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Abstract 

Background:  Many metagenomic studies have linked the imbalance in microbial abundance profiles to a wide 
range of diseases. These studies suggest utilizing the microbial abundance profiles as potential markers for metagen-
omic-associated conditions. Due to the inevitable importance of biomarkers in understanding the disease progres-
sion and the development of possible therapies, various computational tools have been proposed for metagenomic 
biomarker detection. However, most existing tools require prior scripting knowledge and lack user friendly interfaces, 
causing considerable time and effort to install, configure, and run these tools. Besides, there is no available all-in-one 
solution for running and comparing various metagenomic biomarker detection simultaneously. In addition, most of 
these tools just present the suggested biomarkers without any statistical evaluation for their quality.

Results:  To overcome these limitations, this work presents MetaAnalyst, a software package with a simple graphi-
cal user interface (GUI) that (i) automates the installation and configuration of 28 state-of-the-art tools, (ii) supports 
flexible study design to enable studying the dataset under different scenarios smoothly, iii) runs and evaluates several 
algorithms simultaneously iv) supports different input formats and provides the user with several preprocessing 
capabilities, v) provides a variety of metrics to evaluate the quality of the suggested markers, and vi) presents the 
outcomes in the form of publication quality plots with various formatting capabilities as well as Excel sheets.

Conclusions:  The utility of this tool has been verified through studying a metagenomic dataset under four scenarios. 
The executable file for MetaAnalyst along with its user manual are made available at https://​github.​com/​mshaw​
aqfeh/​MetaA​nalyst.
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Background
Recent advances in high throughput sequencing technol-
ogies have opened the door to a new era for genetic stud-
ies, called metagenomics. In contrast to the conventional 
cultivation-based approaches, metagenomics enables the 

characterization of compositional and functional profiles 
of microbial colonies directly from environmental sam-
ples. Increasing number of metagenomic studies have 
revealed strong associations between the imbalance in 
microbial abundance profiles and a wide range of dis-
eases such as obesity [1, 2], diabetes [3], inflammatory 
bowel disease (IBD) [4], and cancer [5, 6]. These results 
suggest utilizing metagenomic data for identifying poten-
tial biomarkers and developing phenotype classification 
models for microbial-associated diseases.
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In addition to the contribution of the biomarkers in 
understanding the biological process under study, bio-
marker detection and phenotype predictive models play 
a central role in translating the embedded information 
in metagenomic datasets into clinical applications. One 
potential application is to utilize the detected markers for 
the development of potential therapies and treatments 
for microbial related diseases. Another application is to 
integrate the abundance levels of the suggested biomark-
ers into a single numeric value, called the dysbiosis index, 
that measures and tracks the disease activity [7, 8].

Therefore, several algorithms and computational 
tools have been proposed for biomarker detection such 
as LEfSe [9], RPCA [10], RegLRSD [11], IMG/M [12], 
MeAtML [13], Fizzy [14], Boruta [15], ENNB [16], 
MetagenomeSeq [17], MicrobiomeDDA [18], Shotgun-
FunctionalizeR [19], MetaStats [20], Raida [21], FAN-
TOM [22]. Due to the similarity between metagenomic 
data sequence-based transcriptomics, tools that were 
developed originally for analyzing RNA sequencing 
(RNA-seq) data such as edgeR [23] and DESeq2 [24] 
can be applied to analyzing metagenomic data. In addi-
tion, conventional standard hypothesis testing (e.g., 
chi-squared, log-t, t-test, Leven Quadrati, Leven abso-
lute, Wilcoxon rank sum, Brown-Forythe, Welch and 
Kolmogorov-Smirnov) and feature selection techniques 
(e.g., ReliefF [25], Pearson correlation [26], BSS/WSS 
[26]) have been suggested for finding differentially abun-
dant microbes in metagenomic data. It is worth to men-
tion that there exist various general purpose (i.e., not 
dedicated to metagenomic) tools that packed several fea-
ture selection techniques to find the important features 
(markers) such as FeatureSelect [27] and MetaFS [28]. 
Table 1 summarizes the characteristics of these tools.

However, the majority of these tools lack a user-
friendly interface, and more challenging, most of them 
are of command-line nature, which is less comfortable 
compared to graphical user interface (GUI)-based soft-
ware. Besides, these methods were developed using dif-
ferent programming languages (R, Python, C, C++, 
Matlab, etc), and their operation requires handling ver-
sion compatibility and package dependencies related 
issues. Therefore, installing, configuring, and running 
these tools present sometimes a serious challenge for 
researchers with limited background in such professional 
soft skills. This problem becomes more challenging in 
scenarios where these tools are required to be installed 
on a large number of workstations (e.g., educational and 
research laboratories) [29]. One further limitation of sev-
eral existing tools is that they accept one or few file types 
(e.g., xlsx, txt, biom). Even more, some tools require the 
data to be arranged in a certain format in the input data 
file. This decreases the comfort of utilizing these tools, 

especially when dealing with human-unreadable files 
such as biom files.

Another challenge is the lack of an all-in-one solution 
that provides a researcher in the field of metagenom-
ics with an easy solution to conduct analysis over mul-
tiple tools simultaneously. This feature becomes more 
demanding if it is combined with the fact that there is no 
golden method that provides reliable results over all data-
sets. Specifically, the lists of potential markers that are 
generated by different algorithms vary significantly [10, 
11, 36]. This variation stems from the underlying assump-
tions behind each method and the characteristics of the 
input data. Thus, using a variety of biomarker detection 
algorithms is crucial to enable the researcher to explore 
the biological problem from different angles (i.e., differ-
ent algorithms may suggest different markers). Therefore, 
it is informative to obtain and compare the suggested 
signatures of several meteganomic biomarker detection 
techniques simultaneously. To achieve this goal, the cur-
rent standard approach is to install and run the targeted 
tools individually. Then, combine the obtained results 
from these tools manually to generate comparison tables 
and figures. This involves an additional burden and con-
sumes a significant amount of time and effort.

Besides, the majority of existing tool for metagenomic 
biomarker discovery lack the flexibility of reformatting 
the input dataset to enable studying the data under dif-
ferent conditions. In particular, the fundamental step for 
comparative analysis such as biomarker detection and 
phenotype classification is to divide the samples into pos-
itive and negative classes based on their class labels. Typ-
ically, biological samples are annotated with several kinds 
of information such as health status, body site location, 
gender. In order to construct the positive and negative 
cohorts, existing tools with one-level labeling capabil-
ity enable the user to conduct comparative analysis with 
respect only to one criterion. To illustrate, assume that 
the health status (i.e., healthy or diseased) and gender 
information of the samples are available. With one-level 
labeling capability, a researcher can directly compare 
healthy and diseased samples (irrespective of the gender) 
or to compare male and female subjects (irrespective of 
the health status). In other words, the user can divide the 
samples into positive and negative groups based only on 
one criterion (either health status or gender). However, 
if the user is interested in creating positive and nega-
tive cohorts by combining the two criteria (i.e., health 
status and gender), then the researcher needs to do this 
manually. For example, assume that it is required to com-
pare healthy and diseased females (male samples are 
excluded), then the researcher needs to manually divide 
the samples into two groups. The first group represents 
the positive class and it is composed of “diseased and 
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female” subjects, while the second group compromises 
the “healthy and female” samples and represents the neg-
ative class. This one-level labeling becomes more incon-
venient to provide flexible study design if the original 
data includes several levels of labels and the researcher 
is interested in studying various scenarios (by combining 
different levels of samples’ labels).

One additional serious limitation of several exist-
ing tools is that they provide the researcher with the 

suggested list of biomarkers without performance 
assessment. In the field of metaproteomics, research-
ers have payed special attention for evaluating the 
suggested markers. For example, the authors in [28] 
have designed an online tool, named MetaFS, that is 
designed to evaluate the performance of 13 metapro-
teomics biomarker detection algorithms using four 
evaluation criteria (clustering, classification, con-
sistency, and prediction of spiked protein). As an 

Table 1  The characteristics of existing packages for biomarker detection. Y: Yes, N: No, CL: Command Line

∗ The implementation of the code is not available

Tool Language Interface Input Files Flexible 
Data 
Format

Flexible 
Study 
Design

Preprocessing Evaluate 
Biomarkers

Run 
Multiple 
Algorithms

Boruta [15] -R -CL -R frame N N N N Y

edgeR [23] -R -CL -R frame N N -Filtering Y N

-Normalization

DESeq2 [24] -R -CL -R frame N N N N N

ENNB [16] -R -CL -R frame N N -Normalization N N

MetagenomeSeq 
[17]

-R -CL - R frame N N -Normalization N N

MicrobiomeDDA 
[18]

-R -CL -R frame N N -Normalization N N

Shotgun- Function-
alizeR [19]

-R -CL - R frame N N N N Y

MetaStats [20] -R -CL -R frame N N -Normalization N N

Raida [21] -R -CL -R frame N N N N N

LEfSe [9] -Python -CL -Web -Tabular Y Y N N N

MetaML [13] -Python -CL -tsv N N N Y N

Fizzy [14] -Python -CL -biom -csv N N N N N

“stats” package of 
R [30]

-R -CL -R frame N N N N N

FANTOM∗ [22] -Python -GUI -txt NA N N N N

STAMP [31] -Python -GUI -tsv N N -Filtering N N

XIPE-TOTEC [32] -Python -CL -Web -tsv N N N N N

Microbiome Ana-
lyst [33]

-Java Script -Web -txt -csv -biom N N -Filtering -Scaling 
-Normalization 
-Transformation

Y N

-Java

-R

METAREP [27] -Python -Java 
-Matlab

-CL -GUI -txt -xlsx -mat N N N Y N

DAME [34] -R -Web -biom -csv -trf 
-HDF5 -JSON

N Y -Filtering Y N

ShinyMB [35] -R -Web -csv -tsv N N -Stratification Y N

MetaFS [28] -Web server -Web -csv N N -Centering -Trans-
formation -Scaling 
-Normalization

Y N

RPCA∗ [10] -Matlab -C -CL -xls N N N N N

RegLRSD [11] -Matlab -C -GUI -xls N N N N N

MetaAnalyst -Matlab -GUI -csv -tsv -xls -mat 
-biom -json

Y Y -Scaling -Normali-
zation -Centering

Y Y
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additional example, the authors in [37] have conducted 
comprehensive assessment to 14 biomarker detection 
algorithms using two criteria: (i) classification power, 
and (ii) spiked protein discovery. Therefore, it is cru-
cial to develop a user friendly tool to quantify the qual-
ity of the detected metagenomic biomarkers.

In order to provide a remedy for these challenges 
and to improve the efficiency of metagenomic analysis, 
this work proposes MetaAnalyst, an all-in-one stan-
dalone package equipped with a user friendly graphical 
user interface. MetaAnalyst automatically installs and 
configures 28 tools designed specifically for metagen-
omic biomarker detection. In addition, MetaAnalyst 
package includes 4 classifiers, namely support vector 
machines (SVM), random forest (RF), nearest centroid 
(NC), and k-nearest neighbor (kNN). These classifica-
tion methods enable the researcher to go beyond the 
basic biomarker detection functionality to build com-
plete phenotype classification models and to evalu-
ate the discrimination power of the detected markers. 
MetaAnalyst provides a variety of metrics to asses the 
different aspects of classification performance. As a 
single criterion is not efficient to capture the overall 
performance of BD algorithms [38], in addition to the 
classification power, MetaAnalyst captures the unsu-
pervised clustering performance [39] of the detected 
markers (visualized as two-way dendrogram plots) 
and the overlapping of the detected biomarkers across 
multiple BD algorithms (visualized as upset plot).

Furthermore, MetaAnalyst runs and evaluates, 
simultaneously, any subset of the 28 packed biomarker 
detection tools and compare their results directly. In 
contrast to the one-level labeling strategy, MetaAna-
lyst supports the multilevel labeling feature, through 
which researchers are able to define the positive and 
negative classes as any logical combination of up to 
three levels of labels to enable flexible study design. 
From input perspective, MetaAnalyst accepts 7 differ-
ent types of input files. In addition to the publication-
quality figures, the obtained results are reported as 
Excel tables to provide the user with further flexibility 
to generate other kinds of figures.

It is worth to mention that there are some other 
computational tools, platforms and projects available 
in the field of analyzing metagenomic data, such as 
Bioconda [40], Megan [41], UniFrac [42], CAMERA 
[43] and Galaxy [44]. However, each introduced work 
tackles an aspect different than the contribution of this 
paper. For instance, Bioconda [40] is a repository of 
bioinformatics packages and CAMERA [43] is a com-
munity database project that aims to collect metagen-
omic data and bioinformatics tools to make them 
widely available to the research community.

Implementation
The workflow of MetaAnalyst can be divided into five 
main steps as shown in Fig. 1. To facilitate the analysis, 
each main step is represented by one tab of the MetaAn-
alyst software. These tabs are designed to self-guide the 
user smoothly through the analysis. The following sub-
sections describe these tabs (i.e., steps). Further details 
with a step-by-step example are available in the software 
manual https://​github.​com/​mshaw​aqfeh/​MetaA​nalyst.

Step 1: Input data
In general, metagenomic data files are composed of two 
parts: (1) numerical data, and (2) metadata. The numeri-
cal data represents the abundance levels of the opera-
tional taxonomic units (OTUs) across all samples. In 
metagenomics assays, each OTU represents a cluster of 
similar variants of the 16S rDNA marker gene sequence. 
Hence, each cluster (i.e., OTU) represents one bacterial 
species or genus. The second part, which is metadata, 
contains descriptive information about data such as OTU 
names, sample IDs, sample labels (e.g., disease/health 
status, body site location, ethnicity, gender).

The main tasks of this step are (1) to upload the input 
data file and (2) to extract the numerical data and their 
associated metadata. Regarding uploading the data, 
the user needs only to browse existing files on her/his 
local machine to locate the input file. In order to pro-
vide users with higher flexibility, the MetaAnalyst pack-
age is designed to support seven different types of input 
files: mat (Matlab file), csv, tsv, xls, xlsx, biom (Biologi-
cal Observation Matrix) and json (JavaScript Object 
Notation). This feature is important to support the all-
in-one feature of the MetaAnalyst software by reducing 
the dependency on other utilities/tools to handle specific 
input formats such as biom and json files. Upon loading 
the file, the MetaAnalyst automatically converts it into 
tabular format to facilitate extracting the abundance lev-
els data and the samples’ labels.

To extract these information, the user needs only to 
specify their location (rows and columns) in the input file. 
To simplify this task, the MetaAnalyst package automati-
cally displays the content of the input file directly after 
selecting the input file in a table within the main window 
of the MetaAnalyst package. Therefore, users can directly 
specify the required information to extract different parts 
of the data without the need to open the original input 
files externally (using other tools). This feature is espe-
cially useful when dealing with “biom” files since such 
files are not human readable, and typically they require 
special tools to convert them into readable format. Again, 
this embedded display of the input data enhances the all-
in-one experience. Unlike most existing packages that 

https://github.com/mshawaqfeh/MetaAnalyst
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assume input files to follow specific templates (e.g., the 
data is column-wise and the variable names are listed in 
the first column), the MetaAnalyst package is flexible to 
handle different styles for the input files.

Step 2: Study design
The first step in comparative-based analysis, such as bio-
marker detection and phenotype classification, is to con-
struct the positive and negative cohorts. The majority of 
existing tools perform this division based only on one 
criterion, commonly the health status (i.e., negative class 
represents healthy subjects while positive class repre-
sents diseased samples). On the other hand, the MetaAn-
alyst package supports a multilevel labeling strategy that 
enables researchers to combine several criteria for clas-
sifying the samples into positive and negative groups. In 
particular, a researcher is able to define the positive and 
negative classes as any logical combination of up to three 
levels of labels. This flexibility in forming the negative 
and positive cohorts enables researchers to easily study 
the datasets from different angles without the need to 
prepare a special file for each scenario. Further details on 

how to utilize the multilevel labeling to construct vari-
ous scenarios is explained in the “Results and discussion” 
section.

Step 3: Data pre‑processing
MetaAnalyst provides a variety of pre-processing pro-
cedures before downstream statistical analysis. These 
pre-treatment procedures can be categorized into: (i) 
filtering, (2) centering, and (3) normalization opera-
tions. Filtering aims at removing the variables that 
are not present in the majority of samples. Removing 
such under-represented (i.e., absent) variables simpli-
fies and accelerates the downstream analysis. Centering 
operations convert the abundances to be around zero or 
median instead of the mean of the microbe abundance 
levels [45]. Normalization seeks converting the samples 
to be comparable by removing the systematic variabil-
ity due to differences in sequence depth. In total, users 
are provided with one filtering (i.e., removing inactive 
variables), two centering (i.e., median and zero), and five 
normalization (i.e., total counts, median, upper quartile, 
reversed cumulative sum scaling (RCSS), z-score) opera-
tions to prepare their input data for subsequent analysis. 

Fig. 1  The general workflow of MetaAnalyst is composed of five steps. Step 1: input data. Step 2: study design. Step 3: preprocessing. Step 4: 
statistical analysis. Step 5: results and plots
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The detailed information of each pre-processing proce-
dure can be found in the software manual.

Step 4: Statistical analysis
MetaAnalyst supports two kinds of analysis: (1) bio-
marker detection, and (2) phenotype classification. For 
biomarker detection, the MetaAnalyst packs 28 metagen-
omic biomarker discovery algorithms, namely, Shotgun-
FunctionalizeR [19], Boruta [15], edgeR [23], DESeq2 
[24], ENNB [16], MetagenomeSeq [17], MicrobiomeDDA 
[18], MetaStats [20], Raida [21], LEfSe [9], RPCA [10], 
RegLRSD [11] , RSPCA [46], Lasso [47], Relief [48], Reli-
efF [49], and the following hypothesis tests: Wilcoxon 
Rank Sum Test [50], t-Test [51], log t-Test [51], square 
t-Test [51], Welch’s Test [52], Chi-square Test [53], 
which are implemented using “stats” package R [30], Kol-
mogorov Smirnov Test [54], Levene Absolute Test [55], 
Levene Quadratic Test [55], Brown Forsythe Test [56], 
BSS/WSS (Between Sum of Squares over Within Sum 
of Squares) [57], and Pearson Correlation [58], which 
are implemented using MATLAB. Detailed description 
of these methods are provided in the User Manual. The 
biomarker detection phase assigns each variable (i.e., 
microbe) a score that determines its significance. Then, 
the top scored variables, according to a predefined num-
ber, will be declared as potential markers.

For phenotype classification, the MetaAnalyst package 
included RF, kNN, four variates of SVM (linear, polyno-
mial, gaussian and radial basis function (RBF)), and two 
variates of the NCC (namely NCC-1 and NCC-2) classi-
fiers. The difference between NCC-1 and NCC-2 is that 
the former utilizes the l1 norm to measure the distance, 
while the second uses the Euclidean distance. These clas-
sifiers can be used for (i) building phenotype classifica-
tion models, and (ii) evaluating the discrimination power 
of the detected markers. To achieve this, the data cor-
responding to the identified markers are extracted and 
used to train and test the classifier using k-fold cross 
validation.

To provide the user with a comprehensive analysis 
capability, the MetaAnalyst package enables the user 
to select multiple biomarker detection algorithms to 
evaluate different numbers of potential markers at once. 
Besides, the MetaAnalyst package provides the user with 
the capability of saving the current simulation settings 
to be used in future analyses. Also, it enables the user 
to load the previously saved configuration. This feature 
helps researchers to generate reusable workflows to com-
pare several algorithms under the same settings and con-
duct the same analysis over multiple datasets.

Further details about the packed algorithms and the 
classification measures are provided in the software 
manual.

Step 5: Results and plots
MetaAnalyst software provides several publication-
quality interactive plots, as listed below, to present the 
obtained results:

•	 Detected biomarkers: for each BD algorithm and 
for each number of top features (i.e., biomarkers), 
the MetaAnalyst presents the identified markers and 
their scores as a horizontal bar graph. The blue and 
red bars represent the markers that are enriched in 
negative and positive class, respectively.

•	 Consensus performance Consensus performance 
aims at presenting the agreement among different 
biomarker detection algorithms as an upset plot. This 
plot shows the overlap between the suggested mark-
ers by the BD algorithms included in the analysis.

•	 Clustering performance: Based on the idea that reli-
able markers are supposed to enlarge the difference 
between samples belonging to different groups, the 
two-way unsupervised hierarchical clustering can 
be utilized to visualize the discrimination power of 
the biomarker detection algorithm [39]. In particu-
lar, the data corresponding to the detected mark-
ers are employed to perform hierarchical clustering 
of samples and selected microbes. This generates a 
clustering diagram (visualized as a heatmap and two 
dendrograms, and hence the name two-way cluster-
ing), where the rows and columns of the heatmap 
represent the microbes and samples, respectively. 
Under such a setting, a reliable biomarker detection 
algorithm is expected to generate heatmaps with 
clear separation between the positive and negative 
cohorts. It is worth to mention that the average link-
age and Euclidean distance have been used to gener-
ate the dendogram plots. For each BD algorithm and 
for each number of top features, the MetaAnalyst 
shows the two-way clustering over the significantly 
identified differential markers as a heatmap and den-
drogram.

•	 Classification performance: To evaluate the clas-
sification performance, MetaAnalyst computes the 
overall classification accuracy (ACC), balanced accu-
racy (BACC), sensitivity (SEN), specificity (SPC), 
miss classification rate (MCR), receiver operation 
curve (ROC), and area under the curve (AUC). These 
metrics capture various aspects of the classification 
performance. For example, the accuracy (the ratio 
of the correctly detected samples in both classes) 
is biased toward the class with dominant samples. 
Therefore, for extremely skewed datasets, the accu-
racy may be misleading, and hence class-specific 
measures (e.g., sensitivity and specificity) or BACC 
may be more reliable to account for bias. MetaAna-
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lyst displays the seven classification performance 
metrics (i.e., ACC, BACC, SPC, SEN, ROC, AUC, 
MCR) for all the included algorithms in the analysis.

To enhance the user’s experience, the MetaAnalyst 
software provides the user with the flexibility to control 
various settings of the generated plots such as the size of 
the plots, description of the axis (i.e., x-label and y-label), 
the title of the figure, the fontsize, etc. After finalizing the 
figure formatting, the user can save the plots in thirteen 
different formats: jpg, png, tif, pdf, fig, eps, bmp, emf, 
pcx, pbm, pgm, ppm, svg. In addition to the generated 
plots, the user can export all the results as excel sheets.

Results and Discussion
This section demonstrates the flexibility and ease-of-
use of MetaAnalyst by analyzing a metagenomic dataset 
related to acute cardiovascular disease (ACVD) under 
various scenarios/conditions. This dataset studies the 
relationship between human gut microbiota and ACVD 
[59]. The dataset is composed of metagenomic stool sam-
ples from 218 ACVD patients and 187 healthy subjects. A 
snapshot of the loaded dataset as displayed by MetaAna-
lyst is shown in Fig. 2.

As can be seen in Fig.  2, each sample is annotated 
with three levels of labels: level 1: disease status (in row 
2), level 2: gender (in row 2), and level 3: BMI status (in 
row 3). It is worth to mention that it is not required to 
fill the information about the location of all levels of 
labels. It is required only to locate the levels that the user 
is interested in his/her study. For example, assume that 
the researcher is interested only on the effect of disease 
and BMI status, as discussed in the following two subsec-
tions, then it is necessary to specify only the rows that 
store the labels of disease and BMI status. Besides, the 
loaded data as shown in Fig. 2 is in column-wise format 
(each column represents one sample), the numeric data 
starts at row 5 and column 2, and the variable names 
resides at column 1.

To demonstrate the capability of MetaAnalyst to study 
the dataset from different perspectives, we consider four 
scenarios as summarized in Table 2.

Healthy versus diseased
Initially, let us consider the first scenario that aims at 
finding potential markers that discriminate between 
healthy and diseased subjects irrespective of their gen-
der and obesity status (BMI value). Therefore, in the 
“Study Design” tab, the negative and positive classes are 

Fig. 2  Input tab
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set, using only level 1, to include “healthy” and “ACVD” 
subjects, respectively, and left the other two levels (i.e., 
level 2: gender and level 3: BMI status) empty as shown 
in Fig. 3.

Next, as an option, the user preprocesses the data 
before the downstream analysis using the options in the 
“Preprocessing” tab shown in Fig.  4. In this study, we 
chose to only remove all inactive variables that are not 
present in at least 25% of the samples of either class. This 
reduces the number of variables from 1666 to only 495. 
Furthermore, the “Preprocessing” tab displays two tables 
presenting summary statistics about the number of sam-
ples, number of features, mean, standard deviation, mini-
mum, 25th percentile, 50th percentile, 75th percentile and 
the maximum value for each sample.

Upon preparing the data, the user can design the analy-
sis work-flow by selecting the biomarker detection algo-
rithms from the drop-down list as shown in Fig.  5. As 
mentioned earlier, the user can select multiple detection 
algorithms for various number of top features to conduct 
the analysis over all of them simultaneously. In this study, 
5 biomarker detection algorithms (LEfSe, RegLRSD, 
t-Test, edgeR, and MetaStats) were included in the analy-
sis. Besides, the user can extend the biomarker detection 
algorithm to include a classifier model. This classifier is 

used for both (1) evaluating the performance of bio-
marker detection algorithms and (2) building a pheno-
type classification model. In this experiment, the NCC-1 
classifier was employed. The classification performance 
is estimated using 5-fold cross-validation. MetaAna-
lyst shows a pipeline summary describing the designed 
analysis workflow. To enhance the user experience and 
the reproducibility of the results, the MetaAnalyst soft-
ware provides the user with the capability to set the cur-
rent analysis work-flow as a default configuration. Also, 
the user can save multiple configurations (i.e., analysis 
workflows) and load the suitable configuration for future 
analysis.

The user can select the type of the results to be visual-
ized from the “Visualization type” drop list in the “Results 
and plots” tab as shown in Fig. 6. A sample of these plots 
is displayed in Fig.  7. For example, the MetaAnalyst 
shows the detected markers along with their scores in bar 
graph plots as shown in Fig. 7-a. The unsupervised clus-
tering performance is presented as a tow-way clustering 
heatmap as shown in 7-b. The achieved classification per-
formance in terms of the BACC is depicted in Fig. 7-c. In 
addition to the BACC, the MetaAnalyst generates similar 
plots to ACC, SPC, SEN, ROC, and AUC. The agreement 
between biomarker detection algorithms is depicted in 

Fig. 3  Study design tab for Scenario 1
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Fig. 4  Preprocessing tab for Scenario 1

Fig. 5  Statistical analysis tab for Scenario 1
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Fig. 7-d. The algorithm recommending more overlapped 
markers is expected to be more accurate.

The complete set of results that re generated by the 
MetaAnalyst software for scenario 1 is depicted in the 
Additional file 1. In addition to the generated plots, the 
user can export the classification performance [see Addi-
tional file  2], detected markers by each algorithm [see 
Additional file 3], and the overlapped set of markers [see 
Additional file 4] as excel sheets.

Impact of obesity and gender
To shed insights on the utility of the multi-level labe-
ling feature of MetaAnalyst in enabling the study of the 
dataset from different perspectives, this section dem-
onstrates how to extend the previous scenario to study 
the impact of obesity and gender. To illustrate, assume 
that the researcher is interested in excluding the impact 
of obesity from the previous study (i.e., Scenario 2 in 
Table  2). That is, to compare healthy versus diseased 
samples over only normal subjects (i.e., subjects with 
BMI values in the range 18.9-25). Constructing this 
study can be achieved simply by setting the operation 
between the first and second levels to “AND” and select 
the label to be “Normal” for both negative and positive 

cohorts as shown in Fig.  8-a. Furthermore, assume 
that the researcher is interested in extending this study 
to investigate whether the microbial patterns differ 
between female ((i.e., Scenario 3 in Table 2)) and male 
((i.e., Scenario 4 in Table  2)) individuals. Again, these 
two studies can be constructed easily by proper setting 
of the study design tab as shown in Figs.  8-b and 8-c, 
respectively.

A sample of the obtained results under scenarios 2, 3 
and 4 is depicted in Fig. 9. As it can be observed from 
Figs. 9-a, 9-b, and 9-c, the achieved BACC performance 
by the five BD algorithms in male subjects is gener-
ally higher than female subjects, especially when using 
LEfSe, RegLRSD, and t-Test algorithms for biomarker 
detection. Interestingly, male individuals present higher 

Fig. 6  Results and plots tab for Scenario 1

Table 2  Four possible scenarios to study the ACVD dataset

Positive Class Negative Class

Scenario 1 Diseased Healthy

Scenario 2 Diseased & Normal Healthy & Normal

Scenario 3 Diseased & Normal & Female Healthy & Normal & Female

Scenario 4 Diseased & Normal & Male Healthy & Normal & Male
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discrimination power compared to females. This result 
may indicate that the bacterial composition in males 
present stronger variation compared to females in 
response to ACVD. Indeed, this observation needs fur-
ther investigations to evaluate the gender effect on the 
interaction between human microbiota and cardiovas-
cular disease. This suggests that potential treatments 
may need to be gender-specific to account for the 

gender association with ACVD risk factors. Thus, the 
multi-level labeling feature of MetaAnalyst allows such 
observations to be easily visualized and detectable.

Conclusions
This work proposed MetaAnalyst, a stand-alone soft-
ware package for metagenomic biomarker detection 
and phenotype classification. The MetaAnalyst package 

Fig. 7  Sample of the obtained results over Scenario 1. (a) &(b) Achieved BACC and ROC for the selected biomarker detection algorithms: LEfSe, 
RegLRSD, t-Test, Exact-Test (edgeR), and MetaStats, respectively. (c) and (d) The unsupervised clustering performance of the top 20 markers as 
suggested by edgeR and MetaStats algorithms, respectively. (e) The number of overlapped potential markers among the five BD algorithms. (f ) 
Suggested markers by the LEfSe algorithm

Fig. 8  Construct scenarios 2, 3, and 4 in Table 2 using the multi-level labeling property supported in the “Study Design” tab
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aims at reducing the programming skills and simplify-
ing the tasks required to analyze metagenomic data-
sets. The MetaAnalyst package (i) automatically installs 
and handles all package dependencies-related issues 
of 28 state-of-the-art biomarker detection algorithms 
and 4 classification models with several data preproc-
essing capabilities, (ii) provides a simple graphical 
user interface that naturally guides the user through 
the analysis pipeline, (iii) accepts input datasets in 
several files with flexible data formats, (iv) supports 
multi-level labeling feature to flexibly cluster the posi-
tive and negative cohorts and to study a given dataset 
under a multitude of scenarios, (v) runs several algo-
rithms simultaneously and evaluates their performance 
according to three criteria (classification, clustering, 
and overlapping performance), (vi) reports the results 
in publishing-quality plots as well as Excel sheets. Due 

to the similarity between metagenomic data and other 
omic data and the possibility of applying the packed 
algorithms in MetaAnalyst to other omic data, we 
believe that MetaAnalyst will become a popular tool for 
metagenomics applications and other studies. The exe-
cutable file for MetaAnalyst along with a detailed user 
manual are made available at https://​github.​com/​mshaw​
aqfeh/​MetaA​nalyst.
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Fig. 9  Sample of the obtained results, using LEfSe, RegLRSD, t-Test, edgeR, and MetaStats algorithms, that studies the impact of obesity and gender 
over the ACVD dataset (i.e., scenarios 2, 3, and 4 in Table 2). The results in the first, second and third column correspond to scenario 2, 3, and 4, 
respectively. The first row displays the achieved BACC performance over the three scenarios. The second row shows the suggested 20 markers by 
the RegLRSD algorithm. The third row presents the overlapping between the suggested 20 markers by the five BD algorithms
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