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Abstract 

Background  In the development of prediction models for a clinical event, it is common to use the static prediction 
modeling (SPM), a regression model that relates baseline predictors to the time to event. In many situations, the data 
used in training and validation are from longitudinal studies, where predictor variables are time-varying and meas-
ured at clinical visits. But these data are not used in SPM. The landmark analysis (LA), previously proposed for dynamic 
prediction with longitudinal data, has interpretational difficulty when the baseline is not a risk-changing clinical mile-
stone, as is often the case in observational studies of chronic disease without intervention.

Methods  This paper studies the generalized landmark analysis (GLA), a statistical framework to develop prediction 
models for longitudinal data. The GLA includes the LA as a special case, and generalizes it to situations where the 
baseline is not a risk-changing clinical milestone with a more useful interpretation. Unlike the LA, the landmark vari-
able does not have to be time since baseline in the GLA, but can be any time-varying prognostic variable. The GLA 
can also be viewed as a longitudinal generalization of localized prediction, which has been studied in the context of 
low-dimensional cross-sectional data. We studied the GLA using data from the Chronic Renal Insufficiency Cohort 
(CRIC) Study and the Wisconsin Allograft Replacement Database (WisARD) and compared the prediction performance 
of SPM and GLA.

Results  In various validation populations from longitudinal data, the GLA generally had similarly or better predictive 
performance than SPM, with notable improvement being seen when the validation population deviated from the 
baseline population. The GLA also demonstrated similar or better predictive performance than LA, due to its more 
general model specification.

Conclusions  GLA is a generalization of the LA such that the landmark variable does not have to be the time since 
baseline. It has better interpretation when the baseline is not a risk-changing clinical milestone. The GLA is more 
adaptive to the validation population than SPM and is more flexible than LA, which may help produce more accurate 
prediction.
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Introduction
Risk prediction in longitudinal data
It is of interest to scientific research and clinical prac-
tice to develop prediction models for the probability of a 
terminal clinical event at a future time point (prediction 
horizon) using prognostic variables of the patients’ health 
conditions. In many situations, such work is carried out 
with data from longitudinal cohort studies. In these data-
sets, patients have repeated clinical visits from study 
entry to have their health conditions assessed, including 
patient reported measures, clinical evaluation, diagnostic 
tests, etc. The end of the follow-up is marked by the ter-
minal clinical event or the time of censoring.

Static prediction model
Conventionally, risk prediction models are developed 
from regression of the clinical event outcome on base-
line predictor variables, though the predictor variables 
quantifying the individual’s health conditions are often 
time-varying and may also be measured after baseline in 
the longitudinal cohort study data. Such a time-to-event 
analysis, which uses only a snapshot of the predictor vari-
ables at a fixed time point to quantify the risk of the event 
at prediction horizon is termed static prediction mode-
ling (SPM) in this paper.

The SPM has limitations in the context of longitudinal 
data. First, the prediction model developed from base-
line population may not apply to the population at-risk 
of the clinical event after a period of follow-up, as a result 
of the systematic difference between those who remain 
at-risk and those who experience the clinical event early 
and hence drop out from the at-risk population. Further-
more, in chronic disease studies, the occurrence of the 
clinical event may be many years later than the baseline, 
which could attenuate the association between baseline 
predictors and the outcome if the predictors vary over 
time with the patient’s health condition. The longitudinal 
data from the follow-up visits are temporally closer to the 
clinical event and hence informative, but they are ignored 
in SPM.

Dynamic prediction with landmark analysis
Dynamic prediction modeling is specifically developed 
for risk prediction in the longitudinal context [1, 2]. There 
are generally two approaches: joint modeling [3, 4] and 
landmark analysis [5, 6]. The features and relative advan-
tages of these two modeling approaches have been widely 
discussed in the literature (e.g., [7–10]). In this paper, we 
focus on landmark analysis (LA), and propose a generali-
zation of it. LA directly models the bilateral relationship 
between predictor variables at each clinical visit and the 
corresponding residual survival time through a survival 
regression model fitted to training data. The time of each 

clinical visit is called a landmark time because it defines 
a predictor-outcome pair and marks the start of the 
residual survival for patients who remain at risk for the 
outcome at the index visit. Once this model is estimated, 
for any new patient in the validation dataset who needs a 
prognosis during a clinical visit, the physician can elicit 
the predictor variables corresponding to that visit, plug 
into the regression model, and obtain the prediction. The 
estimation of the LA model can often be implemented 
with standard survival regression analysis software.

Generalizing the landmark analysis
A critical concept in the LA is the baseline, because its 
typical parameterization formulates the model parameter 
as a function of the time since baseline [1, 6, 7, 11, 12]. 
We denote the model by M(θ(s)) , where s is the time 
after baseline and the vector θ(s) includes all model 
parameters. Any appropriate survival regression models 
can be used. With a slight abuse of notation, we also use 
M to denote the predicted residual survival distribution, 
and write it as M(θ(s);Z) , where we add the predictor Z 
at the clinical visit where a prediction is to be made, to 
show that the prediction is a function of the predictor. As 
an example, consider a prediction made at time s from a 
Cox model. Let θ(s) cover parameters in the baseline haz-
ard function �0(.) , denoted by θ1(s) , and regression coef-
ficients, denoted by θ2(s) . Then, the cumulative 
distribution function of the predicted residual survival is 
1− exp −

t
0 �0(u; θ1(s))du · exp[ZTθ2(s)]  , t � 0 . The 

proposed notation M(θ(s);Z) denotes this distribution 
function, which is the basis of survival prediction.

The index s is the landmark time. It is an interpretable 
and clinically meaningful quantity when the baseline 
time represents a risk change event or clinical milestone, 
such as initiation of a new intervention or diagnosis of a 
disease. However, this is not always the case in clinical 
research.

In this paper, we present two data applications. The 
first data application is a longitudinal observational 
cohort study on chronic kidney disease (CKD). The base-
line is the enrollment of patients with existing CKD. 
Each enrolled patient underwent annual follow-up visits 
until death or end stage renal disease (ESRD). The goal 
is to predict the individual risk of ESRD at each study 
visit, using the available longitudinal information about 
a patient by that time. Since CKD is a chronic disease 
and the observational study does not provide any inter-
vention, it is difficult to justify indexing the prediction 
models with the time since enrollment. If the predic-
tion model is applied to patients in another study or 
healthcare facility, the “time since enrollment” is not 
defined or uniquely justified. Therefore, for the CKD 
data application, the conventional LA model with the 
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parameterization above is difficult to apply or commu-
nicate to clinicians. For comparison purposes, we also 
present a second data application from a kidney trans-
plantation registry. The baseline (study entry) is the time 
of kidney transplant surgery. The transplant recipients 
are followed until death or graft failure. The goal is to use 
the available longitudinal information to predict the risk 
of graft failure among those who are still at-risk of graft 
failure at any time s after the surgery. If we want to make 
a prediction on any new patient, we first find out how 
many months (e.g., s) the patient has lived with the func-
tioning graft, and then gather the predictor Z for that 
patient and plug it in the LA model. Here s is a clinically 
meaningful quantity and, since the at-risk patient popula-
tion is expected to change over time, it makes sense to 
allow the model parameters to vary with s. This is the 
typical data setting where conventional LA is applicable.

This paper proposes the generalized landmark analy-
sis (GLA) as an alternative parameterization of the LA 
model, where the model parameters do not need to be 
functions of the time since baseline, but can be func-
tions of other time-varying variables. Hence, the con-
cept of “landmark time” is generalized to “landmark 
variable”, whose definition does not rely on a clinically 
meaningful baseline and applies to the CKD data appli-
cation. Similar to the above, we denote this parameteri-
zation by M(θ(V );Z) where V  is the landmark variable 
that indexes the model parameters and Z is the predic-
tor variable at the clinical visit when a prediction is to 
be made. We argue that it is more beneficial to pick a 
strong predictor of the survival outcome as the land-
mark variable, analogously to choosing time since base-
line as the landmark variable in an LA analysis when the 
baseline is a clinical milestone. The GLA is analogous to 
LA in many ways, and includes the LA as a special case. 
Details will be explained in the subsequent sections. 
This parameterization leads to a local kernel weight-
ing procedure for estimation, where larger weights are 
assigned to subjects in the training dataset who are 
more similar to the new subject for whom a prediction 
is to be made. When the kernel function is uniform, it is 
equivalent to matching on V  with a caliper that equals 
the kernel bandwidth. From this perspective, the GLA 
can also be viewed as a matching algorithm or a gen-
eralization of the “localized” regression of Kosel and 
Heagerty [13], which was developed for cross-sectional 
data, to longitudinal context.

Method
Data and Notation
Let i = 1, 2, ..., n index the n subjects in a longitudi-
nal dataset for training the prediction model. Let T̃i 

be the time to the clinical endpoint of interest, and Ci 
be the time to censoring. The observed time-to-event 
is Ti = min{T̃i,Ci} . The observed event indicator is 
δi = 1{T̃i � Ci} , which equals to 1 if the event occur-
rence is observed and 0 if the event is censored. We 
make the conventional independent censoring assump-
tion that Ci is independent of T̃i and predictor variables. 
This assumption is valid in studies where the censoring 
is mainly due to staggered study entry or loss of follow-
up due to non-medical reasons. Let tij , j = 1, ..., ni , index 
the clinical visit times of the i-th subject. The patient’s 
characteristics and health conditions are measured at 
these visits. Throughout this paper, we assume that {tij} 
are non-informative observation times in the sense that 
their distribution does not depend on other variables 
except 0 � tij � Ti . Without loss of generality, we let 
0 ≡ ti1 < ti2 < ... < tini < Ti . Here ti1 is the time of base-
line, which may be study entry or enrollment, receipt 
of study intervention, diagnosis of a disease condition, 
etc., depending on the context. As described above, this 
formulation is most useful if the baseline represents a 
clinical milestone, but this is not required. Unless stated 
otherwise, all time variables above are expressed as the 
time since ti1.

Let Zi(tij) denote subject i’s vector of predictors at 
time tij . For the ease of notation, let Zij ≡ Zi(tij) . This 
notation covers both time-varying and time-invariant 
variables. For the latter, Zij ≡ Zij′ for any j  = j′ . The pre-
dictor vector Zij may include any predictive numerical 
features of patient i available at time tij , including bio-
markers from lab tests, clinical symptoms, patient demo-
graphics and genetic features, etc. Zij may also include 
any pre-defined numerical features of the longitudinal 
history of this patient up to tij , such as the mean, slope or 
volatility of a biomarker within a period of time prior to 
tij . One or more of the three time variables ( tij , the base-
line age, and the time-varying age at tij ) should always be 
included in Zij in the absence of exact collinearity; oth-
erwise the timing of the longitudinal data is lost. Note 
that the age at tij equals to the baseline age plus tij in a 
deterministic relationship, and baseline age is just the 
time-varying age at ti1.

Let T̃ij = T̃i − tij and Cij = Ci − tij be the residual survival and 
residual censoring time since the clincial visit at tij . T̃ij and 
Cij are conditionally independent given Zij , due to the inde-
pendent censoring assumption. The observed residual sur-
vival is hence Tij ≡ Ti(tij) = min

(

T̃ij ,Cij

)

= Ti − tij
 . The observed 

residual censoring indicator is 
𝛿ij ≡ 𝛿i(tij) = 1

(

T̃ij ≤ Cij

)

= 𝛿i
 . 

The landmark dataset for training purpose has 
∑n

i=1 ni 
rows. At each row, the data include Tij , δij , and {tij} ∪ {Zij} . 
By definition, patient i is at-risk at the j-th visit, if the corre-
sponding tij is in the landmark dataset. The goal of the 
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landmark analysis is to build a model for the bilateral rela-
tionship between Zij and T̃ij from the landmark dataset. For 
a new patient in validation data, we first determine the Z of 
that patient at the time of prediction, and then plug the Z in 
the model to obtain the prediction.

Model parameterization for landmark analysis
The LA model takes the following general form, specified 
based on the Cox model formulation:

This is a log hazard function of the residual survival since 
the landmark time s, conditional on Z(s) . The notation 
u denotes time since the landmark, and hence is on the 
residual survival time scale. The �0(u, s) is the log base-
line hazard function, and β(u, s) is the time-varying log 
hazard ratios. We use notation Z̄(s) to denote the vec-
tor of predictor variables measured at s other than the 
landmark time s itself. The effect of s is absorbed into 
�0(u, s) . This model is specified among patients who 
have Z(s) , i.e., who are at-risk of the event outcome. 
At a given s, (1) is a Cox model with time-independent 
covariates and time-varying coefficients. But since s can 
be any landmark time, the LA models as a whole include 
a bivariate log baseline hazard function, which is quite 
different from Cox model. The LA models at differ-
ent landmark times do not generally satisfy the coher-
ent condition of a survival process [14]. Consequently, 
�(s2 − s1;Z(s1)) �= �(0;Z(s2)) for all s1 < s2 . Therefore, 
(1) is usually viewed as a working model [1]. However, 
as far as prediction is concerned, this model is useful 
if it ensures a good approximation to the bilateral rela-
tionship between Zij and T̃ij at all landmark times. In 
other words, the model predicted survival distribution 
1− exp{−

∫ u
0 �(v;Z(s))dv} needs to match the observed 

residual survival data. While most LA research has used a 
Cox model-based formulation such as (1), other survival 
regression models can be used [15]. The previously intro-
duced notation θ(s) encompasses all the model param-
eters at landmark time s, including β(u, s) and �0(u, s).

Model (1) has never been applied in its fully general 
form in the published literature, possibly because of the 
excessive number of parameters if all coefficients are 
bivariate functions of time. Simplified versions used in 
data analysis include: (A) letting β(u, s) to depend only on 
s [1, 7, 12], (B) letting β(u, s) depend only on u [6, 16], 
and (C) letting �0(u, s) to be a product of two univariate 
functions of u and s [17]. Regardless of these parameteri-
zations, the LA model (1) implies infinitely many survival 
models, each defined on a distinct s and with parameter 
θ(s) . It should not be viewed as a single varying-coef-
ficient model with bivariate time-varying coefficients, 
because there are infinitely many values of s as well as a 

(1)�(u;Z(s)) = �0(u, s)+ β(u, s)T Z̄(s) , u � 0.

second argument u which corresponds to the time since 
each s. Note that u is on the residual survival time scale 
and hence the model parameters at the landmark time s 
do not depend on u. The parameterization (B) was pro-
posed to deal with violation of the proportional hazard 
assumption. Since the prediction horizon is usually not 
very large, because of repeated predictions at clinical vis-
its, the log hazard ratio often does not vary substantially 
within the horizon. Therefore, in this paper, we focus the 
discussion on the parameterization (A):

This parameterization can be estimated by kernel weight-
ing [7], where both �0(u, s) and β(s) are estimated non-
parametrically. In theory (1) can also be estimated this 
way. The intuitive idea is to assign kernel weights to the 
rows of the landmark dataset whose tij is close to s, and 
estimate θ(s) by fitting a Cox model with time-independ-
ent covariates to the weighted landmark data. Since a 
single subject may contribute multiple rows with positive 
weights, this is a Cox model for multivariate survival data 
with working independence, which is commonly used in 
landmark analysis research [1, 7, 15]. In this paper, we 
say this approach “localizes” on the landmark time {tij} . 
When the clinical visit times of different subjects are syn-
chronized (i.e., tij = tj , such as discrete time points), the 
kernel approach reduces to just fitting a Cox model at 
each distinct landmark time [12]. When a uniform ker-
nel function is used, weighting is equivalent to matching: 
a weight of 1 indicates being matched and a weight of 0 
indicates being unmatched. For any new subject in the 
validation dataset, we search for the training landmark 
dataset and identify rows with similar landmark times; a 
Cox model is fit to the matched landmark dataset and a 
prediction is generated based on the new subject’s pre-
dictor Z.

In summary, the commonly used LA model (1) is a 
parameterization for the bilateral relationship between 
Zij and T̃ij in the landmark dataset. This parameteriza-
tion implies a distinct survival regression model at each 
landmark time s. This model can be estimated by a ker-
nel weighting method that localizes on the landmark 
time. An algorithmic approach can also be used, where 
we match the new subject with the landmark dataset on 
the landmark time, fit a regression model to the matched 
data, and plug in Z to that model to obtain the prediction.

A different model parameterization: the generalized 
landmark analysis
When the baseline is not a clinically meaningful mile-
stone, the time since baseline, i.e., the landmark time s, 
may not be a useful index of the model or parameters 
with good interpretation. In this paper, we propose a 

(2)�(u;Z(s)) = �0(u, s)+ β(s)T Z̄(s).
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different parameterization for this scenario. The match-
ing interpretation to the estimation approach to model 
(1) suggests that instead of matching on the landmark 
time, we could match on another time-varying predic-
tor variable which better reflects disease severity or stage, 
denoted by V  . We call V  a landmark variable. It is part 
of Z . A survival regression model can then be fit to the 
matched landmark dataset and produce the prediction.

In lieu of the connection between matching and 
weighting, we can also use a kernel weighting approach. 
Let V ∗ be the landmark variable of a new subject in the 
validation dataset. The weights of the rows in the land-
mark training dataset are calculated by a kernel function 
Kh with bandwidth h: Wij = Kh(V

∗,V ij) . For example, 
Kh(u) = (4h)−1(1− u2)1(|u| ≤ 1) is the Epanechnikov 
kernel. Other kernel function or local linear approxima-
tion [18] can also be used. Local polynomial theory sug-
gests that the choice of kernel function and degree of the 
polynomial are less important than the bandwidth. For 
simplicity, we use kernel, i.e., local constant, approach. 
Bandwidth is a tuning parameter of the algorithm and 
will be discussed later.

Taking one step further, we can view this kernel weight-
ing method as the estimation approach to the following 
parameterization of the bilateral relationship between Zij 
and T̃ij in the landmark training dataset:

Similar to (1), Z̄(s) in this context denotes the vector of 
predictor variables without the landmark variable V  . 
The effect of V  is absorbed into �0(u,V ) . The develop-
ment above leads to an analogue to the LA in terms of 
both model parameterization and estimation approach, 
with a change from landmark time to the more general 
concept of landmark variable. This change bypasses the 
use of the time since baseline when it does not have an 
explicit clinical interpretation. Both (1) and (3) are differ-
ent parameterization of this more general bilateral rela-
tionship, and (3) includes (2) as a special case because the 
landmark time is part of Z . For this reason, we call (3) 
and its corresponding matching or weighting estimation 
the generalized landmark analysis (GLA).

Remark 1. The matching idea is similar to the localized 
regression proposed by Kosel and Heagerty [13] (Note: 
not local polynomial regression), though that paper was 
written in the context of cross-sectional data but ours 
is for longitudinal data. The localized regression essen-
tially matches training data with the subject in the vali-
dation data with respect to all predictors. However, such 
a matching approach is not feasible even with a small 
number of predictor variables in Z unless the sample size 
is very large or a large caliper is allowed. To solve this 

(3)
�(u;Z(s)) = �0(u,V (s))+ β(V (s))T Z̄(s) , u � 0

problem, we have used a hybrid approach, which includes 
matching/weighting on the landmark variable(s) followed 
by a regression analysis using the other variables and the 
matched or weighted data.

Remark 2. In (3), the effect of V  is modeled nonpara-
metrically, but the effects of other predictors in Z̄ are 
modeled with linearity assumption. Therefore, there is 
less chance of model misspecification on V  . This justi-
fies selecting a strong prognostic variable in V  , because 
presumably, misspecifying the effect of a stronger pre-
dictor has a larger effect on the prediction result. In the 
LA, the landmark time is usually a strong predictor when 
the baseline marks the start of a risk-changing period. 
In the GLA, there is often stronger predictors than the 
time since baseline because the latter does not have clini-
cal meaning. For the CKD data application, the land-
mark variable can be the time-varying age or eGFR at 
clinical visits. The eGFR is the estimated glomerular fil-
tration rate, an important biomarker for renal function. 
When matching on age at clinical visits, it is equivalent 
to the age-alignment method [19, 20], which was previ-
ously proposed for landmark analysis. However, it is 
widely known among nephrologists that eGFR is a much 
stronger predictor than age for terminal renal outcomes. 
In fact, the classification of CKD progression stages is 
solely based on eGFR values, not age. Broadly speaking, 
the GLA localizing on eGFR is equivalent to develop-
ing a prediction model tailored for the CKD stage of the 
new subject in validation dataset. This perhaps has better 
interpretation than GLA localizing on age (a tailored pre-
diction model for the new subject’s age), given that eGFR 
is clinically more relevant.

Remark 3. Exact matching may not be feasible with 
continuous variables. Caliper matching is equivalent 
to kernel weighting with uniform kernel, unless it is 
restricted to the less efficient approach of selecting no 
more than one matched row per subject from the land-
mark training dataset. The implementation of GLA in 
this paper is based on kernel weighting. There could be 
more than one landmark variables in V  , as illustrated by 
the WisARD data example below. From the kernel regres-
sion literature, it should be rare to use more than two 
landmark variables, unless the dataset is extremely large.

Remark 4. The GLA algorithm has a tuning parameter, 
i.e., the bandwidth (or caliper in the case of matching). 
When a very large bandwidth is used, it is equivalent to 
fitting the landmark dataset 

{

Tij , δij , tij ,Zij

}

 with a sin-
gle survival model and assuming that the model param-
eters do not vary with the landmark variable. When a 
very small bandwidth is used, the model parameters are 
estimated with large sampling variation. Neither case 
is expected to produce optimal prediction. There is no 
evidence that the relationship between bandwidth and 
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prediction accuracy takes a U-shape with a single opti-
mal bandwidth in the middle. Therefore, we recommend 
calculating the cross-validated prediction accuracy with 
a range of reasonable bandwidth choices, and pick the 
one producing the best accuracy. This is illustrated in 
our data application below. If multiple bandwidths pro-
vide similar prediction accuracy in cross-validation, the 
smallest is preferred as long as the estimated param-
eters vary with the landmark variable. Loss of efficiency 
is another aspect of the bias-variance trade-off, but it is 
less of a concern when the prediction accuracy is simi-
lar. In practice, the distribution of the landmark variable 
may have some sparse regions. To deal with this issue, 
we can use an adaptive bandwidth choice, such as the 
span. We define the bandwidth as the γ th quantile of the 
distances between V ∗ and all V ij in the training dataset. 
Here γ ∈ (0, 1] is a pre-specified span parameter.

Prediction accuracy assessment
Following the common practice in dynamic prediction 
literature [1, 2, 7, 15], we used two prediction accuracy 
measures in our data analysis, the area under the time-
dependent ROC curve (AUC) [21] and time-dependent 
Brier score [22]. They quantify the discrimination and 
calibration of the predicted risk score, respectively. Let 
T̃  and p∗ denote the time-to-event outcome and the pre-
dicted probability of event occurring within the predic-
tion horizon τ . The time-dependent sensitivity (Se) and 
specificity (Sp) are defined as Se(c) = P(p∗ � c|T̃ � τ ) 
and Sp(c) = P(p∗ < c|T̃ > τ) , where c is the threshold 
for a positive or negative prediction. The time-dependent 
ROC curve is a plot of 1 - Sp(c) vs. Se(c) at all possible val-
ues of c. The AUC is the area under this curve. The time-
dependent Brier score is defined as E(1{T̃ � τ } − p∗)2 . 
In the definitions above, the probability or expectation 
is defined on the distribution of {T̃ , p∗} in the validation 
data. Various statistical methods have been proposed to 
estimate the AUC and BS as defined above, by account-
ing for censored T̃  in the validation dataset [21–23]. To 
guard against over-fitting, we used cross-validation in 
the numerical studies of this paper. We randomly split 
the original dataset into a training and validation data-
set, each with half of the subjects. We fit the model using 
training data and calculated the prediction accuracy 
using validation data. We repeated the model-fitting and 
prediction accuracy assessment in 2,000 bootstrap sam-
ples extracted from the training data and validation data 
respectively, and then calculated the 95% bootstrap con-
fidence interval. To further reduce sampling variability of 
this process, we repeated the split 5 times and the results 
were averaged.

Statistical Analysis Results
CRIC study
Study description. The Chronic Renal Insufficiency 
Cohort (CRIC) is a multi-center, observational longitu-
dinal cohort study [24]. The CRIC dataset in this paper 
includes 3, 939 adult patients with chronic kidney disease 
(CKD), aged 21 to 74 years at enrollment. These CKD 
patients underwent annual in-person clinic visits to col-
lect blood and urine specimens and assess mental and 
physical status. The most important biomarker for kid-
ney function, the eGFR (estimated glomerular filteration 
rate, in mL/min/1.73m2 ), was estimated at each clini-
cal visit from serum creatinine, serum Cystatin C, age, 
gender, and race using the CKD-EPI equation [25]. At 
the time of study enrollment, the majority of the CRIC 
study participants had some renal dysfunction: 15.0% in 
CKD stage 1 and 2 (eGFR in 60-90), 66.5% in CKD stage 
3 (eGFR in 30-60), and 18.5% in CKD stage 4 and 5 (eGFR 
≤ 30). Of note, the CRIC study is an observational study 
on a chronic disease, and the participants did not initi-
ate any new intervention or have a risk changing event 
at the time of enrollment. In our dataset, most subjects 
had over 5 clinical visits, with a median of 7. About 9.4% 
subjects only had one visit.

For the purpose of illustrating the proposed statistical 
methodology, we define the outcome of interest as the 
composite clinical endpoint of ESRD and death, which is 
subject to right censoring. The predictors include eGFR, 
the urine protein to creatinine ratio (UPCR), age, and 
sex. With the exception of sex, the predictors are longi-
tudinal and vary with the clinical visits. Table 1 presents 
the descriptive statistics of the cohort at baseline and 
by CKD stages. Since the clinical visits are the units of 
analysis in landmark modeling, and most predictors vary 
with clinical visits, the data are summarized in Table 1 by 
clinical visits instead of subjects. In the spirit of GLA, we 
did not present patient characteristics among the at-risk 
subjects defined by time since study enrollment.

At baseline, the majority of the patients were older 
adults, 1169 (29.7%) between 50-60 and 1433 (36.4%) 
between 60-70. The mean residual time-to-event is 8.84 
years at baseline. During the follow-up, the patients 
were most often in CKD Stage 3 (17,388 visits from 3168 
patients). Although the eGFR generally declines over 
time, nonlinear progression trajectories are also common 
and a patient may have both progression and regression 
among various CKD stages [26]. The logarithmic UPCR 
generally increases with the progression of CKD, from an 
average of -2.39 in CKD Stage 1-2 to -0.54 in stage 4-5. 
Older age is also correlated with CKD progression, from 
an average of 55.5 in CKD Stage 1-2 to 60.8 in CKD Stage 
4-5. The gender proportions remain similar among differ-
ent CKD stages.
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Statistical methods. We implemented two GLA meth-
ods: a GLA localized on the landmark variable of eGFR, 
denoted by GLA(eGFR), and a GLA localized on the land-
mark variable of age, denoted by GLA(Age). Both eGFR 
and age are strong prognostic variables for the outcome, 
but eGFR is believed to have a more direct relationship 
from a clinical perspective. For comparison purposes, 
we also implemented the LA. It was equivalent to a GLA 
localized on the time since study enrollment and hence 
was denoted by GLA(time). We used the prediction 
accuracy of SPM as the benchmark, and compared the 
three landmark methods to it. For the time-dependent 
Brier score, we reported the relative difference from the 
benchmark, because the value of the Brier score is less 
informative than the difference in model comparison. 
For the time-dependent AUC, we reported the absolute 
difference from the benchmark, because the value of the 
AUC is informative. We considered a variety of validation 
datasets, defined either by all follow-up visits (Fig. 1), vis-
its when the patients were in various CKD stages (Fig. 1), 
age groups (Fig.  2), or visits around various landmark 
times (Fig. 3). These validation datasets were created by 
using the aforementioned cross-validation procedure, eli-
gibility criteria (e.g., CKD stages or age groups) applied 
as needed. These validation datasets were chosen because 
eGFR, age, and time since study entry were used as land-
mark variables in the GLA methods.

Results. Figures  1-3 show the prediction accuracy 
results of the three GLA and LA methods in compari-
son with the SPM. The relative performance among these 
three methods can also be seen on the plots. The plots 
are organized by various subpopulations of validation, 
and within each plot, the results are grouped according 
to the prediction horizon. Higher AUC and lower Brier 
score indicate better prediction accuracy. The Brier score 
is in general a more sensitive predictive performance 
measure than the AUC because its calculation uses the 
actual predicted probability values, while the AUC uses 
only their ranks.

First, GLA(eGFR) performed better than SPM and 
LA = GLA(time) in all scenarios in terms of Brier 
scores. Additionally, GLA(eGFR) performed better than 
GLA(age). GLA(eGFR), GLA(age) and GLA(time) all 
used longitudinal data to train their models, but they dif-
fered in model specification. Although the GLA model 
in (3), of which the LA model (2) was a special case, has 
a flexible formulation, some degree of misspecification 
is inevitable in real data such as CRIC. We argue in the 
Methods section that it is generally more advantageous to 
reduce misspecification of a strong predictor than a weak 
predictor, when it is not feasible to localize on both of 
them. The data analysis results supported that argument, 
because eGFR is widely known as the strongest predictor 
of CKD progression. Notably, the GLA(eGFR) has more 
improvement than other methods in CKD stages 1-2 

Table 1  Characteristics of patients at study entry and stratified by CKD stages at the follow-up clinical visits. Chronic Renal 
Insufficiency Cohort Study, United States, 2003-2019

a  Numbers are summarized at the clinical visit level.
b  Numbers are summarized at the patient level. For Age, the values are based on the first encounter in each cohort.
c  This is the mean (standard deviation) of residual follow-up in years since each clinic visit

All Follow-up Baseline CKD Stage 1-2 CKD Stage 3 CKD Stage 4-5

No. (%) Patients 3939 (100%) 3939 (100%) 1028 (15.0%) 3168 (66.5%) 1917 (18.5%)

No. Visits 28638 3939 4904 17388 6346

eGFRa 43.9 (17.0) 44.3 (15.0) 70.5 (9.36) 44.4 (8.33) 22.2 (5.57)

log UP/CR a -1.63 (1.48) -1.49 (1.64) -2.39 (1.05) -1.81 (1.35) -0.54 (1.50)

Age a 62.7 (11.0) 57.7 (11.0) 57.4 (11.2) 63.9 (10.4) 63.4 (11.3)

Age b 62.7 (11.0) 57.7 (11.0) 55.5 (11.6) 58.7 (10.5) 60.8 (11.4)

Sex b

   Female 1778 (45.1%) 1778 (45.1%) 452 (44.0%) 1407 (44.4%) 861 (44.9%)

   Male 2161 (54.9%) 2161 (54.9%) 576 (56.0%) 1761 (55.6%) 1056 (55.1%)

Age groups b

    < 40 317 (8.05%) 317 (8.05%) 119 (11.6%) 203 (6.41%) 106 (5.53%)

   [40,50) 493 (12.5%) 493 (12.5%) 159 (15.5%) 347 (11.0%) 206 (10.7%)

   [50,60) 1169 (29.7%) 1169 (29.7%) 326 (31.7%) 900 (28.4%) 458 (23.9%)

   [60,70) 1433 (36.4%) 1433 (36.4%) 326 (31.7%) 1257 (39.7%) 679 (35.4%)

    � 70 527 (13.4%) 527 (13.4%) 98 (9.53%) 461 (14.6%) 468 (24.4%)

Time to event c 11.3 (3.80) 8.84 (4.85) 12.9 (2.37) 11.7 (3.48) 8.61 (4.22)
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and CKD stages 4-5. These are the two ends of the eGFR 
spectrum among the CRIC study subjects. Regardless 
of what the landmark variable is, Model (3) has a linear 
predictor structure in it, which is subject to model mis-
specification. A linear model usually has more extrapola-
tion error near the boundaries of the covariate range. The 
extrapolation error of a strong predictor is more conse-
quential than that of a weak predictor. The GLA(eGFR) 
nearly eliminates the extrapolation error of eGFR, due 
to the localization. This feature of GLA has important 
implications to its use in clinical practice. The prediction 
of ESRD is less useful for a CKD stage 3 patient, because 
that patient remains years away from reaching ESRD. But 
it is very important for patients with more advanced dis-
ease stages. Therefore, a risk prediction model that accu-
rately predicts ESRD among the advanced CKD would 
be very helpful for the physician and patient to plan for 
dialysis or kidney replacement therapy.

Second, the SPM generally performed similarly or 
worse than the three landmark methods. The SPM was 
subject to model misspecification. It might also be 
applied out of its context in the sense that many valida-
tion datasets were extracted from the follow-up visits, 

which differed from the baseline data. GLA(age) and 
GLA(time) performed similarly. Age is a weak predictor 
and time since study entry is linearly related to age.

Third, the prediction horizon had little effect on the rel-
ative ordering of prediction accuracy results. These pre-
diction horizons were chosen to avoid extending analysis 
beyond the range of follow-up. They are short compared 
to the natural history of CKD, but on the other hand, 
the advantage of dynamic prediction is to update the 
prediction adaptively as longitudinal data are collected. 
We speculate that there was perhaps little deviation 
from the proportional hazard assumption within these 
horizons, which contributed to the similarity of results. 
However, it is noteworthy that GLA(eGFR) appeared to 
have more improvement than SPM with shorter hori-
zons. The ESRD to a great extent is triggered clinically by 
eGFR dropping below 10 to 15 mL/min/1.73m2 . There-
fore, predicting ESRD is nearly equivalent to predicting 
future eGFR. With a shorter horizon, the association 
between eGFR and outcome was stronger, which helped 
GLA(eGFR), the method that modeled the effect of eGFR 
more appropriately.

Fig. 1  Relative differences in Brier score ( �RBS ; upper panel) and absolute difference in AUC ( �ABS ; lower panel) comparing GLA(eGFR), GLA(Age) 
and LA to SPM over (from left to right) a random sample of all follow-up observations, observations in CKD stages 1 and 2, observations in CKD 
stage 3, and observations in CKD stage 4 and 5 in CRIC study. The error bars represent 95% bootstrap percentile confidence intervals. The actual BS 
×100 and AUC ×100 for the benchmark SPM are annotated on the top axis
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Fourth, if we ignore the conceptual issue with the base-
line, and compare LA with the SPM, Fig. 3 shows that the 
former is always similar or better. This is not surprising. 
The validation datasets in that figure are defined from 
the at-risk population of selected landmark time, which 
always match the training datasets of the LA but do not 
in general match the training dataset of the SPM. The 
purple diamonds corresponding to the baseline valida-
tion dataset are at zero because in this scenario the LA 
is the same as SPM. A similar phenomenon has been 
noted by others [12]. However, it is worth noting that the 
improvement of LA over SPM was quite small over the 
landmark times of CRIC data. In fact, it is much smaller 
than the improvement in the landmark analysis of Wis-
ARD dataset described below (Fig. 4). As discussed in the 
Introduction, WisARD study has a clinically meaningful 
baseline, while CRIC does not. The dynamics of the at-
risk population changed more prominently in WisARD. 
This supports the fundamental notion of this paper, 
that the concept of baseline is important in landmark 
modeling problems. When the baseline is not clinically 
meaningful, as in the CRIC, the LA not only encounters 
more difficulty with its interpretation, but also results 
in limited gain in predictive accuracy compared with 

SPM, despite more complicated modeling effort. The 
GLA(eGFR), in contrast, offers more improvement than 
LA, even when the validation datasets match the training 
datasets of LA (Fig. 3).

WisARD study
Study description. The Wisconsin Allograft Recipient 
Database (WisARD) study is a registry of kidney trans-
plant recipients at the University of Wisconsin Hospital 
and Clinics. Our data include patients who underwent 
transplantation between 1994 to 2013 and were followed 
to 2019. Prior to the renal transplantation, the informa-
tion of the donor and recipients were gathered. After the 
transplantation, the clinical assessment, lab tests, vari-
ous acute or chronic rejection events, and hospitalization 
episodes were recorded from various clinical visits. For 
our analysis, the outcome variable was a composite end-
point of death and graft failure. Graft failure was defined 
as re-transplantation or return to dialysis. The study pop-
ulation consisted of 3,784 patients who still had a func-
tioning graft at 6 months after transplantation, which was 
treated as baseline in this analysis. The initial 6 months 
after kidney transplantation were excluded from analysis 
due to complicated post-surgical dynamics of the health 

Fig. 2  Relative differences in Brier score ( �RBS ; upper panel) and absolute difference in AUC ( �ABS ; lower panel) comparing GLA(eGFR), GLA(Age), 
and LA to SPM over (from left to right) observations that has age < 50 , age in [50, 60), age in [60, 70), and age � 70 in CRIC study. The error bars 
represent 95% bootstrap percentile confidence intervals. The actual BS ×100 and AUC ×100 for the benchmark SPM are annotated on the top axis
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Fig. 3  Relative differences in Brier score ( �RBS ; upper panel) and absolute difference in AUC ( �ABS ; lower panel) comparing GLA(eGFR), GLA(Age), 
and LA to SPM over (from left to right) observations at baseline (study entry time), 3-year on study, 5-year on study, and 10-year on study in CRIC 
study. The error bars represent 95% bootstrap percentile confidence intervals. The actual BS ×100 and AUC ×100 for the benchmark SPM are 
annotated on the top axis

Table 2  Characteristics of patients at baseline (6 month post-transplantation), and 1-, 2-, 3-, and 4-year after renal transplantation. 
Wisconsin Allograft Recipient Database

a This is the mean (standard deviation) of residual follow-up time in months, averaged over clinic visits

Baseline 1 Year 2 Year 3 Year 4 Year
No. Patients 3893 3154 2525 2012 1668

eGFR 55.6 (18.6) 54.9 (18.6) 56.9 (19.8) 56.6 (20.2) 56.1 (19.8)

Age 51.6 (12.9) 52.4 (12.8) 53.5 (12.6) 54.6 (12.6) 55.1 (12.6)

Number of acute rejections in the past (at most) 12 months:

   0 3237 (83.1%) 2542 (80.6%) 2404 (95.2%) 1958 (97.3%) 1632 (97.8%)

   ≥1 656 (16.9%) 612 (19.4%) 121 (4.79%) 54 (2.68%) 36 (2.16%)

Number of chronic rejections in the past (at most) 12 months:

   0 3 (0.08%) 12 (0.38%) 9 (0.36%) 11 (0.55%) 6 (0.36%)

   ≥1 3237 (83.1%) 2542 (80.6%) 2404 (95.2%) 1958 (97.3%) 1632 (97.8%)

Number of hospitalization in the past (at most) 12 months:

   0 2372 (60.9%) 1765 (56.0%) 1972 (78.1%) 1664 (82.7%) 1402 (84.1%)

   ≥1 1521 (39.1%) 1389 (44.0%) 553 (21.9%) 348 (17.3%) 266 (15.9%)

Status of Donor:

   Deceased 2365 (60.8%) 1885 (59.8%) 1480 (58.6%) 1170 (58.2%) 941 (56.4%)

   Living 1528 (39.2%) 1269 (40.2%) 1045 (41.4%) 842 (41.8%) 727 (43.6%)

Time to event a 69.7 (50.2) 69.8 (48.8) 66.8 (46.1) 62.9 (43.4) 58.7 (40.6)
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conditions. Predictors include eGFR, the number of 
rejection in the past 12 months, age, and the donor status 
(living / deceased). With the exception of donor status, all 
other predictors are longitudinal and vary over time.

We summarized in Table  2 the characteristics of at-
risk patients at 6 (baseline), 12, 24, and 36 months after 
transplantation. The time since baseline (landmark time) 
is a clinically meaningful quantity and prognostic factor 
for the patients, which justified the summary by this vari-
able. Over time, the number of at-risk patients decreased 
from 3,784 to 2,707, as those who reached the compos-
ite endpoint or censoring were excluded from follow-up. 
Therefore, the relatively stable mean eGFR and mean age 
reflected both within-individual change in these variables 
as well as a change in the population. Among the remain-
ing at-risk patients, the frequency of acute and chronic 
rejection appeared to increase over time, and the residual 
follow-up time was reduced as expected.

Statistical method. The statistical analysis was similar 
to the CRIC data. However, since there is a clear baseline, 
the validation datasets were defined by landmark time, as 
in typical landmark modeling. We studied and compared 
four methods: SPM, LA = GLA(time), GLA(eGFR), and 
GLA(time, eGFR). The fourth method was Model (3) 

with a vector of two landmark variables in V  , the land-
mark time and eGFR. They are both important prognos-
tic variables. The estimation was done using bivariate 
kernel weights. GLA(age) and GLA(eGFR) were not con-
sidered here because the landmark time is equivalent to 
graft survival at the time of prediction, one of the most 
clinically relevant prognostic factors among graft recipi-
ents. The validation set is selected as the population still 
at risk of graft failure or death at 6-month (baseline), and 
at 1- to 6-year after transplantation (landmark times, 
or simply “time”). For each patient in the validation set, 
GLA identifies a neighborhood of data around the land-
mark time and the current measured value of eGFR of 
this specific patient from the training set, on which the 
predicted risk is calculated. Simultaneously localizing 
on landmark time and eGFR makes it necessary to use 
a larger neighborhood due to the “curse of dimension-
ality”. Thus, both time and eGFR were further linearly 
adjusted in the GLA model as covariates. The cross-vali-
dation procedure and comparison of prediction accuracy 
between SPM and GLA were carried out in the same way 
as in the CRIC data analysis.

Results. The result is presented in Fig.  4. First, 
the LA performed substantially better than SPM, as 

Fig. 4  Relative differences in Brier score ( �RBS ; upper panel) and absolute difference in AUC ( �ABS ; lower panel) comparing GLA(eGFR), GLA(time, 
eGFR), and LA to SPM in predicting the composite outcome of graft failure and death in the next 1-, 2-, and 3-year at 6 to 72 months after 
transplantation in WisARD. The “time” denotes time-on-study. Baseline is the 6th month after kidney transplantation. Here, LA is equivalent to a GLA 
localizing on time-on-study only, i.e., GLA(time). The ribbons represent 95% bootstrap percentile confidence intervals
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expected from typical landmark modeling. Second, both 
GLA(eGFR) and the GLA(time, eGFR) resulted in fur-
ther improvement over LA, possibly because GLA had 
less chance of model misspecification. GLA(eGFR) per-
formed similarly to GLA(time, eGFR). The eGFR, an 
important biomarker of renal function, is also a good 
prognostic biomarker of future graft failure. When eGFR 
is known, the time on graft provides little additional 
prognostic information. In this paper, we focused our 
discussion on situations without an explicit baseline, and 
demonstrated the interpretation and predictive advan-
tages of GLA in that situation. Figure 4 shows that in sit-
uations with an explicit baseline, the concept of GLA can 
be used to further improve the performance of LA.

Discussion
GLA can be viewed simultaneously as a matching algo-
rithm, a kernel weighting procedure, and a model spec-
ification that allows the parameters to vary with one or 
more landmark variables. It is analogous to, and gener-
alizes the conventional LA. The GLA has better inter-
pretation than the LA when there is no explicit baseline 
in the data. Our data analysis show that the GLA may 
produce better prediction accuracy than the LA in such 
situation (e.g., CRIC) and also in situations with explicit 
baseline (e.g., WisARD). We attribute this phenomenon 
to the model flexibility and specification. Compared with 
the LA, GLA offers a different, and more general, model 
specification for the bilateral relationship between pre-
dictors and residual survival at each clinical visit. This 
model specification allows all the model parameters to 
be functions of landmark variables, which is equivalent to 
a matching or weighting algorithm that localizes on the 
landmark variables. Consequently, the misspecification 
of the effect of landmark variables is nearly eliminated. 
On the one hand, this feature helps the GLA to outper-
form LA in the data without an explicit baseline, because 
the landmark variable in GLA is a strong predictor, while 
the landmark variable in LA is a weak or null predic-
tor in this situation. Misspecifying a strong predictor is 
expected to have a larger effect on prediction accuracy. 
On the other hand, this feature also helps the GLA to fur-
ther improve upon the LA by localizing on other strong 
predictors in addition to the landmark time, in situations 
where the data have an explicit baseline. Both GLA and 
LA performed similarly or better than SPM in almost all 
situations considered in our two data applications. This 
result highlights the importance of considering dynamic 
prediction when the risk prediction model is developed 
from longitudinal data.

As GLA does not require that the landmark variable 
be tied to the time since baseline, it allows more read-
ily interpretable results in other clinical contexts. Our 

results suggest that the flexibility to choose localization 
based on a stronger predictor, such as eGFR rather than 
age in our example, may result in better prediction. This 
may be especially advantageous in kidney transplanta-
tion, in which frailty or other markers of health status 
may provide more relevant predictive information than 
does biological age [27]. The proportion of new kidney 
transplant recipients > 65 years old in the US more than 
doubled from 2000 to 2018, highlighting the diminishing 
reliance on definitive age limits and the need for alterna-
tive predictors of outcomes [28]. As markers of health 
status also are potentially modifiable, improved predic-
tion may help guide clinical decision-making both before 
and after transplantation.

The main conclusions were drawn from the analysis of 
two real data examples. While this may limit the gener-
alizability of the conclusions, we have presented meth-
odological arguments to explain the findings. We chose 
not to use simulated experiments because it is a widely 
recognized difficulty to simulate data while ensuring that 
the landmark model is correctly specified at all landmark 
times [1, 29]. This is because the landmark model, regard-
less (1) or (3), is not a single model with varying coeffi-
cients but a collection of working models indexed by the 
landmark variable. If we simulated longitudinal and sur-
vival data from a joint distribution without guaranteeing 
that GLA, LA or SPM work under correction specifica-
tion, the results would be difficult to interpret and may 
heavily depend on the simulation setting. Nonetheless, 
GLA needs to be studied further in other datasets and 
patient populations to establish the generalizability of the 
conclusions in this paper.

In the data analysis, we used the basic model form for 
all of SPM, LA and GLA in the sense that the covariates 
other than the landmark variables are additive in the 
model’s linear predictor. This is a conventional approach 
in practice. Since the better performance of the GLA is 
caused by reduced chance of model misspecification, it is 
possible to improve LA or SPM by using a more flexible 
model form such as adding nonlinear terms. However, a 
few issues are worth noting. First, GLA itself is a simple 
solution to make LA more flexible. This is shown in the 
WisARD data example. Second, all three models (GLA, 
LA, SPM) can be made more flexible. But the alternative 
model formulations for each are extensive, which makes 
comparison difficult. We have hence resorted to the sim-
plification of using the basic formulation, which is linear 
and additive in the covariates. Third, while the SPM can 
be made more flexible, it still has the critical drawback 
of using only the baseline data. In typical longitudinal 
cohort studies, the inclusion and exclusion criteria often 
limit the baseline population to be younger with earlier 
disease stages. The population tends to become older 
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with more advanced diseases during the follow-up. Since 
the intended application of the risk prediction model is 
usually during the follow-up, this mismatch between 
training and validation data could affect the performance 
of SPM. In  situations where the baseline visits can be 
viewed as a “snapshot” of all the longitudinal clinical vis-
its (e.g., the electronic health records), the SPM would 
produce valid prediction. However, the SPM may not be 
the optimal solution even with flexible model formula-
tion, because the majority of the longitudinal clinical vis-
its are not used. The GLA and LA methods do not have 
such a problem and they come with automatic protection 
of misspecifying the effect of landmark variables. They 
can also incorporate predictive features of longitudinal 
history by design, which SPM cannot.

Left truncation may be an intrinsic issue in observa-
tional cohort studies of chronic disease, and it causes 
bias to estimating the population distribution [30]. Those 
who had the outcome event early in life were less likely 
to be included in the data. In prediction problems, how-
ever, this does not affect the predictive accuracy as long 
as the training and validation data are both subject to 
left truncation. It is worth further research when the left 
truncation distributions differ in training and validation 
datasets.

Our work in this paper highlights the importance of 
reducing model misspecification in landmark mod-
eling. Future work should be geared toward developing 
model checking procedures and more flexible modeling 
approaches. GLA and LA are not a single model with 
varying coefficients, but a collection of many work-
ing models. The model checking and fitting procedures 
developed for a single statistical model should be adapted 
to properly address this challenge.

Conclusion
GLA generalizes the LA by broadening the concept of 
the landmark variable so that it does not have to be the 
time since baseline. This change leads to better interpre-
tation when the baseline is not a risk-changing clinical 
milestone. GLA can be viewed as a matching algorithm, 
weighted estimation, or a varying coefficient model 
for residual survival that has a more flexible formula-
tion than the LA. The flexibility and adaptivity to the 
validation population may help produce more accurate 
prediction.
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