 59]. Dis-
crimination can be graphically assessed from box-

plots, histograms, or density plots of predicted risks 
across outcome values, with better discriminating 
models showing less overlap [38, 48]. Calibration 
plots also graphically manifests discrimination from 
the spread in predictions [48, 52]. Discrimination 
can be quantified using the concordance (C-) statis-
tic, which is identical to the area under the receiver 
operating characteristic curve (AUROC) in the logis-
tic setting [38, 40, 45, 47, 48, 51, 52, 56, 57, 59–62, 
64–67]. In survival settings, drawing an ROC curve 
is problematic as censored subjects have unknown 
outcomes; however, the C-statistic can be calculated 
with consideration to censoring [51, 52]. An alter-
native is the D-statistic, which can be interpreted as 
the log hazard ratio comparing two predicted risk 
groups defined by splitting the prognostic index (or 
linear predictor) at the median value [45, 46, 54, 57, 
66]. Discrimination slope is another simple measure 
that calculates the absolute difference in average pre-
dicted risks for subjects with and without the out-
come [48]. Classification measures such as sensitivity 
and specificity require the definition of a risk thresh-
old that turns a model into a decision rule [38, 60, 61, 
68], as such, they are discussed in the next section 
(see “Impact assessment”). Of note, statistical meas-
ures for discrimination may  perform poorly when 
the case-mix is too homogeneous, for instance, when 
patients have less extreme predictions or narrower 
range of values for strong predictors [38, 45, 46, 48, 
49, 51, 52, 56, 57]. It is advised to consider case-mix 
variation when interpreting or summarizing discrim-
ination measures [46].

2.	 Calibration: Calibration refers to the agreement 
between predicted risks and observed outcomes 
[38, 40, 48, 51, 59–61, 64–67]. Complete model 
specification (including information about baseline 
risk) is needed to assess calibration [13, 46, 54, 64, 
66]. To examine calibration graphically, calibration 
plots with or without some form of smoothing (e.g., 
LOESS, splines) are often recommended [38, 45, 
47–52, 55–57, 59–65, 67]. In linear regression, the 
calibration plot is identical to a scatter plot [48, 63]. 
In logistic and survival settings, calibration is slightly 
more complex. The predicted risks are derived by 
applying the model to the data, and the observed 
“risks” are proportions of observed outcomes or 
events grouped according to quantiles of predicted 
risk [38, 42, 52, 57]. The agreement between the pre-
dicted risks and observed outcomes can be quanti-
fied using calibration-in-the-large and calibration 
slope [13, 38, 42, 48, 52, 54–57, 59, 60, 64–66]. Cal-
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ibration-in-the-large compares the average predicted 
risk and observed outcome proportion, and indicates 
whether the predictions are systematically too high 
or too low [38, 59, 64–66]. It can be assessed using 
the calibration intercept [13, 38, 48, 52, 54–56, 59, 
60, 65] or the O/E ratio [40, 57, 65]. Calibration slope 
indicates the extremeness of predicted risks and can 
be obtained by regression of the linear predictor to 
the data [13, 38, 42, 48, 52, 54–57, 59, 60, 63–66]. A 
calibration slope < 1 indicates that the predicted risks 
are too extreme (i.e., low risks are estimated to be 
too low, and high risks are estimated to be too high), 
while a slope > 1 indicates the opposite [52, 63, 65]. 
Overfitted models often yield a slope < 1, reflecting 
lack of generalizability and a need for correction in 
the validation setting [38, 48, 55, 63–65]. A slope < 1 
may also indicate inconsistency of predictor effects 
(regression coefficients) between the derivation and 
validation settings [55]. It is recommended to report 
at least the calibration-in-the-large and calibration 
slope, with visualization to a calibration plot [52, 59, 
65]. Use of the Hosmer-Lemeshow goodness-of-fit 
test is widely discouraged due to its limited power 
and poor interpretability [38, 42, 45, 47, 48, 51, 52, 
59–62, 64].

3.	 Overall performance (or global fit): Overall perfor-
mance measures encapsulate both discrimination 
and calibration aspects [37, 38, 45, 48, 53, 61]. The 
most commonly recommended measure is explained 
variation (R2), with variants such as Nagelkerke’s R2 
for generalized linear models [45, 48, 61, 63]. For sur-
vival models, there is no consensus on which pseudo-
R2 measure to use despite various proposals (e.g., 
Royston and Sauerbrei’s R2 based on the D-statistic, 
Schemper and colleagues’ explained variation) [45, 
54]. Another measure is the Brier score, which is sim-
ilar to Pearson’s R2 statistic when scaled and can be 
extended for survival outcomes using a weight func-
tion [37, 38, 40, 48, 54, 61, 69–71]. Information-theo-
retic approach such as the Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) 
can also be used to estimate the trade-off between 
model fit and parsimony [61].

When is a model “good enough”?
It is recommended to examine at least two statistical per-
formance aspects (discrimination and calibration) when 
assessing model validity in specific settings [13, 17, 25, 
36–38, 41–45, 48–55, 57, 60–62, 64, 67]. If a model is 
to be used for risk stratification and limited resources 

are available such that high-risk patients need to be tar-
geted, the focus should be on good discrimination [40, 48, 
54, 64]. Poor discrimination is argued to be worse than 
poor calibration as the latter can be improved by model 
updating (e.g., recalibration) [13, 54]. Regarding what an 
adequate performance is, many authors agree that this 
depends on the context of application [13, 17, 36–38, 42, 
48, 52–54, 64–66]. No minimum thresholds exist for dis-
crimination (e.g., higher C-statistic is always better) and 
calibration (i.e., the closer the predictions are to the diago-
nal (45°) line, the better) [36, 38, 40, 42, 45, 47–52, 54–57, 
59–62, 64, 65, 67, 69, 70, 72–75]. The minimum threshold 
for useful models can only be defined by examining deci-
sion-analytic measures (e.g., using the Net Benefit).

Impact assessment
What is impact assessment?
Models with good statistical performance do not auto-
matically have positive impact or usefulness in medi-
cal care [44, 50, 58, 60, 61, 68, 69, 76–78]. A model with 
good discrimination and calibration can be deemed clini-
cally useless if it offers no new insight to existing clini-
cal policy or has a range of predictions largely outside of 
clinically relevant decision thresholds [38, 48]. There may 
be various external factors (e.g., varying clinical interpre-
tations, adherence, or acceptability) that may cause the 
actual performance of a model, or a decision rule devel-
oped based on a model, to differ from expectations [41, 
61, 68, 76, 78]. The consequences of using a model in 
practice – what is referred to as “clinical impact” – need 
to be examined [17, 37, 38, 41, 43, 44, 48–50, 52, 53, 58, 
60, 61, 64, 67–69, 72, 73, 76–80]. Common outcomes of 
interest for impact assessment are changes in clinicians’ 
decision-making or behaviors [17, 38, 41, 43, 44, 48–50, 
58, 61, 68, 69, 72, 73, 76–80], patient outcomes (e.g., mor-
bidity, mortality, quality of life, adverse effects) [17, 41, 
43, 44, 49, 50, 52, 53, 58, 60, 61, 68, 69, 72, 76–80], and 
healthcare costs [17, 41, 44, 50, 52, 53, 58, 60, 61, 68, 69, 
72, 73, 76, 77, 79].

How can impact be assessed?
Impact assessment requires the definition of a decision 
threshold(s) at which subjects are classified into specific 
risk categories [38, 48, 52, 65, 66, 72]. At this threshold(s), 
a balance between the likelihood of benefit and harm 
exists [38, 52, 69]. Two types of impact assessment can 
be performed: potential and actual impact assessment 
(Fig.  3). The former evaluates theoretical changes on 
health outcomes through examination of clinical perfor-
mance measures or decision-analytic models, while the 
latter evaluates actual effect using empirical studies [17, 
44, 49, 50, 61, 69, 78].
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1.	 Potential impact:

	 i.	 Assessment of clinical usefulness – A sim-
ple approach for assessing a model’s potential 
impact is by examination of an aspect called 
“clinical usefulness” or “clinical utility” [17, 38, 
44, 48–50, 52, 60, 61, 65, 67–69, 73, 77, 78]. 
While discrimination and calibration meas-
ures evaluate statistical performance, clinical 
usefulness measures (Additional file  3) evalu-
ate clinical or practical performance [38, 60]. 
Given a specific threshold, clinical usefulness 
can be examined using classification meas-
ures such as sensitivity and specificity [48, 
61]. These measures along with similar vari-
ants (e.g., positive and negative predictive val-
ues) and simplistic summaries (e.g., accuracy) 
depend on outcome prevalence and are not 
recommended to be reported in isolation [38, 
53, 60, 61, 68, 69]. More recent papers recom-
mend using decision-analytic measures, such 
as the Net Benefit [47, 48, 52, 60, 61, 65–67, 69, 
73, 78], which take the clinical consequences 
(i.e., relative weight of benefits and harms) into 
account. In particular, the Net Benefit quanti-
fies clinical benefit by penalizing true positive 
classifications with the harms of false-positive 
classifications [60, 65, 69]. It is recognized that 

a clinically accepted threshold may not exist 
and that the weights of benefits and harms 
may vary across patients or clinicians (e.g., 
some patients are willing to take a higher risk 
for a possible benefit) [48, 69]. Hence, a sensi-
tivity analysis of the Net Benefit over an array 
of thresholds (i.e., Decision Curve Analysis 
(DCA)) is also recommended, with visualiza-
tion to a decision curve [47, 48, 52, 60, 69]. A 
variant of a decision curve is the relative utility 
curve, where net benefit is scaled by compar-
ing it to the case of perfect prediction [61, 65, 
69, 73].

	 ii.	 Health economic analysis – A more com-
prehensive assessment of potential impact is 
through decision-analytic models (e.g., Markov 
models, decision trees or simulations assess-
ing cost-effectiveness) [17, 44, 50, 61, 73, 78, 
81, 82]. Development of such models is rec-
ommended as an intermediate step when con-
ducting a formal impact study is not yet feasi-
ble due to time or cost constraints [44, 61, 78]. 
If the projected results are poor (e.g., high costs 
per quality-adjusted life year), some argue that 
empirical impact studies may not be warranted 
[17, 44, 50, 78]. Decision-analytic models ide-
ally undergo further validation [81]. Decision-
analytic measures such as the Net Benefit can 

Fig. 3  A summary of methodological guidance for the assessment of a model’s impact. Potential impact can be examined through clinical 
performance measures (e.g., Net Benefit, Decision Curve Analysis) or health economic analysis (e.g., decision-analytic models). Assessing actual 
impact requires comparative empirical studies, such as cluster randomized trials or other designs (e.g., stepped-wedge trials, before-after studies)
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be re-expressed to incorporate specific cost 
(e.g., test or treatment costs) and effectiveness 
(e.g., life expectancy) parameters, placing them 
one step closer to a full health economic analy-
sis [73, 82].

2.	 Actual impact: The actual impact of using a model or, 
alternatively, a decision rule based on a model, can 
be assessed in a cluster randomized trial [17, 41, 44, 
50, 53, 60, 61, 64, 67–69, 76–79]. Other designs, such 
as stepped-wedge trial, before-after study, or cross-
sectional study, although less preferred, can also be 
used [17, 41, 44, 50, 61, 67, 68, 78]. Analyses from 
impact studies compare the outcomes of a group 
where a model is used versus a control group that 
uses no model or care-as-usual [17, 41, 44, 50, 61, 67, 
68, 76–78]. Evaluation can be performed in an assis-
tive or directive manner [44, 50, 58, 61, 68, 76, 78]. 
An assistive approach leaves more room to combine 
model predictions with clinicians’ judgements or 
interpretations, while a directive approach suggests 
a specific decision or action based on a model’s risk 
classification (as is the case when a model is trans-
lated into a decision rule) [44, 50, 58, 61, 68, 76, 78]. 
Findings from impact studies (e.g., practical barriers 
to implementation) can be used to improve the pre-
diction model or rule, develop clinical guidelines, or 
inform the development of new models [17, 41, 58, 
61, 68, 76].

When can impact be assessed?
Some clinical contexts may not require decisions 
and reporting of impact (e.g., a model intends only to 
inform patients of a likely outcome, such as the chance 
of a successful pregnancy) [47, 60]. Many agree that 
impact assessment is important for models intended to 
be used for decision-making (e.g., a model that guides 
decisions regarding administration of chemotherapy or 
of an invasive or expensive test) [17, 41, 47, 48, 50, 52, 
65, 68, 76, 78]. Impact assessment (when warranted) 
is recommended after external validation and ideally 
prior to model implementation [17, 38, 41, 44, 48–50, 
53, 60, 61, 68, 69, 76–79].

Updating
What is model updating and when is it useful?
Many authors recognize that new models are too often 
derived [34, 41, 42, 44, 50, 54, 55, 57, 59–61, 83–86]. If 
models have already been proposed for a prediction 
problem, then deriving a model from scratch is a waste 
of information from previous modeling studies [13, 34, 

41, 44, 50, 60, 61, 83, 84, 87–90]. Furthermore, it is noted 
that relatively small datasets are sometimes used in re-
derivation, resulting in overfitted new models that may 
not perform well elsewhere [34, 41, 44, 59, 61, 83, 86, 87, 
91]. If a reasonable model is already available that pro-
duces well-discriminating (although perhaps slightly mis-
calibrated) estimates, the consensus is to build upon such 
a model and check if some adjustments (“updating”) will 
improve its fit or performance in new data [13, 17, 25, 34, 
41, 44, 50, 54, 55, 57, 59–61, 64, 71, 83–94]. Model updat-
ing can also be a way to incorporate a novel marker into 
a model (model extension) [13, 17, 41, 44, 50, 55, 60, 61, 
71, 87–91, 94] or to address a model’s miscalibration over 
time (calibration drift) due, for instance, to changes in 
patient demographics or clinical practice [17, 41, 42, 59, 
83, 87, 89, 90, 93–98]. The updated model ideally under-
goes further evaluation [13, 17, 34, 41, 42, 50, 54, 61, 71, 
83–93, 95].

How can models be updated?
The literature distinguishes four types of model updating 
for regression-based models (Fig.  4). Updating methods 
for more computationally-intensive models (e.g., deep 
neural networks) were not identified.

1.	 Model updating – Updating can start with predic-
tions from the original model [13, 50, 86, 87]. Rec-
ommended methods range from recalibration (i.e., 
using the linear predictor of the original model 
and subsequently optimizing its fit in new data) to 
model revision (i.e., re-estimation of some or all of 
the coefficients (predictor effects) from the origi-
nal model) [13, 17, 25, 34, 41, 42, 44, 50, 54, 55, 57, 
59–61, 71, 83, 86, 87, 89–91, 93, 94, 96]. Recalibra-
tion addresses at least the difference in baseline risks 
by re-estimating the model intercept or baseline haz-
ard (“recalibration-in-the-large”) [61, 86, 89]. A fur-
ther step is to recalibrate the linear predictor of the 
original model (termed “logistic recalibration” in the 
logistic setting) [50, 61, 86, 94]. Closed-testing proce-
dures have recently been proposed to aid researchers 
in selecting the optimal updating approach in logis-
tic [86] and multinomial logistic settings [90]. In a 
closed-test procedure, the fit of the updated models 
are compared with each other using likelihood ratio 
tests [86]. Preference is then given to the most con-
servative approach that yields a significant improve-
ment in model fit [86]. Recalibration is often suf-
ficient when the differences between the derivation 
and new datasets are minimal (i.e., calibration is the 
main issue in new data) [13, 44, 64, 71, 83, 86, 89–91, 
93, 96]. More extensive methods, such as model revi-
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sion, are appropriate when the differences are more 
substantial (e.g., predictor effects are heterogeneous 
leading to inconsistent predictions in the new data-
set) [55, 86, 90, 96]. As model revision requires re-
estimation of more parameters than recalibration, it 
requires a larger sample size [59, 90, 96] and poten-
tially the application of shrinkage methods to com-
pensate for overfitting [71, 96]. Bayesian approaches 
are applicable regardless of the sample size [89, 93].

2.	 Model extension – An interest may be in adding a 
new marker to an existing model with specific pre-
dictors [13, 17, 41, 44, 50, 55, 60, 61, 71, 87–89, 91, 
94]. Such model extension is a more extensive type 
of model updating [13, 71, 90, 91, 96]. Some recom-
mended methods are recalibration or revision with 
extension and Bayesian updating [13, 55, 71, 88, 91, 
94]. As with simpler updating, overfitting can be 
mitigated using shrinkage methods or by limiting the 
number of estimated parameters [71, 91]. If the indi-
vidual participant data (IPD) is available for the mod-
el’s original derivation data, it has been suggested to 
impute the marker in a combined (derivation and 
marker) dataset, and thereafter derive an updated 
model [91]. This approach assumes that the deriva-
tion and marker datasets originate from the same 
underlying population [91].

The incremental value of a marker can be stud-
ied by comparing the performance of the extended 
and original (non-extended) models [69, 74]. Specifi-
cally, improvements in discrimination (e.g., increase 
in C-statistic) and overall performance measures (e.g., 
decrease in Brier score, increase in R2) can be examined 
[17, 45, 48, 51, 52, 69, 70, 72–75, 79]. Likelihood ratio 
test and its approximations (e.g., Wald test) can be used 
to test the improvement in model fit due to the addi-
tion of a new marker [75, 79]. The additional poten-
tial clinical impact or usefulness of a marker can be 
assessed using decision-analytic measures such as the 
Net Benefit [69, 99]. Reclassification measures (Addi-
tional file 3), specifically the overall Net Reclassification 
Index (NRI) and Integrated Discrimination Index (IDI), 
are not recommended as these measures apply weights 
based on outcome prevalence alone rather than on the 
clinical consequences of decisions [45, 48, 51, 52, 60, 
69, 72, 73]. The actual impact of incorporating a new 
marker can be assessed through impact studies [17, 
52, 69, 73, 79]. Calibration is less relevant if a marker 
is being assessed in the dataset where the model was 
originally derived and for which the model is already 
well-calibrated [69]. On the other hand, if the original 
model is poorly calibrated for a new (marker) dataset, 
the apparent performance increment attributable to the 
marker can be over or under-estimated [60, 75]. One 
paper argues that refitting of the original model to the 

Fig. 4  A summary of methodological guidance for model updating. Simple updating (e.g., recalibration) is often sufficient when the differences 
between the derivation and new data are minimal. When the differences are more substantial, more extensive updating (e.g., partial to full revision) 
may be appropriate. Model extension allows the incorporation of new markers in a model. Multiple models may be combined, for instance, using 
meta-analytical approaches, to develop a meta-model that can be further updated for a new dataset. Updating can also be done periodically or 
continuously, resulting in dynamically updated models
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marker dataset is necessary prior to assessing a mark-
er’s incremental value [75].

3.	 Meta-model updating – Multiple models may have 
already been published to predict the same outcome. 
Combining these models into one could poten-
tially yield a more generalizable “meta-model” [13, 
34, 87]. This meta-model can then be updated for a 
new dataset [34, 57, 84]. If the available models have 
similar specifications (i.e., same predictors), meta-
analytic (e.g., univariate or multivariate with random 
effects) or Bayesian approaches can be used to pro-
duce a meta-model [84, 87]. When published mod-
els have different specifications (i.e., different predic-
tors), methods such as model averaging and stacked 
regressions have been proposed [34]. Although theo-
retically appealing, meta-model updating is still a rel-
atively new idea with limited methodological discus-
sion [34, 57, 84, 85, 87, 92].

4.	 Dynamic updating – “Static” models are derived from 
a single time period in a single dataset [97]. There is 
increasing interest in “dynamically updated mod-
els” that may more efficiently mitigate calibration 
drift [87, 89, 93, 95, 97, 98]. Note that such dynamic 
updating is different from dynamic modeling that 
focuses on including time-dependent covariates 
[13, 95]. For periodically updated models, updat-
ing can be performed using conventional methods 
such as recalibration and revision [89, 93, 95, 97, 98]. 
For continuously updated models, methods such as 
Bayesian dynamic modeling or dynamic model aver-
aging (generalization to multiple models) have been 
suggested [87, 95, 98]. The application of a Kalman 
filter with a weight-decay function has also been pro-
posed to incorporate changes over time [95]. Here, 
the significance of a “forgetting factor” is highlighted, 
with historic patients given less weight compared to 
newer patients [95]. Similar to meta-model updat-
ing, there is currently limited literature for dynamic 
updating [13, 87, 89, 93, 95, 97]. Framework is also 
lacking for further validation of dynamic models [95].

Discussion
Clinical prediction models are evidence-based tools 
that can aid in personalized medical decision-mak-
ing. As with any scientific tool, their applicability and 
usefulness are ideally evaluated prior to their clinical 
adoption. Suboptimal performance may be improved 
by model adjustment or re-specification, for instance, 
to incorporate additional information from a  specific 

setting or to include new markers. We aimed to provide 
a summary of contemporary methodological guidance 
for the evaluation (validation and impact assessment) 
and updating of clinical prediction models. To our 
knowledge, this is the first comprehensive review of 
guidance for these post-derivation stages.

We found many methodological guidance papers for 
model evaluation. The consensus for validation (assess-
ment of statistical performance) is that it requires at 
least the examination of discrimination and calibra-
tion measures (Additional file  3). For discrimination, 
concordance statistics (e.g., Harrell’s or Uno’s C-statis-
tic) are considered sufficient for indicating how well a 
model can distinguish different outcomes [48, 49, 54, 
55]. We did not find recommendations in favor of alter-
natives that are common in the machine learning lit-
erature, such as the precision-recall curve (PRC) [100]. 
For calibration, it is recommended to report at least the 
mean calibration (i.e., calibration-in-the-large, meas-
ured using the O/E ratio or calibration intercept) and 
extremeness of predicted risks (i.e., calibration slope) 
[65]. Visualization of calibration measures to a calibra-
tion plot is also regarded as useful for checking (mis)
calibration over the entire range of predictions [38, 65].

Assessment of impact or usefulness (clinical perfor-
mance) is deemed necessary for models intended to be 
used for medical decision-making. Recommendations 
have shifted from simplistic classification measures 
(e.g., accuracy, overall NRI)  to decision-analytic meas-
ures that additionally incorporate clinical consequences 
(e.g., Net Benefit, DCA) [101, 102]. More recent devel-
opments to decision-analytic measures include pro-
posals to incorporate actual costs and effectiveness 
parameters to further bridge decision analytics and full 
health economic analysis [73, 82]. The weighted NRI 
(Additional file  3), which applies the same decision-
analytic weighting as the Net Benefit [69, 99], has also 
been proposed as an alternative to the overall NRI. 
Other decision-analytic measures exist, albeit with less 
popularity in the methodological literature. Examples 
include decrease in weighed false classifications [38], 
loss functions (compares loss associated with classifi-
cation errors [40]), test trade-off (gives the minimum 
number of new marker tests needed for a true positive 
to produce an increase in the net benefit [103–105]), 
and relative utility (compares net benefit to the case of 
perfect prediction [61, 69, 73]).

Complete model specification is highlighted as crucial 
for the evaluation, particularly, the assessment of cali-
bration of prediction models [13, 46, 54]. We found that 
miscalibration in new data can be resolved using simple 
updating methods, such as recalibration-in-the-large 
(i.e., re-estimation of the model intercept or baseline 
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hazard) and/or adjustment of the slope [106]. More 
extensive updating (i.e., partial to full model revision) is 
recommended when predictor effects differ substantially 
between the derivation and new datasets [55, 86, 90]. We 
identified closed-testing procedures [86, 90] that can help 
researchers in selecting an appropriate updating method 
in the logistic and multinomial logistic settings.

Some gaps remain in the methodological literature. For 
instance, guidance is lacking for calculating the minimum 
necessary sample size for external validation of machine 
learning-based models [63, 65, 66]. Guidance for updat-
ing is limited to regression-based models only, where 
extensions are lacking for, for example, the validation of 
dynamic prediction models. We did not identify caveats 
for model updating when the clinical setting is not ideal 
(e.g., very effective treatments are used for high-risk 
patients defined by the prediction model). We also did 
not identify methods for retiring or replacing predictors 
that may have lost their clinical significance over time. 
Further research and additional guidance are necessary 
in these areas.

We acknowledge several limitations in our review. 
First, papers published before 2000 were not included 
unless cited by the shortlisted articles. While we can-
not rule out that some methodological articles may have 
been missed, we find it unlikely that major recommenda-
tions were not incorporated in the selected papers. Some 
bias, however, may be present due to the choice of search 
terms and our definition of what constitutes “guidance.” 
Next, our review is limited by what we retrieved from 
the selected literature. For instance, some performance 
measures were not discussed by the retrieved articles and 
hence were not included in this review (e.g., variants to 
R2 such as Cox-Snell’s [107] or McFadden’s [108], vari-
ants of the concordance statistic [109–112], test trade-off 
[103–105]). Beyond the scope of our review, commentar-
ies and more specific statistical papers also exist, which 
further elucidate on the interrelations of different perfor-
mance measures, for example, the effect of miscalibration 
on the Net Benefit [113] and other classification meas-
ures (e.g., NRI, IDI) [114, 115]. Finally, we noticed a lack 
of methods particular for machine learning-based models 
[116–118]. While a few papers argue that the same gen-
eral methodological considerations apply [59, 64], we are 
aware that at least some terminologies differ (e.g., predic-
tors are called features, bootstrap aggregation is called 
bagging). Some recommendations are also different 
(e.g., split-sampling design is recommended for internal 
validation of complex modeling procedures [67], and dis-
crimination is assessed by precision-recall curves (PRC), 
which have some similarity to receiver operating charac-
teristic (ROC) curves). It may therefore be informative to 

conduct a more targeted review that will enable a critical 
comparison of definitions and methodological standards 
between traditional regression and machine learning-
based models. We recognize that efforts are underway to 
develop reporting guidelines for machine learning-based 
models [119], which may help standardize concepts and 
methods.

Conclusion
The post-derivation stages of clinical prediction mod-
els are important for optimizing model performance in 
new settings that may be contextually different from or 
beyond the scope of the initial model development. Sub-
stantial methodological guidance is available for model 
evaluation (validation and impact assessment) and updat-
ing. For model  evaluation, we found that performance 
measures based on decision analysis provide additional 
practical insight beyond statistical performance (discrim-
ination and calibration) measures. For model updating, 
we identified various methods including recalibration, 
revision, and extension. Additional guidance is neces-
sary for machine learning-based models and relatively 
new types of updating, such as meta-model and dynamic 
updating. Our summary can be used as a starting point 
for researchers who want to perform post-derivation 
research or critique published studies of similar nature.
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