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Abstract 

Background:  Precision medicine is an emerging field that involves the selection of treatments based on patients’ 
individual prognostic data. It is formalized through the identification of individualized treatment rules (ITRs) that 
maximize a clinical outcome. When the type of outcome is time-to-event, the correct handling of censoring is crucial 
for estimating reliable optimal ITRs.

Methods:  We propose a jackknife estimator of the value function to allow for right-censored data for a binary treat-
ment. The jackknife estimator or leave-one-out-cross-validation approach can be used to estimate the value function 
and select optimal ITRs using existing machine learning methods. We address the issue of censoring in survival data 
by introducing an inverse probability of censoring weighted (IPCW) adjustment in the expression of the jackknife 
estimator of the value function. In this paper, we estimate the optimal ITR by using random survival forest (RSF) and 
Cox proportional hazards model (COX). We use a Z-test to compare the optimal ITRs learned by RSF and COX with 
the zero-order model (or one-size-fits-all). Through simulation studies, we investigate the asymptotic properties and 
the performance of our proposed estimator under different censoring rates. We illustrate our proposed method on a 
phase III clinical trial of non-small cell lung cancer data.

Results:  Our simulations show that COX outperforms RSF for small sample sizes. As sample sizes increase, the perfor-
mance of RSF improves, in particular when the expected log failure time is not linear in the covariates. The estimator 
is fairly normally distributed across different combinations of simulation scenarios and censoring rates. When applied 
to a non-small-cell lung cancer data set, our method determines the zero-order model (ZOM) as the best performing 
model. This finding highlights the possibility that tailoring may not be needed for this cancer data set.

Conclusion:  The jackknife approach for estimating the value function in the presence of right-censored data shows 
satisfactory performance when there is small to moderate censoring. Winsorizing the upper and lower percentiles of 
the estimated survival weights for computing the IPCWs stabilizes the estimator.

Keywords:  Precision medicine, Individualized treatment rules, Right-censoring, Jackknife, Leave-one-out-cross-
validation, Inverse probability of censoring weighting

Introduction
Precision medicine aims to inform clinical decisions by 
tailoring treatments to the characteristics of each patient. 
By using individual information—such as clinical history, 
lab results, demographics and social and economic char-
acteristics—precision medicine takes advantage of heter-
ogeneity to provide treatment recommendations to each 
patient in a data-driven way [1]. Approaches for estimat-
ing an optimal treatment rule have been developed using 
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machine learning techniques [2–6]. An optimal treat-
ment rule is found among a class of all possible treatment 
rules that maximizes the “value”, i.e., the expected reward 
of a potential outcome when the rule is applied to future 
patients [2]. Since the value is used to evaluate the per-
formance of a treatment rule, it is important to estimate 
its bias and standard error accurately. Such estimation is 
commonly done by cross-validation (CV). The jackknife 
estimator or leave-one-out-cross-validation (LOOCV) is 
a special case of CV where each individual in the sample 
is a fold, all but one fold are used for training and then 
the trained model is tested on the left-out fold. The pro-
cedure is repeated until all folds have been used as the 
test set once. The jackknife method requires very few 
assumptions and is approximately unbiased [7].

Jiang et al. [7, 8] used the jackknife estimator for deter-
mining the optimal individualized treatment rules for 
participants in the Intensive Diet and Exercise for Arthri-
tis (IDEA) trial [9, 10]. For the three treatments for knee 
osteoarthritis available in the trial (exercise, dietary 
weight loss, and a combination of exercise and dietary 
weight loss) and seven outcomes of interest, the authors 
applied their proposed method to 27 different models, 
including penalized regression, kernel ridge regression, 
tree-based methods, list-based methods, and Bayesian 
additive regression trees. The method identified random 
forest as the optimal model for most outcomes, while 
list-based models were optimal for a few. The results sup-
ported the overall findings from the IDEA trial that the 
combined treatment intervention was optimal for most 
participants. However, one notable finding of the preci-
sion medicine approach was the evidence that, for certain 
outcomes, a subgroup of participants would benefit more 
from diet alone.

In biomedical research, right-censored time-to-event 
data are frequently collected because of dropouts or 
administrative censoring. In such settings where the 
interest is in a survival outcome, parametric and semi-
parametric methods for estimating an individualized 
treatment rule have been developed to account for cen-
soring [11–13]. Assuming independent or conditionally 
independent censoring, these methods generally per-
form well for a small to moderate proportion of censored 
observations. They are generally categorized as regres-
sion-based [14–16] or classification-based methods [11, 
12]. Regression-based approaches model the mean out-
come conditional on treatment assignment and patient 
data and their performance depends on the correct 
specification of the posited models. Classification-based 
approaches were developed to avoid issues of model mis-
specification. Within this second class of approaches, the 
optimal treatment rule is determined by the classifier 
that minimizes the expected weighted misclassification 

error. For both types of approaches, an important con-
cern resides in finding tools for evaluating the perfor-
mance of an ITR. In this paper, we extend the jackknife 
method proposed by Jiang et al. [7] for a binary treatment 
and a right-censored survival outcome. Our extension of 
the jackknife method uses the inverse probability of cen-
soring weighting (IPCW) to mitigate the bias induced by 
the censored observations. We show the consistency of 
the jackknife estimator for right-censored data and study 
its asymptotic properties through simulations.

Methods
The jackknife estimator of the value function
In this section, we introduce general notations and 
present some existing work relevant to this paper. Let 
{(Xi,Ai,Yi)}

n
i=1 , be independent and identically dis-

tributed triples (X,A,Y ) for n patients. We define 
X ∈ X ⊆ R

p as a vector of baseline patient character-
istics, A ∈ {0, 1} as the binary treatment indicator, and 
Y ∈ R as a scalar outcome, with higher values of Y rep-
resenting more favorable outcomes. Precision medicine 
looks to maximize the expected reward of a potential 
outcome under a treatment rule. The treatment rule 
maps the patient-level covariates X  to the binary treat-
ment space {0, 1} . In a single stage setting, the optimal 
treatment rule is selected among a class of all possible 
treatment rules D that maximizes the value of a poten-
tial outcome when applied to future patients [2]. The 
expected reward or value function is defined as:

where P(A|X) is the propensity score, which is known 
in a randomized study or can be estimated with a logis-
tic regression or some other model in an observa-
tional study. The optimal treatment rule is defined as 
d∗ = arg maxd V (d).

In the right-censored survival data setting, we consider 
T̃  as the true survival time and T = min(T̃ , τ ) as the τ
-truncated survival time where τ < ∞ is the maximum 
follow-up time. Also, we assume censoring time C is 
independent of T given (X,A) and denote the censoring 
indicator as δ = I(T ≤ C) . When the interest is in maxi-
mizing the restricted mean survival time, the expression 
of the above value function then becomes

The optimal treatments are estimated with regression-
based or classification-based approaches. Regression-
based approaches model the mean outcome conditional 
on treatment assignment and patient data [3, 17–19]. 

V (d) = Ed(Y ) = E Y
1{A = d(X)}

P(A|X)
,

V (d) = E

[
T
1{A = d(X)}

P(A|X)

]
.
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The performance of the regression-based approaches 
depend on the correct specification of the posited mod-
els. In addition, modeling treatment-covariate interac-
tions can lead to a high-dimensional situation, further 
complicating the estimation procedures. Classification-
based approaches were developed to avoid issues of 
model misspecification [4, 5, 20]. This alternative class 
of approaches relies on fewer modeling assumptions 
and the optimal treatment rule is estimated by minimiz-
ing the expected weighted misclassification error. The 
selected approach is then evaluated via cross-validation 
techniques for assessing the value function associated 
with the estimated treatment rule.

Jiang et al [7] proposed a LOOCV or jackknife estima-
tor for the value function for continuous outcomes. The 
approach requires weak assumptions, namely that the 
data are independent and identically distributed. The 
proposed jackknife estimator is expressed as:

where d̂(−i)
n  represents the treatment rule estimated 

from a training set of size n with the i-th observation left 
out and P(Ai|Xi) is the propensity score of the test set i. 
The variance of the estimator in (1) is estimated by

where Rjk
i = 1

Wn
Ui −

Un

W
2
n

Wi , with Ui = Yi
1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)
 ,
 

Wi =
1

{
Ai=d̂

(−i)
n (�i)

}

P(Ai|�i)
 , Un = n−1

∑n

i=1
Ui , and Wn =

n−1
∑n

i=1
Wi . Through proofs and simulations, Jiang et al. 

[7] showed consistency and asymptotic normality of the 
proposed jackknife estimator of the value function. Note 
that we are ignoring the contribution to the limiting dis-
tribution due to estimating the propensity scores. It 
appears from our simulation study that this omission 
does not harm the performance of our method for a 
range of sample sizes. Evaluating this question theoreti-
cally is beyond the scope of this paper.

In the presence of dropouts or administrative censor-
ing, the unobserved events bring some complexity to 
statistical analysis. Specifically, the presence of informa-
tive censoring (i.e., the censoring time is dependent on 
the failure time) may incur bias in both survival times 
and censoring probabilities. Thus, the higher the propor-
tion of censoring in the data, the more caution is to be 
taken during the estimations procedures. One approach 
that is commonly used to address the issues arising from 

(1)V̂ jk(d̂n) =

∑n
i=1 Yi

1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)

∑n
i=1

1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)

,

V̂ar
[
V̂ jk(d̂n)

]
=

1

n(n− 1)

n∑

i=1

(
R
jk
i

)2
,

censoring is the inverse probability of censoring weighted 
estimator (IPCW). The IPCW was initially developed to 
address bias in survival probabilities due to censoring 
[21–24]. The IPCW estimator corrects for bias by giving 
zero weight to censored observations and extra weights 
to uncensored observations. The weights are assigned 
to observations with similar characteristics to the cen-
sored observations and are usually estimated by logis-
tic regression or Cox proportional hazards regression. 
Applying the IPCW recreates a potential scenario of no 
censoring and the re-weighted sample obtained is asymp-
totically unbiased. However, IPCW does not address 
possible models misspecification that may remain when 
parametric or semi-parametric estimation methods are 
employed.

Jackknife estimator of the value for right‑censored data
Definition of the jackknife estimator of the value function 
for right‑censored data
We propose an extension of the jackknife value estima-
tor developed by Jiang et  al [7] in the presence of right 
censoring. Our jackknife value estimator corrects for the 
censoring-induced bias by applying the IPCW method 
to the estimator expressed in (1). The proposed jackknife 
value estimator has the following form:

where d̂(−i)
n  represents the treatment rule estimated from 

a training set of size n with the i-th observation left out, 
P(Ai|Xi) is the propensity score of the test set i, Sc(t|Xi) 
the probability that the i-th observation has not been 
censored by time t conditional on Xi , and δi = I(Ti ≤ Ci) . 
Here, we assume that P(Ai|Xi) and Sc(t|Xi) are known. 
However, in practice, P(Ai|Xi) and Sc(t|Xi) are some-
times unknown and are estimated by regression models. 
Once obtained, the estimated propensity scores and cen-
soring probabilities are plugged in the expression for the 
jackknife estimator in (2).

The estimated variance of the jackknife value estimator is

where Rjk
i = 1

Wn
Ui −

Un

W
2
n

Wi is the bias-corrected form of 

value function inspired by the influence function, with
 

Ui = Ti

1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)
δi

Sc(Ti|Xi)
 , Wi =

1

{
Ai=d̂

(−i)
n (�i)

}

P(Ai|�i)

𝛿i

Sc(Ti|�i)
 , 

Un = n−1
∑n

i=1Ui , and Wn = n−1
∑n

i=1Wi.

(2)V̂ jk(d̂n) =

∑n
i=1 Ti

1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)
δi

Sc(Ti|Xi)

∑n
i=1

1
{
Ai=d̂

(−i)
n (Xi)

}

P(Ai|Xi)
δi

Sc(Ti|Xi)

,

V̂ar
[
V̂ jk(d̂n)

]
=

1

n(n− 1)

n∑

i=1

(
R
jk
i

)2
,
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We note that, as before, we are ignoring the potential 
variability due to estimating P(Ai|Xi) and Sc(t|Xi) , but 
our simulations verify that the approach works accept-
ably well for a range of sample sizes considered.

Estimation of the optimal treatment rule
The optimal treatment rule doptn  maps the patient-level 
covariates X  to the binary treatment space {0, 1} . doptn  is 
selected among a class of all possible treatment rules D 
that maximize the value of a potential outcome when 
applied to future patients [2].

A wide range of machine learning approaches has 
been used to obtain d̂optn  , the estimated optimal treat-
ment rule when the outcome is right-censored. Goldberg 
and Kosorok [15] proposed a Q-learning algorithm with 
backward recursion for the multi-stage setting. Zhao 
et al. [11] developed a doubly robust outcome-weighted 
learning approach that uses IPCW and requires the cor-
rect specification of either the survival or the censoring 
model. Cui et  al. [12] further proposed an extension of 
outcome weighted learning which relaxes the previous 
requirements by considering a tree-based approach. In 
this manuscript, we opt for using random survival for-
ests [25] (RSF) and the Cox proportional hazards model 
(COX) as our estimation approaches. Random survival 
forests is one of the most commonly used tree-based 
methods for survival analysis. Tree-based methods are 
widely used because they are flexible methods that do 
not make distributional assumptions for the failure times. 
Even though Cox proportional hazards models [26] 
make some assumptions on the distribution of the fail-
ure times, they are robust to misspecification and remain 
the most commonly used regression method for survival 
analysis [27].

Using each of the selected estimation approaches, 
we obtain the estimated restricted mean survival times 
(RMST) [28] corresponding to each treatment option. 
The optimal treatment for a patient i is then obtained by 
the treatment that yields the larger area under the curve.

Under mild assumptions, we prove that the proposed 
jackknife estimator for right-censored data is consistent.

Consistency of the jackknife estimator for right‑censored 
data
In this section, we show proof of the consistency of the 
jackknife estimator. First, we make the following two 
assumptions.

Assumption 1  E[PX (d̂n(X) �= d̂n−1(X))] −→ 0

as n → ∞

Assumption 2  E
[

T
2+1

P2(A|X) S2c (T |X)

]
< ∞

Assumption 1 makes the assumption that the treatment 
rules based on samples of size n and n− 1 are asymp-
totically equal in probability. Assumption 2 assumes that 
the expectation of the second moment of the outcome, 
adjusted by the propensity score and the probability of 
censoring, is finite.

Theorem 1  Given the above assumptions,

when P(A|X) and Sc(T |X) are known.

The complete proof is shown in Additional file 1.

Z‑test for comparing two ITRs in the presence 
of right‑censored data
We build a test to compare optimal treatment rules from 
two estimation approaches. Similarly to Jiang et  al. [7], 
the test statistic is expressed as:

where V̂ (d̂n,1) and V̂ (d̂n,2) are the estimated value func-
tions for the estimated optimal treatment rules obtained 
from the two estimation approaches. R1,i and R2,i are the 
bias-corrected, influence function-inspired value func-
tion of the i-th individual under these treatment rules.

The p-value for the test is obtained as 
p = 2

∫∞
|T | f (z) dz , where f is the density of the standard 

normal distribution. We define the power of the test as 
the estimated proportion of the total number of simula-
tions whose p-values are under 0.05.

Through simulations, we study the asymptotic prop-
erties of the jackknife estimator. We provide Q-Q plots 
for the distribution of the test statistic above and box-
plots for the jackknife value estimate obtained after 500 
replications.

Simulation studies
Simulation settings
We carry out simulations to assess the performance of 
the proposed jackknife estimator of the value function. 
The binary treatment A ∈ {0, 1} is assigned with equal 
probabilities. We generate five covariates X1, . . . ,X5 
independently from a uniform (U[0,  1]) distribu-
tion. We obtain and compare the estimated optimal 

(3)

∑n

i=1
Ti

1

�
Ai=d̂

(−i)
n (�i)

�

P(Ai��i)

𝛿i

Sc(Ti��i)

∑n

i=1

1

�
Ai=d̂

(−i)
n (�i)

�

P(Ai��i)

𝛿i

Sc(Ti��i)

− E
�
T �A = d̂n(�)

�

p
⟶ 0 as n → ∞,

(4)T (d̂n,1, d̂n,2) =
V̂ (d̂n,1)− V̂ (d̂n,2)√∑n

i=1(R1,i−R2,i)2

n(n−1)

,
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treatment rules with random survival forests (RSF) and 
proportional hazards regression (COX). We also com-
pare the RSF to the zero-order model (ZOM) or one-
size-fits-all, which assigns the best single treatment 
to all patients. For each estimation approach, using 
the five generated covariates, we estimate the opti-
mal treatment as detailed in the Methods section. The 
IPCWs are obtained by Cox proportional hazards mod-
els using all five covariates and their interactions with 
the binary treatment. To control for potential extreme 
outliers in the estimated values, we apply a 90% win-
sorization — trimming of the top and bottom 5% — to 
the estimated censoring probabilities [29]. The propen-
sity scores are obtained with logistic regression where 
we regress the binary treatment on all five covariates. 
Although they are known a priori in our simulations, 
we use the estimated propensity scores to correctly 
reflect variability in the estimation of the value func-
tion. We train the RSF with the R package randomfor-
estSRC [30] with the default tuning parameters. We use 
the survival [31] package to conduct the proportional 
hazards regressions.

We consider three simulation scenarios where the 
true survival ( T̃  ) and censoring times (C) are condition-
ally independent. We use log-transformed survival and 
censoring times in all our analyses. For each scenario, 
we perform the simulations 500 times for sample sizes 
of 200, 400 and 800, and consider the average censoring 
rates of 0% , 10% , 20% , 40% . For all models, the errors for 
the failure times ( ǫ ) are generated from a normal distri-
bution with mean 0 and standard deviation 0.2, and the 
errors for the censoring times ( ξ ) are generated from 
a normal distribution with mean 0 and standard devia-
tion 0.5. For the proportional hazards model, the baseline 
hazard function �0(t) = 2t.

The simulation scenarios are detailed below. 

Scenario1.	� T  is generated from the accelerated fail-
ure time model. τ is 1.8 and α is 0.5, 
0.22 and −0.14 for 10% , 20% and 40% 
average censoring rates respectively: 
log(T̃ ) = −0.2 − 0.5X1 + 0.5X2 + 0.4X3+

(0.3 − 0.1X
1
− 0.6X

2
+ 0.1X

3
)A + � , log(C)

= � − 0.1X
1
+ 0.2X

2
+ 0.2X

3
+ (0.5 − 0.1X

1

−0.6X
2
+ 0.3X

3
)A + � . The value of the 

optimal ITR is approximately 1.105.
Scenario2.	� T  is generated from the accelerated failure 

time model with tree-structured effects. τ 
is 8 and α is 0.5, −0.25 and −1.18 for 10% , 
20% and 40% average censoring rates 
respectively: log(T̃ ) = X1 + I(X2 > 0.5)I(X3

> 0.5) + (0.3 − X
1
)A + 2{I(X

4
< 0.3)I(X

5
<

0.3)}A + � , log(C) = � − X1 + 2X2 + 2X3+

(5 − X
1
− 6X

2
+ 3X

3
)A + � . The value of 

the optimal ITR is approximately 3.590.
Scenario3.	� T  is generated from the Cox propor-

tional hazards model. τ is 2.5 and α is 
−0.05 , −0.40 and −0.93 for 10% , 20% and 
40% average censoring rates respectively: 
𝜆T̃ (t | A,X) = 𝜆0(t) exp{−0.2 + 0.75X1.5

1
−

0.25X
2
+ (1.6 − 1.4X

0.5

1
− 2.4X

2

2
)A} , log(C)

= � + 0.5X
1
+ X

2
+ 0.3X

3
+ 0.1X

4
+ (0.1+

0.5X
1
− X

2
+ 0.3X

3
)A + � . The value of the 

optimal ITR is approximately 1.144.

One inconvenience of using the jackknife estimator is 
that it becomes rapidly computationally intensive as the 
sample size increases. We attempt to mitigate this issue 
for large sample sizes by performing a partial jackknife 
(LOOCV) on a random subset r, r ≤ n of the original 
sample. Thus, we compute the jackknife value estimator 
in (2) for n = 200 and n = 400 and opted for the partial 
jackknife for n = 800—for each replicate, we apply the 
expression of the jackknife value estimator on a randomly 
selected subset r = 500 of the initial sample n = 800 . 
Through our work with simulated data sets, we observe 
that using the partial jackknife requires up to 40% less 
computation time than using the “full jackknife” for a 
sample of size n = 800.

Results
Table 1 shows the power of the test statistic expressed in 
(4). We provide a table with the value of the optimal ITR 
and the estimated values for each scenario under the 0% 
censoring case in Additional file 2. We compare the esti-
mated optimal individualized treatment rules obtained 
from RSF and COX on the one hand, and RSF and ZOM 
on the other hand. RSF outperforms ZOM in all scenar-
ios. RSF tends to show an increased performance over 
COX as the event times stem from more non-linear dis-
tributions. Figure  1 illustrates the boxplots of the esti-
mated values obtained using each estimation method for 
all three scenarios.

In scenario 1 and across all censoring mechanisms, 
COX performs better than RSF for n = 200 . As the sam-
ple size increases, the two estimation approaches show 
similar performances. As expected, RSF always performs 
better than ZOM, with enhancing performance as the 
sample size increases and a decreasing performance as 
the censoring proportion gets larger.

In scenario 2, as the failure times are generated with 
a tree-based structure, COX performs slightly better 
than RSF for n = 200 . For n = 400 both methods per-
form similarly and RSF outperforms COX for n = 800 . 
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We observe a similar pattern as in scenario 1 when we 
compare RSF to ZOM. RSF does better than ZOM as the 
sample size increases and the performance decreases as 
more censoring is introduced in the data.

When the data are generated from a proportional haz-
ards model in scenario 3, we observe similar results to 
scenario 1. COX consistently performs better than RSF 

for all censoring mechanisms and across sample sizes, 
while RSF always does better than ZOM.

We investigated the size of the proposed Z-test 
under the null hypothesis. The null hypothesis is that 
the value (or mean outcome) is the same for the two 
estimation methods being compared. Across all three 
scenarios, we modified the posited failure time models 

Table 1  Estimated power of the jackknife estimator based on 500 simulations. RSFvCOX and RSFvZOM correspond to the comparison 
between RSF and COX, and between RSF and ZOM respectively

n = 200 n = 400 n = 800

Scenario Censoring RSFvCOX RSFvZOM RSFvCOX RSFvZOM RSFvCOX RSFvZOM

1 0 % 0.164 0.452 0.114 0.878 0.066 0.968

≈ 10 % 0.124 0.414 0.092 0.786 0.066 0.914

≈ 20 % 0.122 0.332 0.080 0.682 0.050 0.860

≈ 40 % 0.106 0.234 0.090 0.474 0.054 0.680

2 0 % 0.094 0.362 0.074 0.928 0.230 0.992

≈ 10 % 0.074 0.202 0.070 0.458 0.170 0.562

≈ 20 % 0.040 0.128 0.096 0.234 0.172 0.348

≈ 40 % 0.076 0.066 0.124 0.104 0.212 0.206

3 0 % 0.046 0.442 0.054 0.732 0.060 0.830

≈ 10 % 0.034 0.372 0.064 0.642 0.060 0.764

≈ 20 % 0.048 0.294 0.062 0.540 0.052 0.590

≈ 40 % 0.034 0.126 0.046 0.242 0.046 0.320

Fig. 1  Boxplots of the estimated values obtained across 500 simulations. “cens.” stands for censoring. The red, green and blue plots represent the 
COX, RSF and ZOM respectively. Only are shown plots for 0%, 20 % and 40% censoring
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to make one treatment option clearly more favorable 
than the other treatment option. Under these settings, 
we assess whether the type I error is preserved for the 
proposed Z-test. log(C) and τ remain the same as in 
the previously presented simulation scenarios, and we 
tuned α to achieve the desired proportion of censored 
observation in each simulation. We present the slightly 
modified scenarios in Additional file  3. In table  2, we 

present the p-values of the tests, along with the Monte 
Carlo errors derived from these models. It is important 
to note that, for scenario 2 and 40% censoring, we do 
not achieve the desired test size of around 0.05. We 
suspect that, for high censoring rates, and when the 
failure time model is not linear, a sample size larger 
than the ones considered in our simulations is neces-
sary to achieve a type I error.

Table 2  Estimated test size of the jackknife estimator based on 500 simulations. Size of the test & Monte Carlo Error ( ×10
3 ). RSFvCOX 

and RSFvZOM correspond to the comparison between RSF and COX, and between RSF and ZOM respectively

n = 200 n = 400 n = 800

Scenario Censoring RSFvCOX RSFvZOM RSFvCOX RSFvZOM RSFvCOX RSFvZOM

1 0 % 0.052 (9.9) 0.064 (11.0) 0.044 (9.2) 0.048 (9.6) 0.020 (6.3) 0.020 (6.3)

≈ 10 % 0.056 (10.3) 0.090 (12.8) 0.088 (12.7) 0.110 (14.0) 0.050 (9.7) 0.050 (9.7)

≈ 20 % 0.046 (9.4) 0.070 (11.4) 0.080 (12.1) 0.100 (13.4) 0.062 (10.8) 0.064 (10.9)

≈ 40 % 0.052 (9.9) 0.074 (11.7) 0.064 (10.9) 0.110 (14.0) 0.060 (10.6) 0.066 (11.1)

2 0 % 0.032 (7.9) 0.044 (9.2) 0.034 (8.1) 0.068 (11.2) 0.04 (8.8) 0.038 (8.5)

≈ 10 % 0.080 (12.1) 0.070 (11.4) 0.066 (11.1) 0.088 (12.7) 0.052 (9.9) 0.044 (9.2)

≈ 20 % 0.080 (12.1) 0.088 (12.7) 0.076 (11.8) 0.098 (13.3) 0.076 (11.8) 0.110 (14.0)

≈ 40 % 0.116 (14.3) 0.100 (13.4) 0.154 (16.1) 0.148 (15.9) 0.170 (16.8) 0.170 (16.8)

3 0 % 0.040 (8.8) 0.066 (11.1) 0.062 (10.8) 0.118 (14.4) 0.088 (12.7) 0.098 (13.3)

≈ 10 % 0.052 (9.9) 0.044 (9.2) 0.054 (10.1) 0.100 (13.4) 0.082 (12.3) 0.082 (12.3)

≈ 20 % 0.034 (8.1) 0.036 (8.3) 0.042 (9.0) 0.092 (12.9) 0.048 (9.6) 0.048 (9.6)

≈ 40 % 0.040 (8.8) 0.044 (9.2) 0.028 (7.4) 0.070 (11.4) 0.050 (9.7) 0.060 (10.6)

Fig. 2  Q-Q plots of the distribution of the jackknife test statistic for comparing RSF to COX across 500 simulations versus the standard normal 
distribution. “cens.” stands for censoring. Only are shown plots for 0%, 20 % and 40% censoring
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We studied the normality of the jackknife estimators 
under each scenario and censoring mechanism. Figures 2 
and 3 contain the Q-Q plots for the jackknife test statistic 
expressed in equation (4) with 90% winsorized censor-
ing probabilities. We show the plots for 0% , 20% and 40% 
censoring. When the proportion of censoring is relatively 
small ( ≈ 10% ), we observe some results analogous to the 
no censoring case. Across all scenarios, and when there 
is no or minimal censoring, we observe that the test sta-
tistic has approximately a standard normal distribution. 
Even as the censoring proportion increases and the fail-
ure times are of more complex structures, the test statis-
tic remains normally distributed. Trimming the top and 
bottom 5% weights permits avoiding extreme outliers 
that would cause deviations from normality. In general, 
departures from normality in the tails are not uncommon 
in survival analysis when censoring is high.

Data application
We illustrate our proposed method using non-small-
cell lung cancer data [32]. The Phase III randomized 
trial was conducted to investigate the duration of 
therapy that would maximize survival. Patients with 
advanced non-small-cell lung cancer were recruited 
and randomized to either four cycles of carboplatin/
paclitaxel or continuous therapy with carboplatin/
paclitaxel until disease progression. The trial enrolled 

230 participants; however, our analysis data set con-
tains information for 224 participants with complete 
data. In this sample, 115 participants were assigned to 
continuous therapy with carboplatin/paclitaxel until 
disease progression and 109 participants were assigned 
to four cycles of carboplatin/paclitaxel. We consider 
five covariates in our data analysis: performance status, 
cancer stage, race, sex, and age. The censoring rate was 
around 32%.

We apply our proposed method to the analytic sam-
ple. We set τ = 500 days, thus truncating the six high-
est survival times to 500 days. Similar to the simulations 
settings, the IPCWs are estimated by Cox proportional 
hazards models using all five covariates and their inter-
actions with the binary treatment. The propensity scores 
are obtained via logistic regressions where we regress 
the binary treatment on all five covariates. We trained 
the RSF with default tuning parameters. With each RSF, 
COX, and ZOM, we compared RMST for both treatment 
groups to obtain the optimal ITRs. We then computed 
the corresponding jackknife value estimates, along with 
corresponding standard errors. We also computed the 
Z-test comparing RSF to COX, RSF to ZOM and COX 
to ZOM.

As illustrated by their value estimates (Table  3), RSF 
performed the worst, followed by COX, and ZOM per-
formed the best. RSF performed worse than either COX 

Fig. 3  Q-Q plots of the distribution of the jackknife test statistic for comparing RSF to ZOM across 500 simulations versus the standard normal 
distribution. “cens.” stands for censoring. Only are shown plots for 0%, 20 % and 40% censoring
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( p = 0.06 ) or ZOM ( p = 0.05 ), and ZOM performed 
better than COX ( p = 0.46).

There are a few possible explanations for why ZOM 
provided the best performance. First, we may not have a 
sufficiently diverse pool of patients in our analytic sam-
ple; indeed, we know that precision medicine requires 
heterogeneity to perform well. It appears that tailoring 
is not needed in this case, and all patients are recom-
mended to receive “continuous therapy with carboplatin/
paclitaxel until disease progression”. Second, the sample 
size was not very large, and we only used five tailoring 
variables in our analysis. Having more features available 
to proceed with a thorough variable selection would have 
benefited RSF, as random forests are known to be highly 
flexible. ZOM selects “continuous therapy with carbopl-
atin/paclitaxel until disease progression” as the best sin-
gle treatment, which is consistent with the findings of the 
paper from [32] discussing the results from the trial.

Discussion
In this article, we proposed an extension of the jackknife 
method to estimate value functions and optimal treatment 
rules when outcomes are right-censored survival data. The 
method shows strong performance for small to mild cen-
soring rates. When the outcome has a high proportion of 
censoring, trimming the top and bottom 5% of the esti-
mated censoring probabilities leads to satisfactory results.

In our method, we used the complete data to esti-
mate the inverse probability of censoring and propensity 
weights before applying the jackknife method. Unfortu-
nately, it was not possible to estimate these weights with 
test sets of only one observation within the jackknife 
procedure. We would have had an empty set each time 
the left-out observation was censored, and thus, would 
have been unable to compute the weights. Alternatively, 
we could have estimated the weights under settings of no 
censoring. However, this naive approach also has obvious 
limitations. While we expect this approach in estimating 
the censoring probabilities to have some effects on our 
estimation results, it is not clear how significant these 
effects are based on our simulations.

Future research should investigate the use of leave-
five-out- or leave-ten-out-cross-validation (instead of the 
LOOCV) to increase the predictive performance in a high 
censoring setting. Also, it would be of interest to determine 

a systematic procedure for defining the truncation point 
needed for the RMST to improve the method performance 
in the presence of high censoring. Finally, a theoretical 
understanding of the reasons why the potential variability 
created by estimating the propensity scores and the cen-
soring probabilities does not affect the performance of our 
estimator, remains an open question.
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