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Abstract 

Getting access to administrative health data for research purposes is a difficult and time-consuming process due to 
increasingly demanding privacy regulations. An alternative method for sharing administrative health data would be 
to share synthetic datasets where the records do not correspond to real individuals, but the patterns and relationships 
seen in the data are reproduced. This paper assesses the feasibility of generating synthetic administrative health data 
using a recurrent deep learning model. Our data comes from 120,000 individuals from Alberta Health’s administra-
tive health database. We assess how similar our synthetic data is to the real data using utility assessments that assess 
the structure and general patterns in the data as well as by recreating a specific analysis in the real data commonly 
applied to this type of administrative health data. We also assess the privacy risks associated with the use of this 
synthetic dataset. Generic utility assessments that used Hellinger distance to quantify the difference in distributions 
between real and synthetic datasets for event types (0.027), attributes (mean 0.0417), Markov transition matrices 
(order 1 mean absolute difference: 0.0896, sd: 0.159; order 2: mean Hellinger distance 0.2195, sd: 0.2724), the Hellinger 
distance between the joint distributions was 0.352, and the similarity of random cohorts generated from real and 
synthetic data had a mean Hellinger distance of 0.3 and mean Euclidean distance of 0.064, indicating small differ-
ences between the distributions in the real data and the synthetic data. By applying a realistic analysis to both real 
and synthetic datasets, Cox regression hazard ratios achieved a mean confidence interval overlap of 68% for adjusted 
hazard ratios among 5 key outcomes of interest, indicating synthetic data produces similar analytic results to real 
data. The privacy assessment concluded that the attribution disclosure risk associated with this synthetic dataset was 
substantially less than the typical 0.09 acceptable risk threshold. Based on these metrics our results show that our syn-
thetic data is suitably similar to the real data and could be shared for research purposes thereby alleviating concerns 
associated with the sharing of real data in some circumstances.
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Background
It is often difficult for analysts and researchers to get 
access to high quality individual-level health data for 
research purposes. For example, despite funder and jour-
nal expectations for authors to share their data [1–3], 
an analysis of the success rates of getting individual-
level data for research projects from authors found that 
the percentage of the time these efforts were success-
ful varied significantly and was generally low at 58% [4], 
46% [5], 14% [6], and 0% [7]. Some researchers note that 
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getting access to datasets from authors can take from 
4 months to 4 years [7]. Data access through independent 
data repositories can also take months to complete [8, 9].

Concerns about patient privacy, coupled with increas-
ingly strict privacy regulations, have contributed to the 
challenges noted above. For instance, privacy concerns 
by patients and regulators have acted as a barrier to 
sharing of health data [10, 11]. A recent review of health 
data infrastructure in Canada concluded that (mis)inter-
pretations of privacy laws and a general “privacy chill” 
incentivizes risk-averse behavior among data custodians, 
stifling data access and research [12]. An analysis of data 
sharing practices for studies funded by CIHR found non-
trivial gaps in data availability [13]. There are a number of 
approaches that are available to address these concerns: 
consent, anonymization, and data synthesis.

Patient (re-)consent is one legal basis for making data 
available to researchers for secondary purposes. How-
ever, it is often impractical to get retroactive consent 
under many circumstances and there is significant evi-
dence of consent bias [14].

Anonymization is one approach to making clinical and 
administrative data available for secondary analysis. How-
ever, recently there have been repeated claims of successful 
re-identification attacks on anonymized data [15–21], erod-
ing public and regulators’ trust in this approach [21–31].

Data synthesis is a more recent approach for creating 
non-identifiable health information that can be shared for 
secondary analysis by researchers [32, 33]. Researchers 
have noted that synthetic data does not have an elevated 
identity disclosure (privacy) risk [34–41], and recent 
empirical evaluations have demonstrated low disclosure 
risk [42]. Synthetic data generation has the potential to 
unlock historically siloed and difficult to access data sets 
for secondary analysis, including research.

There are synthetic health datasets that are currently 
available to a broad research community such as: the NIH 
National COVID Cohort Collaborative (N3C) [43], the 
CMS Data Entrepreneur’s Synthetic Public Use files [44], 
synthetic cardiovascular and COVID-19 datasets avail-
able from the CPRD in the UK [45, 46], A&E data from 
NHS England [47], cancer data from Public Health Eng-
land [48], a synthetic dataset from the Dutch cancer reg-
istry [49], synthetic variants of the French public health 
system claims and hospital dataset (SNDS) [50], and 
South Korean data from the Health Insurance Review 
and Assessment service (the national health insurer) [51].

There are multiple methods that have been developed 
for the generation of cross-sectional synthetic health 
data [52–59]. The synthesis of longitudinal data is more 
challenging because patients can have long sequences of 
events that need to be incorporated into the generative 

models. Longitudinal data captures events and trans-
actions over time, such as those in electronic medical 
records, insurance claims datasets, and prescription 
records. As we summarize below, published methods 
thus far are not suitable for the synthesis of realistic lon-
gitudinal data because many of them would have only 
worked with curated data where the messiness of real-
world data has been taken out.

In this article we present a recurrent neural network 
(RNN) model for the generation of synthetic longitu-
dinal health data. The model was empirically tested on 
Alberta’s administrative health records. Individuals were 
selected for this cohort if they received a prescription for 
an opioid during the 7-year study window. Data available 
for this cohort of patients included demographic infor-
mation, laboratory tests, prescription history, emergency 
department visits, hospitalizations, and death. The syn-
thesized data utility was evaluated using generic metrics 
to compare the real data with the synthetic data, and a 
traditional time-to-event analyses on opioid use was per-
formed on both datasets and the results compared. This 
type of analysis is the cornerstone of most health services 
research. The privacy risk associated with the synthetic 
dataset was assessed using an attribution disclosure risk 
assessment on synthetic data [42].

Methods
In this section we describe the requirements for a genera-
tive model that captures the patterns in complex longitu-
dinal clinical datasets, and a RNN architecture to meet 
those requirements. We also describe how we evaluate 
the utility and privacy risks of the generated datasets.

The utility of the generated data can be evaluated using 
two approaches [60]: general purpose utility metrics and 
a workload aware evaluation. The former approach evalu-
ates the extent to which the characteristics and structure 
of the synthetic data are similar to characteristics of the 
real data, and the latter compares the model results and 
conclusions of a substantive analysis on opioid use utiliz-
ing the synthetic and real datasets. We performed both 
types of utility assessment.

Requirements for synthesizing longitudinal health data
We first present a series of requirements for the synthesis 
of longitudinal health data. This allows us to be precise 
in evaluating previous work and for setting express tar-
get criteria for our generative model. These requirements 
are intended to capture: (a) the characteristics of real 
longitudinal datasets that have received minimal cura-
tion to ensure that the synthesized datasets are realistic 
and that the generative models will work with real health 
data, and (b) the characteristics of the generative models 
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themselves to ensure that they are scalable and generaliz-
able. Our requirements are as follows:

(1) The original dataset that is synthesized is a combi-
nation of:

a) Longitudinal data (i.e. multiple events over time 
from the same patient), and

b) Cross-sectional data (i.e., measures that are fixed 
and are not repeated such as demographic infor-
mation).

(2) The length of the longitudinal sequence varies 
across patients in the original datasets. Patients 
with acute conditions may have very few events, 
whereas complex patients with chronic conditions 
may have a very large number of events.

(3) The original datasets are heterogeneous with a 
combination of:

a) Categorical or discrete features
b) Continuous features
c) Categorical variables with high cardinality (e.g., 

diagnosis codes and procedure codes)

(4) Outliers and rare events should be retained in the 
original dataset since real data will have such events 
in them.

(5) The data may have many missing values, leading to 
sparse datasets (i.e., missing data are not removed 
from the original datasets that are synthesized).

(6) The generative model can take into account the 
previous information about the patients in the 
sequence.

(7) The generative model should be developed based 
on existing data rather than requiring manual inter-
vention by clinicians to seed it or correct it.

Our objective was to construct a generative model that 
would meet these requirements.

Previous approaches
Multiple methods have been proposed in the literature 
for synthesizing longitudinal health data, each with their 
own strengths and limitations. These are summarized 
in Table  1. None of them meet all of our requirements, 
making the case for additional research and generative 
model architectures to meet the requirements above.

Data characteristics
We used a cohort of patients previously derived and pub-
lished to evaluate trends in opioid use in the province 
of Alberta, Canada [84]. The following administrative 

databases from Alberta Health from 2012 to 2018 were 
linked by the encrypted personal health number (PHN).

1. The Provincial Registry and Vital Statistics database 
for patient demographics and mortality. We used the 
age, sex, vital statistics, and date of last follow-up. 
An additional covariate was derived, the Elixhauser 
comorbidity score, based on physician, emergency 
department or hospitalization ICD-9/10 codes.

2. Dispensation records for pharmaceuticals from the 
Alberta Netcare Pharmaceutical Information Net-
work (PIN). We restricted the data to only dispen-
sations of either one of two commonly dispensed 
opioids of interest in our data (morphine and oxyco-
done) and dispensations of antidepressant medica-
tions since these were the focus of the time-to-event 
analysis.

3. The Ambulatory Care Classification System which 
provides data on all services while under the care of 
the Emergency Department. This included date of the 
visit, primary diagnostic codes, and resource inten-
sity weight. The resource intensity weight is a meas-
ure used in the province to determine the amount of 
resources used during the visit. The primary diagnos-
tic code we included as an ICD-10 code.

4. Discharge Abstract Database which provides similar 
data to Ambulatory Care but pertaining to inpatient 
hospital admissions. Information on hospitalizations 
was restricted to the date of admission, primary diag-
nostic code, and the resource intensity weight. 

5. Provincial laboratory data which includes all outpa-
tient laboratory tests in the province. We only consid-
ered results for 3 common labs conducted in the province 
(ALT, eGFR, HCT) and the associated date of testing.

The structure of the data is illustrated in Fig. 1. There 
is a demographic table with basic characteristics of 
patients, and a set of transactional tables with a one-to-
many relationship between the demographic table and 
the transactional tables. Therefore, each patient may have 
multiple events occurring over time. Using the PHN, 
observations for a single individual from multiple trans-
actional tables may be linked together. Each observation 
in the transactional tables includes the date of the event 
relative to the start of the study period. This means that 
a group of observations from the same individual can be 
sorted according to the relative date, yielding a chrono-
logical order of an individual’s interactions with the 
health system.

Each event, whether it is a visit or a lab test, has a 
different set of attributes. Therefore, the event charac-
teristics are a function of the event type. For example, 
a hospitalization event will record the relative date of 
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the hospitalization, the length of stay, diagnostic code, 
and resource intensity weight. Additionally, all event 
types include an attribute to describe the timing of the 
event. In this work we model time using sojourn time, 
or time in days since the last event for that individual.

The basic patient characteristics and event charac-
teristics are heterogeneous in data  type. This means 
that some will be categorical variables, some will be 
continuous, some binary, and some discrete ordered 
variables. For example, age is a continuous patient 
characteristic while diagnostic code associated with 
a emergency department visit is a categorical event 
characteristic.

Table 2 provides the exact dimensionality of the origi-
nal datasets. A random subset of 100,000 patients from 
a population of 300,000 subjects who received a dispen-
sation for morphine or oxycodone between Jan 1, 2012 
and Dec 31, 2018, 18 years of age and over were used to 
train our generative model and  included in our analy-
ses. For these patients, we truncated the events at the 
95th percentile, which means that the maximum num-
ber of events that an individual can have was 1000.

Details of the dataset preparation for the modeling 
are provided in Additional file  1: Appendix  1: Data 
Pre-processing.

Generative model description
To synthesize complex longitudinal health data, we use an 
RNN. RNNs model input sequences using a memory rep-
resentation which is aimed to capture temporal depend-
encies. Vanilla RNNs, however, suffer from the problem of 
vanishing gradients [85] and thus, have difficulty captur-
ing long-term dependencies. Long short-term memory 
units (LSTM) [86] and the gated recurrent unit (GRU) 
[87] were conceived to overcome this limitation. This 
work implements LSTM to model and synthesize obser-
vations over time. The generated data was then evaluated 
in terms of data utility. This generative model was imple-
mented in python version 3.8 using Pytorch version 1.7.

Model structure
Our generative model was a form of conditional LSTM 
where the final predicted outputs are conditional on the 
baseline characteristics. The model architecture, includ-
ing which datasets are provided as inputs vs predicted 
as outputs is described in Fig.  2. The input data corre-
sponds to n individuals at t − 1 time points (e.g., the set 
Tϵ  {1, 2, 3, .. t − 1}) for event labels (yielding an array of 
dimensions [n, t − 1]) and event attributes (yielding an 
array of dimensions [n, t − 1, A] where A is the number 
of attributes) as well as the B baseline characteristics for 

Fig. 1 Representation of the dataset. Note that the demographics information contains a single observation per individual, where each individual is 
identified using a personal health number (PHN). This PHN links the demographics table to all other tables in the dataset, where all other tables may 
have multiple observations per individual
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each individual. The output consists of predictions corre-
sponding to n individuals at t − 1 time points (e.g., the set 
Tϵ  {2, 3, 4, .. t}) for the event labels and event attributes. 
These predictions are used during training to calculate 
the model loss, or during data generation as the subse-
quent synthetic events.

This model consists of 3 components: embedding lay-
ers, an LSTM, and output layers.

The embedding layers are used to map single integer 
encoded categorical features to a series of continuous 

features. The benefit of this embedding is that the trans-
formation to map the discrete features to the set of con-
tinuous features is altered and improved throughout 
training. This allows for a continuous space representa-
tion of the categorical features that picks up similarity 
between related categories. Embedding occurs indepen-
dently for each of the baseline characteristics (age, sex, 
comorbidity index), the event labels, and the event 
attributes.

The LSTM estimates a representation of the hidden 
state given the prior event labels and attributes. The 
embedded event attributes and the embedded event 
labels are concatenated prior to being input in the LSTM. 
If the LSTM receives observations corresponding to 
times T ∈ {1, 2, 3, …t − 1}, then the output of the hidden 
state will correspond to times T ∈ {2, 3, 4, …t}. In addi-
tion to the predictions, the LSTM outputs the complete 
hidden state which describes the current state of all ele-
ments of the model. The complete hidden state is used 
during data synthesis as a way of accounting for historical 
events.

The output layers are a set of linear transformations 
that take as input the concatenation of the output of the 

Table 2 Dimensionality of the original data tables for the 
100,000 individuals used for training

Table Name Number of Rows Number of 
Columns

Age_sex_comorbidity 100,000 4

Drug_data 9,975,950 7

ED_visits 1,748,083 5

Hosp_admit 84,669 5

Labs 2,199,574 3

Reg_file 100,000 2

Vital_stats 4200 6

Fig. 2 Diagram of the overall RNN architecture
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LSTM and the embedded baseline characteristics. These 
output layers make the predictions for the next time 
points generated by the LSTM conditioned on the base-
line characteristics.

Model training
During training, loss is calculated for both the event 
labels and the event attributes, with masking applied to 
the event attributes so that only attributes measured for 
the true event label contribute to the loss. This makes 
training more efficient as masking the loss for the event 
attributes restricts the model to learn how to predict each 
attribute only when it is measured for a given event label.

The event label loss is calculated using cross entropy 
loss between the predicted event labels and the true 
event labels:

where xlabeln, t is the vector of predicted probabilities for 
the event label for individual n at time t, and where xla-
beln, t[j] is the predicted probability that individual n at 
time t has event with label j, and truen, t is the true event 
label for individual n at time t.

Next, cross entropy loss is calculated for the attributes 
associated with the true event label. For example, if the 
next time point is truly a lab test, then the model loss 
for the event attributes is the sum of the cross entropy 
between the real lab test name and the predicted lab test 
name and the cross entropy between the real lab test 
result and the predicted lab test result. This masked form 
of loss for the event attributes is desirable as it allows the 
model to focus on learning the relevant features at each 
time point, rather than constantly predicting missing 
values.

If we define the indicator function  1(Ai  |  truen, t) to 
check whether a given attribute Ai, is relevant for a given 
true event label truen, t, then cross entropy loss for the 
attributes is calculated as:

where trueAi, n, t is the true value for individual n’s attrib-
ute i at time t and xn, t, i is the vector of the predicted 
probabilities for individual n’s attribute i at time t among 
the C possible classes for attribute i.

losslabels =
1

Nt

N
�

n=1

t
�

t=1

−xlabeln,t [truen,t ]+ log





C
�

j=0

exp
�

xlabeln,t [j]
�





lossattributes = mean

N

n=1

t

t=1

A

i=1

1 Ai | truen,t −xn,t,i[trueAi,n,t ]+ log

C

j=0

exp xn,t,i[j]

Thus, the objective function for training is to minimize 
the total loss over the model parameters θ, where the 
tradeoff parameter λ controls the relative importance of 
label loss and attribute loss:

During training, data is provided for the model in 
tensors of 120 time points. Individuals have their data 
grouped into chunks of up to 120 sequential events with 
0 s introduced to pad chunks shorter than 120 observa-
tions. This is desirable as it produces data that is uniform 
and much less sparse than if we were to pad up to the 
true maximum number of observations per individual of 
1000.

Hyperparameter optimization was performed using 
a training set of 100,000 individuals and a validation set 
of 20,000 individuals. Hyperparameters explored include 
batch size, number of training epochs, optimization algo-
rithm, learning rate, number of layers within the LSTM, 
hidden size of the LSTM, embedding size for the event 
labels, event attributes, and baseline characteristics, and 
weighting for the different event types and event attrib-
utes during calculation of the training loss. Training was 
performed on an Nvidia P4000 graphics card and was 
coordinated using Ray Tune.

Synthetic data generation
After training the model as described in the previous section, 
synthetic data generation consists of two phases: genera-
tion of baseline characteristics and starting values, followed 
by the generation of longitudinal event data. Baseline char-
acteristics and values for the first event observed are gener-
ated using a sequential tree-based synthesis method [88, 89]. 
Using a scheme similar to sequential imputation [90, 91], 

trees are used quite extensively for the synthesis of health 
and social sciences data [52–59, 92]. With these types of 
models, a variable is synthesized by using the values earlier in 
the sequence of characteristics as predictors.

min
θ

{

losslabels + � lossattributes
}
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These synthesized values are then fed into the trained 
model to generate the remaining events for each syn-
thetic individual. The goal behind using sequential tree-
based synthetic values as the baseline characteristics and 
starting values for the LSTM model is that they will bet-
ter reproduce the characteristics of the real population 
than randomly sampled starting values.

To generate the longitudinal event data, the output of 
the sequential tree-based synthesis is iteratively fed into 
the LSTM model. At each iteration, the model uses the 
synthetic data from the previous time point, as well as 
the hidden state of the model if available, to predict the 
next time point. These predictions consisted of predicted 
event labels and event attributes. Based on the predicted 
event label, all non-relevant event attributes are masked 
and set to missing. For example, if the next time point 
predicts an event of lab tests, the lab test name, lab test 
result, and sojourn time event attributes will be retained 
while all others are set to missing. This masking during 
data generation is important to ensure that the data the 
model sees during data generation matches the format of 
the data seen during training. Data synthesis proceeds in 
this iterative fashion until the model has generated event 
data up to the maximum sequence length. In post-pro-
cessing, each sequence is trimmed such that, if available, 
sequences terminate when a ‘last observation’ event type 
is observed.

Generic utility assessments
Generic utility assessments aim to evaluate the similarity 
between a real and synthetic dataset without any specific 
use case or analysis in mind. Two types of methods were 
used depending on whether we were evaluating the util-
ity of the cross-sectional vs the longitudinal portion of 
the data. All generic utility assessments were completed 
using python version 3.8.

Event distribution comparisons
The simplest generic utility assessments are to compare 
the number and distribution of events generated for each 
synthetic individual to the number and distribution of 
events in the real data. To compare the number of events 
per individual, the distributions are plotted as histograms 
and the means are compared. To compare the distribu-
tion of events in the real and synthetic data, the observed 
probability distribution for event types is calculated for 
each dataset. This corresponds to what proportion of 
events belongs to each event type. These probability dis-
tributions are then plotted and compared as bar charts.

Additionally, these distributions are compared by cal-
culating the Hellinger distance between the two distribu-
tions [93]. Hellinger distance is an interpretable metric 

for assessing the similarity of probability distributions 
that is bounded between 0 and 1 where 0 corresponds to 
no difference.

Comparing the distribution of event attributes
Another simple metric for assessing the similarity 
between the real and synthetic datasets is to compare the 
marginal distributions of each event attribute. For this 
assessment, we apply the Hellinger distance (as defined 
above) to the discrete probability distributions for each 
event attribute. For this assessment, careful considera-
tion is taken to tabulate the probability distributions for 
each event attribute, only using observations with an 
event label that is relevant for that attribute. This ensures 
that we are comparing the distributions of each attribute 
without the padded/missing values. To summarize the 
Hellinger distance values calculated for each event attrib-
ute, they are plotted in a bar chart.

Comparison of transition matrices
The next method we applied for the utility evaluation of 
synthetic data is to compute the similarity between the 
real data and the synthetic data transition matrices. A 
transition matrix reflects the probability of transitioning 
from one event to another. These transition probabilities 
can be estimated empirically by looking at the proportion 
of times that a particular event follows another one.

For example, consider sequence data with four events: 
A, B, C, and D where C is a terminal event, meaning that 
if C occurs, a sequence terminates. If 40% of the time an 
event B follows an event A, then we can say that the tran-
sition from A to B has a probability of 0.4. The transition 
matrix is the complete set of these transition probabili-
ties. Creating such a transition matrix assumes that the 
next event observed is dependent on only one previous 
event. This can be quite limiting and does not account for 
longer term relationships in the data. However, transition 
matrices can be extended to the kth order where k cor-
responds to the number of previous events considered 
when calculating the transition probabilities.

An example of a  2nd order transition matrix is shown in 
Table 3. Here we have the two previous events along with 
the transition probabilities. The rows indicate the previ-
ous states, and the columns indicate the next state. Note 
that each row needs to add up to 1 because the sum of 
the total transitions from a pair of consecutive states must 
be 1. Also, there are no previous states with a C event in 
them because in our example that is a terminal event.

The transition matrices for the real and synthetic data-
sets can be compared by calculating the Hellinger dis-
tance between each row in the real transition matrix and 
the corresponding row in the synthetic transition matrix. 
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The lower the Hellinger distance values, the closer the 
transition structure between the two datasets. In this 
work we report utility for both the  1st and  2nd order tran-
sition matrices.

Multivariate Hellinger distance
A multivariate Hellinger distance can be derived from the 
multivariate normal Bhattacharyya distance [94]. This 
metric is bound between 0 and 1 and hence is an easily 
interpreted generic measure of overall similarity of the mul-
tivariate distribution between the real and synthetic data-
sets. This metric has also been shown to be highly predictive 
of synthetic data utility for logistic regression analyses [95].

Utility of random cohorts
All the utility assessments described thus far are con-
ducted on the whole dataset. However, when analyzing 
longitudinal data, it is quite common to generate queried 
data (i.e., a cohort) from the whole dataset. Therefore, it 
is beneficial to compare the cohorts generated by queries 
on the real and synthetic datasets. A query defines the 
inclusion and exclusion criteria for the cohort.

For this assessment, we used a fuzzy SQL method. This 
will generate a large number of random semantically and 
syntactically correct SELECT random queries that are 
simultaneously applied to both real and synthetic data-
sets. The similarity between the resultant real and syn-
thetic cohorts are compared using the Hellinger distance 
for distributions and normalized Euclidean distance for 
aggregate results (e.g., the average of a continuous vari-
able in the cohort).

Such SQL fuzzers are used to test database manage-
ment systems (DBMSs) for any bugs or vulnerabilities 
[96]. In our context we apply a similar concept to gen-
erate random cohorts. More details about our imple-
mentation are included in Additional file 1: Appendix 2: 
Random Cohort Utility Assessment.

Analysis specific utility assessments
Generic utility assessments are agnostic to the future 
analyses of the synthetic data and compare the real and 
synthetic datasets in terms of distributional and struc-
tural similarity. In contrast, workload aware or anal-
ysis-specific utility assessments compare the real and 
synthetic datasets by performing the same substantive 
analysis to both and comparing the results.

For this dataset we also conducted an analysis-specific 
utility assessment by applying a  time-to-event analyses 
on both the real and synthetic datasets and compared the 
results.

Our primary outcome was a composite endpoint of 
all-cause emergency department visits, hospitalization, 
or death during the follow-up. The secondary outcomes 
included each component of the composite endpoint 
separately, as well as to evaluate cause specific admis-
sions to hospital for pneumonia (ICD code J18) as a 
prototypical example of a cause specific endpoint.

First, all variables in both the synthetic and real data 
were compared using standard descriptive statistics 
(e.g., means, medians). Second, standardized mean dif-
ferences (SMD) were used to statistically compare our 
variables of interest between the synthetic and real 
data. SMD was selected as given our large sample size, 
small clinically unimportant differences, are likely to be 
statistically different when using t-tests or chi squared 
test. A SMD greater than 0.1 is deemed as a potentially 
clinically important difference, a threshold often recom-
mended for declaring imbalance in pharmacoepidemio-
logic research [97].

Using Cox proportional hazards regression models, 
unadjusted and adjusted hazard ratios (HRs) and 95% 
confidence intervals were calculated to assess the risk 
associated with either morphine or oxycodone and our 
outcomes of interest in both the synthetic and real data 
separately. Start of follow-up began on the date of the 
first dispensation for either morphine or oxycodone. 
All subjects were prospectively followed until outcome 
of interest or censoring defined as the date of termi-
nation of Alberta Health coverage or 31 March 2018, 
providing a maximum follow-up of 7 years. Finally, the 
estimates derived from the real and synthetic datasets 
were directly statistically compared. Morphine served 
as the reference group for all estimates. Potential con-
founding variables included in all multivariate models 
included age, sex, Elixhauser comorbidity score, use of 
antidepressant medications, and our 3 laboratory vari-
ables (ALT, eGFR, HCT). To compare the confidence 
intervals estimated for HRs from real vs synthetic data-
set, confidence interval overlap was used [98]. All analy-
ses were performed using STATA/MP 15.1 (StataCorp., 
College Station, TX).

Table 3 An example of a transition matrix with an order of 2, 
which means that the two previous events are considered. We 
assume that C is a terminal event

A B C D

AB 0.31 0.29 0.39 0.00

BA 0.42 0.21 0.22 0.16

AD 0.64 0.11 0.08 0.18

DA 0.38 0.05 0.23 0.34

BD 0.41 0.31 0.26 0.02

DB 0.01 0.16 0.57 0.26

AA 0.20 0.40 0.30 0.10

BB 0.36 0.34 0.25 0.04

DD 0.34 0.48 0.17 0.01
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Privacy assessment
To quantify the privacy risks in the synthetic data we 
evaluated attribution disclosure risk [42]. This privacy 
assessment is designed to evaluate the risk that an adver-
sary could match a synthetic with a real record, and that 
if a re-identification were to occur, whether the adver-
sary would learn something new about them. The quasi-
identifiers used for this assessment were: age, sex, death 
indicator, and a hospitalization indicator. For this assess-
ment, we consider two directions of attack: a population 
to sample and a sample to population attack [99].

We use the common threshold for the disclosure 
of clinical trial and other types of health data, 0.09 
[100–106], that is the threshold used by the European 
Medicines Agency for their Policy 0070 anonymization 
guidance [107], and for Health Canada’s Public Release of 
Clinical Information guidance [108]. This is equivalent to 
a minimal group size of 11 under a maximum risk sce-
nario [99].

Results
Model parameters
Hyperparameter training was conducted for a variety of 
aspects of model implementation. By selecting the values 
within a search range that minimized validation loss, an 
optimal model was selected. The complete set of optimal 
values for the hyperparameter can be found in the Addi-
tional file 1: Appendix 3: Optimal Model Parameters.

Generic utility assessments
The generic utility results are summarized in Table  4. 
They are reviewed in more detail below.

The sequence lengths in the synthetic datasets matched 
the real dataset quite closely (percent difference in mean 
sequence length 0.4%) as illustrated in Fig. 3. The distri-
bution of events observed across all synthetic patients 
matched the distribution of events in the real dataset 
quite closely (Hellinger distance 0.027) as illustrated in 
Fig. 4.

Comparing the distribution of event attributes, the 
synthetic data again matches the distributions seen in 
the real data closely as shown in the Hellinger distance 
histogram in Fig. 5 (mean Hellinger distance 0.0417). The 
differences in the real and synthetic transition matrices 
was smaller for first order Markov transition matrices (in 
Fig. 6) than for second order transition matrices, (mean 
Hellinger distance 0.0896 vs 0.2195) indicating that short 
term dependencies may be modelled better than long 
term dependencies. The multivariate Hellinger distance 
shows a distance of 0.352 between the real and synthetic 
datasets, indicating that the multivariate distributions are 
moderately similar. The random cohort utility assessment 
showed a mean Hellinger distance across 100 random 

cohorts of 0.3039 (standard deviation: 0.0674), and a 
mean normalized Euclidean distance of 0.0639 (standard 
deviation: 0.1145). This indicates that randomly gener-
ated sub cohorts in the real and synthetic datasets are 
quite similar. The multivariate Hellinger distance and 
the random cohort Hellinger results are also similar to 
each other demonstrating some consistency across utility 
evaluations.

Workload aware assessment
The workload aware assessment of utility was conducted 
on 75,660 real patient records and 75,660 synthetic 
records. Standardized mean differences (SMD) indi-
cated that no clinically important differences were noted 
with respect to demographics and the comorbidity score 
between the real and synthetic data (Table 5). For exam-
ple, between the real and synthetic data the mean age 
was 43.32 vs 44.79 (SMD 0.078), 51.0% males vs 52.5% 
(SMD 0.029), and Elixhauser comorbidity score of 0.96 
vs 1.05 (SMD 0.055). However, differences were noted 
that would be considered potentially clinically important 
for laboratory data with standardized mean differences 
between the real and synthetic data > 0.1, a threshold 
often recommended for declaring imbalance.

The cumulative follow-up time, post-receipt of the 
index opioid prescription and the outcomes of interest 
for the real and synthetic data are summarized in Table 6. 
Based on SMD cumulative follow-up time (mean of 
1474.48 vs 1077.88; SMD: 0.530) and mortality (3299 vs 

Table 4 Summary of the generic utility assessments results

Metric Result

Percent difference in sequence lengths 0.4%

Hellinger distance of event distribution 0.027

Hellinger distance of event attributes

 Mean (SD) 0.0417

 Median (IQR) 0.0303 (0.0333)

Hellinger distance of Markov Transition Matrices of Order 1:

 Mean (SD) 0.0896 (0.159)

 Median (IQR) 0.0209 (0.0303)

Hellinger distance of Markov Transition Matrices of Order 2:

 Mean (SD) 0.2195 (0.2724)

 Median (IQR) 0.0597 (0.4401)

Multivariate Hellinger distance 0.352

Utility of 100 random cohorts:

 Hellinger distance:

  Mean (SD) 0.3039 (0.0674)

  Median (IQR) 0.3128 (0.0358)

 Normalized Euclidean distance:

  Mean (SD) 0.0639 (0.1145)

  Median (IQR) 0.0146 (0.0596)
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Fig. 3 Sequence length comparison between the real and synthetic datasets. Overall, the synthetic data has a similar distribution of sequence 
lengths than in the real data (real mean & SD: 58.14, 68.57 vs synthetic mean & SD: 58.39, 75.16)

Fig. 4 Event distribution comparison between the real and synthetic datasets
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1440; SMD: 0.141) yielded a notable difference between 
the real and synthetic datasets.

After adjustment for age, sex, use of antidepressants, 
and laboratory data, the Cox proportional hazards 
were similar between the real and synthetic datasets. 
In the real data, oxycodone was associated with a 29% 
reduction in time to composite endpoint compared to 
morphine: adjusted HR (aHR) 0.71 95% CI 0.66–0.75). 

A similar reduction was observed in the synthetic data-
set with a 27% reduction in time to event: aHR 0.73 
95% CI 0.69–0.77 (Fig. 7 and Table 7). With respect to 
our secondary outcomes, similar trends were observed 
with small differences noted in time to event between 
the synthetic and real data with the exception of all-
cause mortality (Fig. 7). With respect to all-cause mor-
tality, although both the real and synthetic data would 

Fig. 5 Hellinger distance for each event attribute

Fig. 6 First order Markov transition matrices for the real and synthetic datasets and the absolute difference in transition matrices. Note that the 
heatmaps have different scales
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provide similar conclusions on the effect of oxycodone 
on mortality, the estimated effect was higher in the 
real data, with only a 38% confidence interval over-
lap (aHR 0.29 (95% CI 0.25, 0.33) vs aHR 0.35 (95% CI 
0.29, 0.41)).

The confidence intervals and point estimates in the 
adjusted Cox regression analysis are also similar and 
would lead researchers to reach the same conclusion 
for many applications whether they analyzed real or 
synthetic datasets. For the adjusted models the mean 
confidence interval overlap is 68%. This indicates that 
the conclusions drawn from the synthetic datasets 
comfortably overlap those drawn from the real data.

Privacy assessment results
The privacy assessment showed that the population to 
sample risk was 0.001476 and the sample to population 
risk was 0.001474. Given that both these risk values are 
substantially lower than the acceptable risk threshold of 
0.09, we can conclude that the attribution disclosure risks 
associated with this synthetic dataset is acceptably low.

Discussion and conclusions
Summary
This project has generated realistic synthetic data for 
complex longitudinal administrative health records. 
Modelling events over time using a form of conditional 
LSTM has allowed us to learn patterns in the data over 
time, as well as how these trends relate to fixed baseline 
characteristics. The masking implemented during model 
training has allowed us to work with sparse attribute data 
from a variety of sources in a single model. Overall, this 
method of generating synthetic longitudinal health data 
has performed quite well from a data utility perspective.

Generic univariate and multivariate utility metrics 
based on the Hellinger distance varied from a low of 0.01 
for event attributes, to 0.35 for the joint distributions. 
Random cohort generation also had a mean Hellinger 
distance of 0.3 between real and synthetic cohorts gener-
ated from longitudinal data.

Our model learns and recreates patterns in the hetero-
geneous attributes, accounting for the pattern of relevant 
attributes based on event type. The generated sequences 
have event lengths that are consistent with the real data 
(percent difference in mean sequence length 0.4%). 
Baseline characteristics were synthesized to be consist-
ent with the distributions in the real data (SMD 0.05 or 
lower) and to exert reasonable influence on the progres-
sion of events. There were differences in the univariate 
lab results between the real and synthetic datasets.

The multivariate Cox models incorporating the 
main variables of interest and confounders used to 
predict multiple outcomes were similar between real 

Table 5 Comparison of trial characteristics across the real and 
synthetic datasets

Real
n = 75,660

Synthetic
n = 75,660

SMD

Age 0.078

 Mean (SD) 43.32 (17.87) 44.79 (19.83)

 Median (IQR) 42.00 [27.00] 43.00 [30.00]

Sex n (%) 0.029

 Male 38,623 (51.0) 39,711 (52.5)

 Female 37,037 (49.0) 35,949 (47.5)

Elixhauser 0.055

 Mean (SD) 0.96 (1.58) 1.05 (1.63)

 Median (IQR) 0.00 [1.00] 0.00 [2.00]

ALT 0.099

 Mean (SD) 31.67 (63.90) 40.72 (111.92)

 Median (IQR) 24.00 [18.00] 26.00 [19.00]

eGFR 0.112

 Mean (SD) 85.82 (23.56) 83.11 (25.05)

 Median (IQR) 87.00 [41.00] 84.00 [38.00]

HCT 0.291

 Mean (SD) 0.42 (0.05) 0.41 (0.06)

 Median (IQR) 0.42 [0.05] 0.41 [0.06]

CACS-RIW 0.002

 Mean (SD) 0.05 (0.07) 0.05 (0.07)

 Median (IQR) 0.03 [0.03] 0.03 [0.03]

RIW 0.002

 Mean (SD) 1.40 (2.73) 1.40 (2.40)

 Median (IQR) 0.77 [0.82] 0.81 [0.84]

Opioid Utilization (%)

 Morphine 1758 (2.3) 2649 (3.5) 0.070

 Oxycodone 73,902 (97.7) 73,011 (96.5)

Antidepressant Use 28,224 (37.3) 29,651 (39.2) 0.039

Table 6 Outcomes of interest for both real and synthetic 
datasets

Real
N = 75,660

Synthetic
N = 75,660

SMD

Total follow-up time

 Mean (SD) 1474.48 (772.23) 1077.88 (722.44) 0.530

Mortality

 n (%) 3299 (4.4) 1440 (1.9) 0.141

Hospitalization

 n (%) 22,495 (29.7) 21,582 (28.5) 0.027

Emergency room visit

 n (%) 64,376 (85.1) 65,193 (86.2) 0.031

Composite endpoint

 n (%) 64,848 (85.7) 65,497 (86.6) 0.025

Diagnosis of pneumonia (ICD10: J189)

 n (%) 505 (2.2) 472 (2.2) 0.004
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and synthetic data, with confidence interval substan-
tial overlap on the effect of Oxycodone (mean CI over-
lap above 68%). Our work has shown the ability of 

synthetic data to reproduce results of traditional epi-
demiologic analyses reasonably well. Additionally, we 
have demonstrated in this study that the privacy risks 
associated with this synthetic dataset are acceptably 
low when considering population to sample attacks 
(estimated risk: 0.001476) and sample to population 
attacks (estimated risk: 0.001474).

Contributions of this work
The conditional LSTM generative model described in 
this paper has worked well with real-world complex lon-
gitudinal data that has received minimal curation. This 
method allows the synthesis of associated cross sec-
tional and longitudinal health data, where the measures 
included correspond to a variety of medical events (e.g., 

Fig. 7 Adjusted hazard ratios for outcomes of interest in the synthetic data compared to the real data

Table 7 Adjusted hazard ratios and confidence interval overlap 
for outcomes of interest in real and synthetic datasets

Outcome Real Data Synthetic Data CI-Overlap-
percent

Mortality 0.29 (0.25, 0.33) 0.35 (0.29, 0.41) 38%

Hospitalization 0.62 (0.57, 0.67) 0.64 (0.6, 0.68) 77%

Emergency room visit 0.76 (0.71, 0.81) 0.74 (0.71, 0.78) 76%

Composite endpoint 0.71 (0.66, 0.75) 0.73 (0.69, 0.77) 72%

Pneumonia 0.79 (0.5, 1.26) 0.7 (0.48, 1.03) 81%
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prescriptions, doctor visits, etc.) and data types (e.g., con-
tinuous, binary, categorical). The longitudinal data gener-
ated varies in the number of observations per individual, 
reflecting the structure of real electronic health data. The 
model selected is easy to train and automatically adapts 
as the number of events, event attributes, or complexity 
of attributes changes.

We have also assessed the utility of the generated syn-
thetic data using generic and workload aware assess-
ments that have shown the similarity of our generated 
data to the real data on most univariate measures and 
for multivariate models. The privacy assessment has 
shown that the risks from the synthetic data generated 
are below generally accepted risk thresholds.

Architecturally, the generative model has a number of 
features which make it suitable for this type of data:

• Combining a tabular generative model as an input to 
the longitudinal generative model.

• Using masking on the loss function to focus only on 
the relevant attributes at a particular point in time.

• Dynamically weighting the loss for event attributes 
and event labels.

• The multiple embedding layers allow the model to 
handle heterogeneous data types.

The above features enabled the model to learn the pat-
terns in the original dataset.

Limitations and future work
Our methods truncated the maximum sequence length 
at the 95th percentile. This means that data from indi-
viduals with the greatest number of interactions with 
the healthcare system are not modelled nor synthesized, 
and therefore our synthetic data may not be applicable to 
those interested in assessing the impacts of high health-
care utilization individuals.

This generative model was designed to learn and 
reproduce the relationships seen in the training data-
set without tuning or optimizing for a specific analy-
sis. Higher utility results may be achieved by tuning 
a synthesis model to a specific analysis, however that 
may come at the cost of the generalizability of the data 
generated.

The approach we used in this study to compare the 
confidence intervals between the real and synthetic 
datasets did not account for the additional variance 
introduced by synthesis. While combining rules simi-
lar to those used for multiple imputation can be used 
to account for the additional variance [109, 110], some 
authors have suggested that parameter estimates and 
confidence intervals computed from a single syn-
thetic dataset can still be valid [57]. Future work should 

examine the additional benefit of considering this multi-
ple imputation approach.

While there is a body of work on the synthesis of medi-
cal images and other data types [111], our focus in this 
paper was on structured longitudinal data. The synthesis 
of multi-modal data would be an important direction for 
future research.
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