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Abstract 

Background  A basket trial is a type of clinical trial in which eligibility is based on the presence of specific molecular 
characteristics across subpopulations with different cancer types. The existing basket designs with Bayesian hierarchi-
cal models often improve the efficiency of evaluating therapeutic effects; however, these models calibrate the type I 
error rate based on the results of simulation studies under various selected scenarios. The theoretical control of family-
wise error rate (FWER) is important for decision-making regarding drug approval.

Methods  In this study, we propose a new Bayesian two-stage design with one interim analysis for controlling FWER 
at the target level, along with the formulations of type I and II error rates. Since the difficulty lies in the complexity of 
the theoretical formulation of the type I error rate, we devised the simulation-based method to approximate the type 
I error rate.

Results  The proposed design enabled adjustment of the cutoff value to control the FWER at the target value in 
the final analysis. The simulation studies demonstrated that the proposed design can be used to control the well-
approximated FWER below the target value even in situations where the number of enrolled patients differed among 
subpopulations.

Conclusions  The accrual number of patients is sometimes unable to reach the pre-defined value; therefore, existing 
basket designs may not ensure defined operating characteristics before beginning the trial. The proposed design that 
enables adjustment of the cutoff value to control FWER at the target value based on the results in the final analysis 
would be a better alternative.
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Background
Recent developments in molecular biology and genom-
ics have enabled the classification of patients with com-
mon organ-specific cancers into several subpopulations 

depending on their molecular profiles derived using next-
generation genomic sequencing. Clinical development of 
molecular targeted therapies has recently become pivotal 
and has been accelerated by the emergence of master pro-
tocol trials that assess the combination of several molec-
ular markers and their targeted therapies by employing 
multiple sub-studies for single or multiple tumor types 
[1–3]. A basket trial is a type of clinical trial in which eli-
gibility is based on the presence of a specific molecular 
characteristic across subpopulations with different types 
of cancers. This feature assumes that a fairly accurate 
prediction can be made regarding the response of a sub-
population with molecular characteristics to a targeted 
treatment. Based on this hypothesis, traditional Bayesian 
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hierarchical models (BHMs) based on information bor-
rowing among subpopulations to improve the efficacy 
of therapeutic effect evaluation are used [4]. However, 
in some cases, the therapeutic effects among subpopula-
tions with common molecular characteristics are heter-
ogenous, indicating that exchangeability between these 
subpopulations cannot be assumed. Development of flex-
ible Bayesian methods that account for exchangeable and 
non-exchangeable subpopulations by extending the BHM 
or Bayesian model averaging has been garnering inter-
est in addressing the aforementioned issue [5–13]. How-
ever, the existing basket designs calibrate the type I and II 
error rates as well as the family-wise error rate (FWER) 
based on the results of simulation studies under several 
selected scenarios because of the methodological nature 
of Bayesian methods.

Explicit control of the FWER at the target value is also 
important in basket trials, particularly in registration tri-
als for drug approval [14–16]. In this study, we propose 
new formulations of subpopulation-specific type I and II 
error rates and FWER by extending the type I error rate 
in Bayesian sequential design for single-arm phase II tri-
als with binary outcomes proposed by Shi and Yin (2019) 
[17]. Based on these formulations, we developed a two-
stage Bayesian design with a binary endpoint controlling 
the FWER. In the first stage, we performed futility analy-
sis to exclude subpopulations without efficacy based on 
the Bayesian posterior probability. In the second stage, 
we determined whether targeted therapy was effective 
for each subpopulation. The proposed design enables 
adjustment of the cutoff value to control the FWER in the 
final analysis according to the number of accumulated 
patients. Using the proposed method, the exact type I 
and II error rates and FWER can be calculated; however, 
it involves time-consuming numerical experiments to 
determine the sample size. We, therefore, devise a time-
saving simulation-based method to approximate the type 

I error rate. Simulation studies were conducted under 
various scenarios and settings to evaluate the operating 
characteristics of the proposed method.

The proposed design is presented in the Methods sec-
tion. The operating characteristics of the proposed design 
are described in the Results sections. Finally, the utility of 
the proposed design is summarized in the Discussion and 
conclusion section.

Methods
This section is divided into four parts: the trial frame-
work, the estimation method for posterior probability, 
the definitions of type I/II error rates and FWER, and the 
numerical calculation method for type I/II error rates.

Trial framework
We propose a two-stage design using binary endpoints 
with J ( j = 1, · · · , J  ) subpopulations. The notation of 
the trial framework is presented in Table  1. For each 
subpopulation, the trial performs one interim analy-
sis for futility stopping when the number of patients 
included in that subpopulation reaches a pre-specified 
value. Consequently, J interim analyses were performed. 
Subpopulation j was excluded from the study when the 
futility stopping boundary was obtained. The final analy-
sis was performed when all remaining subpopulations 
achieved a pre-defined number of subjects. Suppos-
ing that {−j} refers to the index of the subpopulations 
excluding subpopulation j, {−j} can be calculated as 
{−j} (= {1, · · · , j − 1, j + 1, · · · , J }).

In the interim analysis for subpopulation j, we esti-
mated the posterior probability Pr(pj > p0 | n

∗, r∗) , 
where n∗ and r∗ represent the vectors of data with respect 
to the number of patients and responses in interim analy-
sis for subpopulation j, respectively. Subpopulation j was 
excluded from the study when the posterior probability 

Table 1  Notation of trial framework

n∗j  : Number of patients for subpopulation j during interim analysis

n∗{−j} : Number of patients for subpopulation {−j} during interim analysis for subpopulation j

r∗j  : Number of responses for subpopulation j during interim analysis

r∗{−j} : Number of responses for subpopulation {−j} during interim analysis for subpopulation j

nj : Number of patients for subpopulation j during final analysis

n{−j} : Number of patients for subpopulation {−j} during final analysis

rj : Number of responses for subpopulation j during final analysis

r{−j} : Number of responses for subpopulation {−j} during final analysis

pj : True response rate for subpopulation j

p{−j} : True response rate for subpopulation {−j}

p0 : Response rate to the standard treatment (i.e., null response rate), which was set as a constant among subpopulations

p1 : Alternative expected response rate which, was set as a constant among subpopulations
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of Pr(pj > p0 | n
∗, r∗) was less than the prespecified 

threshold of c1,j.

In final analysis after completing patient enrollment, 
we estimated Pr(pj > p0 | n, r) where n and r refer to the 
vectors of data with respect to the number of patients 
and responses in the final analysis, respectively. Nota-
bly, nj = n∗j  at the final analysis when the subpopulation 
j satisfied the futility criterion during the interim analy-
sis for subpopulation j. The investigational treatment was 
declared as effective in subpopulation j when the poste-
rior probability of Pr(pj > p0 | n, r) exceeded the pre-
specified threshold of c2,j.

The two thresholds, c1,j and c2,j , were determined for 
each subpopulation to maintain FWER at the target level 
using the method described in the Numerical calculation 
section.

Posterior probability estimation
We estimate the posterior probabilities of 
Pr(pj > p0 | n

∗, r∗) of Eq.  (1) and Pr(pj > p0 | n, r) of 
Eq.  (2) based on the BHM [18]. θj itself be a log-odds 
θj = logit(pj) ; the prior probability of θj sets the normal 
distribution with mean µ and variance τ−2 as follows:

The hyperprior parameter of µ is assumed to follow a 
normal distribution with a mean µ̃ and variance σ̃ 2,

The hyperprior parameter of τ is assumed to follow the 
gamma distribution with mean ν/ξ and variance ν/ξ2.

The posterior joint distribution for the parameters for 
subpopulation j in the final analysis (replace n with n∗

j  for 
interim analysis) is as follows:

(1)Pr(pj > p0 | n
∗, r∗) < c1,j .

(2)Pr(pj > p0 | n, r) > c2,j .

(3)θj | µ, τ ∼ Normal(µ, τ−2) .

(4)µ ∼ Normal(µ̃, σ̃ 2) .

(5)τ ∼ Gamma(ν, ξ) .

where L(θj | nj , rj) =

(

nj
rj

)

p
rj
j (1− pj)

nj−rj,and 

θ = (θ1, θ2, · · · , θJ ) is the vector of the log odds for the 
true response rate for subpopulation j, and f is the proba-
bility density function for each parameter.

In the proposed method, Pr(pj > p0 | n, r) of Eq.  (2) 
is calculated considering the prior distribution of p0 
based on Thall and Simon (1994) [18] as follows:

where p0 is assumed to follow the beta distribution 
with hyperparameters a0 and b0 . The values of a0 and b0 
are set as the mean of the beta distribution on p0 (i.e., 
p0 = a0/(a0 + b0) ) based on historical information. 
F(pj | n, r) are the cumulative distribution functions of 
pj calculated from the posterior samples of the posterior 
joint distribution of Eq.  (6) using the Hamilton Monte 
Carlo method.

Definitions
Subpopulation‑specific type I error rate and FWER
The type I error rate in the Bayesian sequential design 
with the binary endpoint proposed by Shi and Yin 
(2019) [17] was defined as the sum of the probabili-
ties for all possible cases in which the truly ineffective 
treatment was incorrectly declared as effective. As the 
response rates in the basket trials can be correlated 
among subpopulations, and the BHM borrows infor-
mation among subpopulations, formulating the defini-
tion of subpopulation-specific type I error rate should 
account for the observed response rates of the remain-
ing subpopulations. To this end, we first introduce the 
probability of declaring the therapeutic effect in the 
final analysis under a null response rate of p0 for the 
subpopulation j.

where I indicates the indicator function and Bin() is the 
probability density function of the binomial distribution. 
We extend α̃j(n∗, r∗,n, r) to the subpopulation-specific 
type I error rate for subpopulation j, which accounts 

(6)f (�,𝜇, 𝜏 ∣ n, r) =

{

J
∏

j=1

L(𝜃j ∣ nj , rj)f (𝜃j ∣ 𝜇, 𝜏)

}

f (𝜇 ∣ 𝜇̃, 𝜎̃2)f (𝜏 ∣ 𝜈, 𝜉) ,

(7)
Pr(pj > p0 ∣ n, r) = ∫

1

0

{

1 − F (p0 ∣ n, r)
}

Beta(p0;a0, b0)dp0 ,

(8)
α̃j(n

∗, r∗,n, r) =

n∗j

r∗j =0

nj−n∗j +r∗j

rj=r∗j

I Pr(pj > p0 | n
∗, r∗) ≥ c1,j Bin(r

∗
j ; n

∗
j , p0)

I Pr(pj > p0 | n, r) > c2,j Bin(rj − r∗j ; nj − n∗j , p0) ,
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for all possible combinations of n∗{−j},r
∗
{−j},n{−j} , r{−j} as 

follows:

w h e r e 
w =

∏

j′∈{−j} Bin(r
∗
j′ ; n

∗
j′ , pj′)Bin(rj′ − r∗j′ ; nj′ − n∗j′ , pj′) ; i.e., 

αj is the weighted average of α̃j(n∗, r∗,n, r) for all possible 
values with respect to n∗{−j},r

∗
{−j},n{−j} , and r{−j} for the 

subpopulations {−j} (=
{

1, · · · , j − 1, j + 1, · · · , J
}

) , 
which are weighted by the corresponding probability of 
w. As possible values, we also consider the values of pat-
tern with which the subpopulation j met the futility crite-
rion at the interim analysis for subpopulation j, and then 
we set nj = n∗j  with that pattern. The FWER is defined as 
αFWER = 1−

∏J
j=1

{

1− αj
}

 under the assumption that 
the true response rates in all subpopulations represent 
null response rates, pj = p0 ( j = 1, · · · , J).

Subpopulation‑specific type II error rate
To define the subpopulation-specific type II error rate 
for subpopulation j, we also introduced the probability of 
declaring the therapeutic effect during the final analysis 
with the alternative response rate of p1 for subpopulation 
j as follows:

to obtain the subpopulation-specific type II error rate for 
subpopulation j.

w h e r e 
v =

∏

j′∈{−j} Bin(r
∗
j′ ; n

∗
j′ , pj′)Bin(rj′ − r∗j′ ; nj′ − n∗j′ , pj′) . We 

define the subpopulation-specific power for the subpop-
ulation j as 1− βj.

Numerical calculation
Extensive calculations are required to determine the values 
of αj , βj , and αFWER , even when the number of subpopula-
tions is small. For example, when calculating αj with J = 4 , 
n∗j = 10 ( j = 1, · · · , J ) and nj = 20 ( j = 1, · · · , J ), the cal-
culations are repeated for 700 million combinations of the 

(9)𝛼j =

∑nj�

n∗
j�∈{−j}

=0

∑
n∗
j�

r∗
j�∈{−j}

=0

∑
nj� −n

∗

j�
+r∗

j�

rj�∈{−j}=r
∗

j�

�

w𝛼j(n
∗, r∗,n, r)

�

∑nj�

n∗
j�∈{−j}

=0

∑
n∗
j�

r∗
j�∈{−j}

=0

∑
nj� −n

∗

j�
+r∗

j�

rj�∈{−j}=r
∗

j�

w

,

(10)

β̃j(n
∗, r∗,n, r) =

n∗j
∑

r∗j =0

nj−n∗j +r∗j
∑

rj=r∗j

{

I
[

Pr(pj > p0 | n
∗, r∗) < c1,j

]

Bin(r∗j ; n
∗
j , p1)

+I
[

Pr(pj > p0 | n
∗, r∗) ≥ c1,j

]

Bin(r∗j ; n
∗
j , p1)

I
[

Pr(pj > p0 | n, r) ≤ c2,j
]

Bin(rj − r∗j ; nj − n∗j , p1)
}

,

(11)
𝛽j =

∑nj�

n∗
j�∈{−j}

=0

∑
n∗
j�

r∗
j�∈{−j}

=0

∑
nj� −n

∗

j�
+r∗

j�

rj�∈{−j}=r
∗

j�

�

v𝛽j(n
∗, r∗,n, r)

�

∑nj�

n∗
j�∈{−j}

=0

∑
n∗
j�

r∗
j�∈{−j}

=0

∑
nj� −n

∗

j�
+r∗

j�

rj�∈{−j}=r
∗

j�

v

,

values of r∗ and r ; therefore, the burdens and time required 
to perform calculations for obtaining the exact values of 
of αj , βj , and αFWER are enormous and unrealistic. Instead 
of the exact values of αj , βj , and αFWER , we propose to use 
values of αj , βj , and αFWER calculated using simulated data 
and call those the well-approximated αj , βj , and αFWER in 
this study. To this end, we devised a numerical approach 
for determining the thresholds that can approximately 
control the FWER at the target level. Specifically, given the 
values of n∗j  , nj , p0 , p1 , a0 , b0 , c1,j and c2,j ( j = 1, · · · , J ), we 
calculated the well-approximated values of αj and βj using 
simulated data in five steps as described in the following 
paragragh. Subsequently, well-approximated FWER was 
calculated from αFWER = 1−

∏J
j=1

{

1− αj
}

 using the 
well-approximated values of αj . 

Step 1	We set the parameters of n∗j  , nj , p0 , p1 , a0 , b0 
( j = 1, · · · , J  ), under which the arbitrary ranges of 
c1,j and c2,j were specified, and all combinations of 
these values were enumerated.

Step 2	We randomly selected subpopulation j from a 
multinomial distribution with equal success prob-
ability among subpopulations and generated a binary 
response data for a patient from the Bernoulli distri-
bution with the true response rate (i.e., p0 or p1 ) in 
the subpopulation j. This step was repeated until the 

number of patients in any subpopulation reached n∗j  
( j = 1, · · · , J).

Step 3	After reaching n∗j  patient enrollment in sub-
population j, futility evaluation based on Eq.  (1) is 
performed. If subpopulation j satisfied the futility 
criterion in the interim analysis, subpopulation j was 
excluded from the trial. Otherwise, patient enroll-
ment was continued for subpopulation j.

Step 4	After completing patient enrollment for all sub-
populations except for the excluded subpopulations 
in the previous step, the posterior probability for sub-
population j was evaluated based on Eq. (2).

Step 5	 Steps 2–4 were repeated up to 10,000 times, and 
the empirical values of αj (i.e., proportion of declara-
tion that the investigational treatment was effective 
under the assumption of p0 ) and βj (i.e., proportion of 
declaration that the investigational treatment was inef-
fective under the assumption of p1 ) were calculated.
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Throughout these steps, determination of the two thresh-
olds, c1,j and c2,j , was explored for each subpopulation 
to maintain a well-approximated FWER of αFWER at the 
target level. If two and more combinations of c1,j and c2,j 
were obtained to control the well-approximated FWER 
< 5% , then we selected the values of c1,j and c2,j with the 
lowest average of well-approximated values of βj among 
subpopulations with the true response rates in all sub-
populations are under p1 , i.e., pj = p1(j = 1, · · · , J ).

Results
We evaluated the operating characteristics through sim-
ulation studies. This section is divided into four parts: 
simulation settings, investigation of the accuracy of the 
numerical approach, simulation results under various 
scenarios, and operating characteristics with different 
sample sizes among subpopulations.

Simulation settings
We evaluated the operating characteristics of the pro-
posed method in a simulation study. The values of 
p0 and p1 were set to 0.05 and 0.25, respectively. The 
number of subpopulations J was set to four. The true 
response rates of each subpopulation assumed in each 
scenario with J = 4 are listed in Table 2. The maximum 
number of accrual patients in each subpopulation was 
20 (i.e., nj = 20 ). For each subpopulation, one interim 
analysis for futility was conducted when the number of 
accrued patients reached 10 (i.e., n∗j = 10 ). We assumed 
that p0 followed a beta distribution with parameters 
Beta(10,  190) and a mean of 0.05 based on the analysis 
reported by Hirakawa et al. (2018) [19].

In the proposed method, we used µ̃ = −1.734 (i.e., 
pj = (0.05+ 0.25)/2 = 0.15 ) and σ̃ 2 = 10 with a weak 
(or strong) degree of borrowing information, i.e., ( ν, ξ
)=(2, 20) (or (2, 2)). We estimated the posterior distribu-
tion using the rstan package in R software.

In simulation studies, we compared the proposed 
method with an independent method. For the inde-
pendent method, the posterior distributions of 

Pr(pj > p0 | n
∗, r∗) and Pr(pj > p0 | n, r) were calculated 

independently as follows:

where FBeta refered the distribution function of the beta 
distribution, and aind and bind were set to 0.6 and 1.4, 
respectively, based on the analysis reported by Hirakawa 
et al. (2018) [19].

We conducted 10,000 simulations for each scenario. 
We have presented well-approximated type I error rates, 
power (i.e., one minus type II error rate), and FWER here.

Accuracy of numerical approach for determining 
thresholds for declaration of the therapeutic effect
Before conducting the simulation studies, we examined 
the accuracy of the numerical values for c1 and c2 deter-
mined using the numerical approach described in the 
Numerical calculation section. We used common values 
for c1,j and c2,j between subpopulations (i.e., 
c1 = c1,1 = · · · = c1,J and c2 = c2,1 = · · · = c2,J ) because 
the true null and alternative response rates were the same 
among subpopulations. To reduce the computational 
burden of the calculations, we compared the exact FWER 
with a well-approximated value using the proposed 
numerical approach in the independent method. We set 
the ranges for c1 and c2 from 0.2 to 0.4 in increments of 
0.1 and from 0.95 to 0.99 in increments of 0.01. Other 
simulation settings were the same as those described in 
the Simulation settings section. The exact FWER was cal-
culated from 1−

∏J
j=1

{

1− α̃j(n
∗
j , r

∗
j , nj , rj)

}

 because the 
values of the proposed numerical method in the inde-
pendent method were not affected by the results of other 
subpopulations. Table  3 shows the exact and well-
approximated FWER under Scenario 1. We found that 
the observed differences between the exact and well-
approximated values of FWER were negligible.

Simulation results
For the hyperprior parameter of τ , which is assumed to 
be followed by the gamma distribution with mean ν/ξ 
and variance ν/ξ2 , (ν, ξ) = (2, 20) and (2, 2) were used in 
the proposed method with weak and strong information 
borrowing, respectively. In the following simulation stud-
ies, the values of c1 and c2 were selected to achieve a well-
approximated FWER of lower than and nearest to 5% 

(12)

Pr(pj > p0 ∣ n
∗
, r

∗) = ∫
1

0

{

1 − FBeta(p0 ∣ aind + r∗
j
, bind + n∗

j
− r∗

j
)

}

Beta(p0;a0, b0)dp0 ,

(13)

Pr(pj > p0 ∣ n, r) = ∫
1

0

{

1 − FBeta(p0 ∣ aind + rj , bind + nj − rj)
}

Beta(p0;a0, b0)dp0 ,

Table 2  True response rates for four subpopulations ( J = 4)

Scenario k Subpopulation j

1 2 3 4

1 0.05 0.05 0.05 0.05

2 0.05 0.05 0.05 0.25

3 0.05 0.05 0.25 0.25

4 0.05 0.25 0.25 0.25

5 0.25 0.25 0.25 0.25
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using the proposed numerical approach. The ranges for c1 
and c2 were 0.2–0.4 in increments of 0.1 and of 0.95–0.99 
in increments of 0.01. We used c1 = 0.2 and c2 = 0.98 
for the proposed method with weak information bor-
rowing, c1 = 0.2 and c2 = 0.95 for the proposed method 
with strong information borrowing, and c1 = 0.2 and 
c2 = 0.99 for the independent method. Using these val-
ues for c1 and c2 , the well-approximated FWER for inde-
pendent, BHM-weak, and BHM-strong methods were 
1%, 4%, and 4%, respectively. Note that the empirical 
FWER (i.e., proportion of declaration that investigational 
treatment was effective in at least one subpopulation 
among all subpopulations under the assumption that true 
response rates in all subpopulations are p0 (i.e., scenario 
1)) for independent, BHM-weak, and BHM-strong meth-
ods were 1%, 4%, and 4%, respectively . We found that the 
observed differences between the well-approximated and 
empirical values of FWER were negligible.

Table  4 shows the well-approximated type I error rates 
and power when using c1 and c2 which were selected to 
maintain a well-approximated FWER < 5% in 10,000 simu-
lations. In the four scenarios in which at least one subpopu-
lation had a true response rate of 0.05 (in scenarios 1, 2, 3, 
and 4), the average well-approximated type I error rates of 
independent, BHM-weak, and BHM-strong methods across 
the four subpopulations were 0%, 1%, and 3%, respectively.

Under the four scenarios in which at least one sub-
population had a true response rate of 0.25 (i.e., scenarios 
2, 3, 4, and 5), the average well-approximated power of 

independent, BHM-weak, and BHM-strong methods 
across subpopulations were 57%, 71%, and 85%, respec-
tively. The well-approximated power of the BHM-strong 
methods increased with the increase in the number of 
subpopulations, with a true response rate of 0.25. In the 
scenario with all subpopulations showing a true response 
rate of 0.25 (i.e., scenario 5), the averaged well-approxi-
mated power of independent, BHM-weak, and BHM-
strong methods across subpopulations were 57%, 71%, 
and 91%, respectively.

Operating characteristics with different samples sizes 
among subpopulations
We often encounter a situation in which the number 
of enrolled patients differs from that determined at the 
planning stage of the trials. In this section, the operat-
ing characteristics of the proposed method were cal-
culated using the sample sizes at the final analysis 
(n1, n2, n3, n4) = (20, 20, 20, 5), (20, 20, 20, 1), (20, 20, 20, 30), (5, 5,

5, 40), and (15, 10, 5, 1)  in scenario 1 with the values of 
c1 and c2 . These values were selected to achieve a well-
approximated FWER of lower than and closest to 5% 
with the sample size of (n1, n2, n3, n4) = (20, 20, 20, 20) at 
the planning stage of the trials. Other simulation settings 
were the same as those used in the previous section.

Table 3  Exact and well-approximated values of family-wise error 
rate (FWER)

c1 c2 Exact value Well-
approximated 
value

0.2 0.95 26.9% 26.2%

0.96 6.2% 6.7%

0.97 6.2% 6.7%

0.98 6.2% 6.7%

0.99 1.0% 0.6%

0.3 0.95 26.9% 26.2%

0.96 6.2% 6.7%

0.97 6.2% 6.7%

0.98 6.2% 6.7%

0.99 1.0% 0.6%

0.4 0.95 24.7% 24.5%

0.96 6.0% 5.9%

0.97 6.0% 5.9%

0.98 6.0% 5.9%

0.99 1.0% 0.9%

Table 4  Well-approximated type I error rates and power 
observed when controlling the well-approximated FWER below 
5%

BHM Bayesian hierarchical models

 Type I error rates are shown in boldface; values not presented in bold indicate 
power

Subpopulation j

Scenario Method 1 2 3 4

1 Independent 0% 0% 0% 0%
BHM-weak 1% 1% 1% 1%
BHM-strong 1% 1% 1% 1%

2 Independent 0% 0% 0% 54%

BHM-weak 1% 1% 2% 67%

BHM-strong 2% 3% 4% 65%

3 Independent 0% 0% 61% 53%

BHM-weak 1% 1% 73% 67%

BHM-strong 5% 7% 83% 76%

4 Independent 0% 57% 61% 53%

BHM-weak 1% 71% 74% 68%

BHM-strong 10% 85% 91% 85%

5 Independent 57% 57% 61% 53%

BHM-weak 72% 71% 75% 68%

BHM-strong 91% 90% 95% 90%
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Table  5 shows well-approximated FWER under the 
scenario 1 using different sample sizes among subpopu-
lations. According to Table  5, the BHM-strong method 
controlled the well-approximated FWER to below 5%. 
The well-approximated FWER exceeded the target level 
5% when using (n1, n2, n3, n4) = (5, 5, 5, 40) for the inde-
pendent method and (n1, n2, n3, n4) = (20, 20, 20, 1) 
and (15,  10,  5,  1) for the BHM-weak method. To sup-
press this inflation of FWER, the value of c2 was 

re-determined using the actual sample size at final 
analysis. For the independent method, c2 was re-
determined as 0.995, and the well-approximated 
FWER was 0.4% under (n1, n2, n3, n4) = (5, 5, 5, 40) . 
For the BHM-weak method, c2 was re-determined as 
0.99, and the well-approximated FWER were 4.3% 
and 4.8% with (n1, n2, n3, n4) = (20, 20, 20, 1) and 
(n1, n2, n3, n4) = (15, 10, 5, 1) , respectively.

Operating characteristics with weak informative prior 
for the variance σ̃ 2 of BHM
We investigated the operating characteristics of the pro-
posed method with BHM under the assumption of weak 
informative prior for the variance σ̃ 2 of the hyperprior 
parameter of µ (Table  6). We set σ̃ 2 to 25 or 50; other 
simulation settings were the same as those described in 
the Simulation settings section. In the following simu-
lation studies, the values of c1 and c2 were selected to 
achieve a well-approximated FWER of lower than and 
nearest to 5% using the proposed numerical approach.

Table  6 shows the well-approximated type I error 
rates and power in scenarios 1-5. The values of 

Table 5  Well-approximated FWER under scenario 1 using 
different sample sizes among subpopulations

BHM Bayesian hierarchical models

FWER

Sample size of 
( n1 , n2 , n3 , n4)

Independent BHM-weak BHM-strong

(20, 20, 20, 5) 3.1% 3.8% 3.1%

(20, 20, 20, 1) 0.4% 7.1% 3.4%

(20, 20, 20, 30) 0.7% 3.2% 3.4%

(5, 5, 5, 40) 6.1% 4.6% 3.4%

(15, 10, 5, 1) 3.3% 7.9% 3.4%

Table 6  Well-approximated type I error rates and power with weak informative prior for variance of BHM

BHM Bayesian hierarchical models

 Type I error rates are shown in boldface; values not presented in bold indicate power

Subpopulation j

Scenario Method σ̃ 2 1 2 3 4

1 BHM-weak σ̃ 2 = 25 1% 1% 1% 1%

σ̃ 2 = 50 1% 1% 1% 1%

BHM-strong σ̃ 2 = 25 1% 1% 2% 1%

σ̃ 2 = 50 1% 1% 2% 1%

2 BHM-weak σ̃ 2 = 25 1% 1% 1% 66%

σ̃ 2 = 50 0% 1% 1% 66%

BHM-strong σ̃ 2 = 25 2% 4% 5% 70%

σ̃ 2 = 50 2% 3% 4% 71%

3 BHM-weak σ̃ 2 = 25 1% 1% 73% 67%

σ̃ 2 = 50 1% 1% 72% 67%

BHM-strong σ̃ 2 = 25 6% 8% 85% 78%

σ̃ 2 = 50 6% 8% 85% 78%

4 BHM-weak σ̃ 2 = 25 1% 71% 74% 68%

σ̃ 2 = 50 1% 71% 74% 67%

BHM-strong σ̃ 2 = 25 15% 87% 93% 87%

σ̃ 2 = 50 15% 87% 92% 87%

5 BHM-weak σ̃ 2 = 25 72% 71% 75% 69%

σ̃ 2 = 50 72% 71% 74% 68%

BHM-strong σ̃ 2 = 25 93% 93% 96% 92%

σ̃ 2 = 50 93% 92% 96% 92%
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well-approximated type I error rates and power were very 
similar with assumptions of not only σ̃ 2 = 25 and 50, 
but also σ̃ 2 = 10 in Table 4. Therefore, we found that the 
value of the variance σ̃ 2 of the hyperprior parameter of 
µ did not affect the operating characteristics of the pro-
posed method.

Operating characteristics with weak informative prior 
distribution for p0
We investigated the operating characteristics of the pro-
posed method under the assumption that the prior distri-
bution of p0 was weak informative (Table 7). We assumed 
that p0 followed a beta distribution with parameters 
Beta(0.05,  0.95) (i.e., the effective sample size (ESS) is 
one) and a mean of 0.05. Other simulation settings were 
the same as those described in the Simulation settings 
section. In the following simulation studies, the values 
of c1 and c2 were selected to achieve a well-approximated 
FWER of lower than and nearest to 5% using the pro-
posed numerical approach.

Table 7 shows the well-approximated type I error rates 
and power in scenarios 1-5. We found that the power 
observed with weak informative prior distribution for 
p0 was lower than that observed with strong informative 
prior distribution for p0 in Table 4; however, the power 

observed with weak informative prior distribution for p0 
was still enough when using the BHM-strong method.

Operating characteristics with miss‑specification of prior 
distribution for p0
We investigated the operating characteristics of the 
proposed method under the assumption that the prior 
distribution for p0 was miss-specified (Table  8). We set 
p0 to fit a beta distribution pattern with the following 
parameters: (i) Beta(0.1,  0.9) with a mean of 0.1, or (ii) 
Beta(0.2, 0.8) with a mean of 0.2; however, the true value 
of p0 is 0.05. Other simulation settings were the same as 
those described in the Simulation settings section. In the 
following simulation studies, the values of c1 and c2 were 
selected to achieve a well-approximated FWER of lower 
than and nearest to 5% using the proposed numerical 
approach.

Table 8 shows the well-approximated type I error rates 
and power in scenarios 1-5. The values of well-approxi-
mated type I error rates and power were very similar with 
assumptions of Beta(0.1, 0.9) and Beta(0.2, 0.8). The well-
approximated type I error rates and power for the BHM-
weak and the independent methods were similar to those 
under the prior distribution for p0 are correctly speci-
fied in Table 4. Otherwise, the well-approximated type I 
error rates and power for the BHM-strong method were 
slightly higher than those observed when correctly speci-
fying the prior distribution for p0 in Table  4. However, 
since the well-approximated FWER of the BHM-strong 
method was controlled to a value lower than 5%, the pro-
posed method can be used even if the prior distribution 
for p0 is miss-specified.

Discussion and conclusion
Explicit control of FWER provides more reliable evi-
dence of efficacy in the final analysis, even in basket tri-
als, and improves decision-making for regulatory drug 
approvals. Existing Bayesian methods often control the 
empirical FWER using simulation-based procedures, but 
the FWER is not controlled when some assumptions are 
violated. In this study, we provided closed-form equa-
tions for the type I and II error rates and FWER in the 
context of the proposed Bayesian two-stage design and 
developed a numerical approach for determining the 
thresholds for controlling the well-approximated FWER 
to the exact value. To achieve more accurate control of 
the well-approximated FWER, the proposed method can 
also be used to adjust the threshold of c2 based on the 
actual sample size during the final analysis. The simula-
tion studies demonstrated that the proposed design can 
be used to control the well-approximated FWER below 
the target value even in situations where the number of 
enrolled patients differs among subpopulations.

Table 7  Well-approximated type I error rates and power 
observed with weak informative prior distribution for p0

BHM Bayesian hierarchical models

 Type I error rates are shown in boldface; values not presented in bold indicate 
power

Subpopulation j

Scenario Method 1 2 3 4

1 Independent 0% 0% 0% 0%
BHM-weak 0% 0% 0% 0%
BHM-strong 0% 0% 0% 0%

2 Independent 0% 0% 0% 54%

BHM-weak 0% 0% 0% 54%

BHM-strong 0% 1% 1% 54%

3 Independent 0% 0% 61% 54%

BHM-weak 0% 0% 61% 54%

BHM-strong 1% 2% 68% 62%

4 Independent 0% 57% 61% 53%

BHM-weak 0% 57% 61% 53%

BHM-strong 4% 73% 78% 71%

5 Independent 57% 57% 61% 53%

BHM-weak 57% 57% 61% 53%

BHM-strong 83% 82% 87% 81%
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This study showed that the proposed method could 
weakly control the FWER. However, from a regulatory 
perspective, strong control of the FWER is necessary, 
especially in confirmatory basket trials. Therefore, meth-
odological studies of theoretical control of FWER at a 
target level are required.

In the Bayesian context, controlling the exact FWER 
is less fundamental when evaluating the therapeutic 
effect but should be well-calibrated at the planning stage 
of trials [7–13]. Before beginning the trials, intensive 
simulation studies are often required to investigate the 
empirical FWER under various scenarios with respect to 
the prior distribution, assumed therapeutic effect, sample 
size, and other factors affecting the therapeutic effect. In 

contrast to such methods, the proposed method can eas-
ily obtain a well-approximated FWER using the proposed 
numerical approach. Particularly, it is typically necessary 
to repeatedly calibrate the design parameters in simula-
tion studies to determine the thresholds in most existing 
basket designs, whereas this is not the case in the pro-
posed method. Although the proposed method focused 
on controlling the well-approximated FWER, the sub-
population-specific type I error rates and power cannot 
be controlled at the desired level under a limited sample 
size. To overcome this issue, it may be better to control 
the false discovery rate. The extension of the proposed 
method for controlling the false discovery rate should be 
further evaluated.

Table 8  Well-approximated type I error rates and power with miss-specification of the prior distribution for p0

BHM Bayesian hierarchical models

 Type I error rates are shown in boldface; values not presented in bold indicate power

Subpopulation j

Scenario Method p0 1 2 3 4

1 Independent Beta(0.1,0.9) 0% 0% 0% 0%
Beta(0.2,0.8) 0% 0% 0% 0%

BHM-weak Beta(0.1,0.9) 0% 1% 1% 1%
Beta(0.2,0.8) 0% 1% 1% 1%

BHM-strong Beta(0.1,0.9) 1% 1% 1% 1%
Beta(0.2,0.8) 1% 1% 1% 1%

2 Independent Beta(0.1,0.9) 0% 0% 0% 54%

Beta(0.2,0.8) 0% 0% 0% 54%

BHM-weak Beta(0.1,0.9) 1% 1% 1% 61%

Beta(0.2,0.8) 1% 1% 1% 62%

BHM-strong Beta(0.1,0.9) 2% 3% 3% 65%

Beta(0.2,0.8) 2% 2% 3% 65%

3 Independent Beta(0.1,0.9) 0% 0% 61% 54%

Beta(0.2,0.8) 0% 0% 61% 54%

BHM-weak Beta(0.1,0.9) 1% 1% 72% 65%

Beta(0.2,0.8) 1% 1% 72% 65%

BHM-strong Beta(0.1,0.9) 5% 7% 83% 76%

Beta(0.2,0.8) 5% 7% 83% 76%

4 Independent Beta(0.1,0.9) 0% 57% 61% 53%

Beta(0.2,0.8) 0% 57% 61% 53%

BHM-weak Beta(0.1,0.9) 1% 70% 76% 68%

Beta(0.2,0.8) 1% 70% 75% 68%

BHM-strong Beta(0.1,0.9) 10% 85% 91% 84%

Beta(0.2,0.8) 10% 85% 91% 84%

5 Independent Beta(0.1,0.9) 57% 57% 61% 53%

Beta(0.2,0.8) 57% 57% 61% 53%

BHM-weak Beta(0.1,0.9) 75% 73% 78% 71%

Beta(0.2,0.8) 74% 73% 78% 71%

BHM-strong Beta(0.1,0.9) 91% 90% 95% 90%

Beta(0.2,0.9) 91% 90% 95% 90%
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We estimated the posterior probability using the inde-
pendent and BHM methods in this study; however, other 
Bayesian dynamic borrowing information models for 
estimating the posterior probability, such as the extended 
BHM, the exchangeability-non exchangeability (EXNEX) 
approach, or Bayesian model averaging can also be used 
[5–13]. The calculation time of 10,000 simulations for 
BHM was approximately 24 h with a standard computer 
(e.g., Intel Core i7 1.1 GHz 1.61 GHz, 16 GB RAM). 
Therefore, it may take days to finish the calculations for 
basket trials with a larger number of subpopulations (e.g., 
≥ 10 subpopulations) or when using other more com-
putationally complicated Bayesian dynamic borrowing 
information models. In practice, the accrual number of 
patients is sometimes unable to reach the pre-defined 
value; therefore, existing basket designs sometimes can-
not ensure the operating characteristics defined before 
beginning the trial. However, the proposed design ena-
bled adjustment of the cutoff value to control the FWER 
at the target value based on the results in the final analy-
sis. Additionally, the formulation concept for the type I 
error rates and the numerical calculation method for con-
trolling the FWER are generalizable. Although the single-
arm basket design was the proposed design in this study, 
we can extend the proposed design to the other types of 
basket designs such as randomized basket designs.
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