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Abstract 

Background Failure to appropriately account for unmeasured confounding may lead to erroneous conclusions. 
Quantitative bias analysis (QBA) can be used to quantify the potential impact of unmeasured confounding or how 
much unmeasured confounding would be needed to change a study’s conclusions. Currently, QBA methods are not 
routinely implemented, partly due to a lack of knowledge about accessible software. Also, comparisons of QBA meth-
ods have focused on analyses with a binary outcome.

Methods We conducted a systematic review of the latest developments in QBA software published between 2011 
and 2021. Our inclusion criteria were software that did not require adaption (i.e., code changes) before application, 
was still available in 2022, and accompanied by documentation. Key properties of each software tool were identified. 
We provide a detailed description of programs applicable for a linear regression analysis, illustrate their application 
using two data examples and provide code to assist researchers in future use of these programs.

Results Our review identified 21 programs with 62% created post 2016. All are implementations of a deterministic 
QBA with 81% available in the free software R. There are programs applicable when the analysis of interest is a regres-
sion of binary, continuous or survival outcomes, and for matched and mediation analyses. We identified five programs 
implementing differing QBAs for a continuous outcome: treatSens, causalsens, sensemakr, EValue, and konfound. 
When applied to one of our illustrative examples, causalsens incorrectly indicated sensitivity to unmeasured con-
founding whereas the other four programs indicated robustness. sensemakr performs the most detailed QBA and 
includes a benchmarking feature for multiple unmeasured confounders.

Conclusions Software is now available to implement a QBA for a range of different analyses. However, the diver-
sity of methods, even for the same analysis of interest, presents challenges to their widespread uptake. Provision of 
detailed QBA guidelines would be highly beneficial.
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confounding
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Background
The main aim of many epidemiology studies is to esti-
mate the causal effect of an exposure on an outcome 
(here onward, shortened to exposure effect). In obser-
vational studies participants are not randomised to 
exposure (or treatment) groups. Consequently, factors 
that affect the outcome are typically unevenly distrib-
uted among the exposure groups, and a direct compari-
son between the exposure groups will likely be biased 
due to confounding. Standard adjustment methods 
(such as standardization, inverse probability weight-
ing, regression adjustment, g-estimation, stratification 
and matching) assume the adjustment model is correct 
and a sufficient set of confounders has been measured 
without error [1]. Failure to appropriately account for 
unmeasured or poorly measured confounders in analy-
ses may lead to invalid inference [2–4].

There are several approaches to assess causality which 
depend on assumptions other than “no unmeasured 
confounding” (e.g., self-controlled study designs, prior 
event rate ratio, instrumental variable analysis, negative 
controls, perturbation variable analysis, and methods 
that use confounder data collected on a study sub-sam-
ple [5]). When none of these approaches are applicable 
(e.g., study lacks an appropriate instrument or sub-
sample data on the unmeasured confounders) then the 
analyst must assess the sensitivity of the study’s conclu-
sions to the assumption of no unmeasured confounding 
using a quantitative bias analysis (QBA; also known as 
a sensitivity analysis). A QBA can be used to quantify 
the potential impact of unmeasured confounding on 
an exposure effect estimate or to quantify how much 
unmeasured confounding would be needed to change a 
study’s conclusions.

Currently, QBA methods are not routinely imple-
mented. A recent study published in 2016 found that 
the use of QBA for unmeasured confounding had not 
increased in the years 2010− 2012 compared to the 
2004 − 2007 period [6]. Lack of knowledge about QBA, 
and of analyst-friendly methods and software have been 
identified as barriers to the widespread implemen-
tation of a QBA [7–9]. In the past decade, there have 
been several reviews of QBA methods [2, 5, 9–18]. Of 
these, three papers reviewed software implementa-
tions of QBA methods: [18] gave an overview of QBA 
to unmeasured confounding and a tutorial on the newly 
released R package tipr [19], the supplementary of [13] 
provided a brief summary of software implementing 
Rosenbaum-style QBA methods [20], and [11] reviewed 
software implementations before its publication in July 
2014. Also, comparisons of QBA methods have primar-
ily been limited to analyses with a binary outcome [10, 
21–28].

The aim of our software review was to identify the lat-
est available software to conduct a QBA to unmeasured 
confounding and to describe the key properties of each 
software program. Note that, we focused on QBA to 
unmeasured confounding caused by a study not collect-
ing data on these confounders as opposed to mismeas-
urement of measured confounders. We then describe, 
illustrate and compare QBA software applicable when 
the analysis of interest is a linear regression. We illus-
trate how to apply these methods using a real-data exam-
ple from the Barry Caerphilly Growth (BCG) study [29, 
30], and we also illustrate and provide R and Stata code 
implementing these methods when applied to publicly-
accessible data from the 2015− 2016 National Health 
and Nutrition Examination Survey (NHANES) study [31] 
(see Additional files 1, 2 and 3).

Quantitative bias analysis for unmeasured confounding
We want to estimate the effect of an exposure (or treat-
ment) X on an outcome Y. The Y − X association is 
confounded by measured covariates C and unmeasured 
confounders U. The naive estimate of the exposure effect, 
β̂X |C , assumes no unmeasured confounding and is esti-
mated by controlling for C only.

We can use a QBA to quantify the likely magnitude and 
direction of the bias, due to unmeasured confounding, 
under different plausible assumptions about U (assum-
ing no other sources of bias). Generally, a QBA requires 
a model (known as a bias model) for the observed data, 
Y, X and C, and unmeasured data, U. The bias model will 
include one or more parameters (known as bias or sen-
sitivity parameters) which cannot be estimated from the 
observed data. Therefore, values for these bias param-
eters must be prespecified before conducting the QBA. 
Typically, the bias parameters specify the strength of the 
association between U and X given C, and between U and 
Y given X and C [23]. Information about the likely values 
of these bias parameters may be obtained from external 
sources (such as external validation studies, published lit-
erature, or expert opinion) [8], and from benchmarking 
(also known as calibration) where strengths of associa-
tions of measured covariates C with X and Y are used as 
benchmarks [32] for the bias parameters. We shall denote 
the bias parameters by φ and the bias-adjusted estimate 
of the exposure effect assuming φ by β̂X |C ,U(φ).

There are two broad classes of QBA methods: deter-
ministic and probabilistic [7]. A deterministic QBA spec-
ifies a range of values for each bias parameter of φ and 
then calculates β̂X |C ,U(φ) for all combinations of the pre-
specified values of φ . Typically, the results are displayed 
as a plot or table of β̂X |C ,U(φ) against different values of 
φ . In contrast, a probabilistic QBA specifies a prior prob-
ability distribution for φ to explicitly model the analyst’s 
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assumptions about which combinations of φ are most 
likely to occur and to incorporate their uncertainty about 
φ [7, 24]. Averaging over this probability distribution gen-
erates a distribution of estimates of β̂X |C ,U(φ) which is 
summarised to give a point estimate (i.e., the most likely 
β̂X |C ,U(φ) under the QBA’s assumptions) and an inter-
val estimate (i.e., defined to contain the true exposure 
effect with a prespecified probability) which accounts 
for uncertainty due to the unmeasured confounding and 
sampling variability [7].

A QBA is often conducted as a tipping point analy-
sis, where the analyst identifies the values of φ that cor-
respond to a change in the study conclusions (known 
as the “tipping point”). A tipping point analysis may be 
applied to the point estimate or confidence interval (CI) 
of the exposure effect; for example, to identify the val-
ues of φ corresponding to a null effect, or the values of 
φ corresponding to a statistically insignificant effect of a 
non-null point estimate. If the values of φ at the tipping 
point(s) are considered unlikely then the study conclu-
sions are said to be robust to unmeasured confounding.

Methods
Software review
We conducted a systematic review of publicly available 
software implementations of QBA described in articles 
published between 1st January 2011 and 31st Decem-
ber 2021 (inclusive), and listed their key properties. We 
defined “software” to be either a web tool with a user-
interface or software code that (i) was not specific to a 
particular data example (i.e., we excluded examples of 
code from empirical analyses that required code adap-
tation before application to another example), (ii) was 
freely available to download in January 2022, and (iii) was 
accompanied by documentation detailing the software’s 
features.

Our literature search was conducted in three stages. In 
stage 1, we used Web of Science to identify papers that 
mentioned “quantitative bias analysis” and “unmeasured 
confounding” (or their synonyms) in either the title, 
abstract or as keywords (see Supplementary Box  1 in 
Additional file 1). In stage 2, the abstracts were reviewed 
by two independent reviewers to determine if they were 
eligible for data extraction with any disagreements 
resolved by consensus. Eligible abstracts were published 
articles that either introduced a new QBA method or 
software implementation, compared or reviewed existing 
QBA methodology, or gave a tutorial on QBA. Examples 
of ineligible abstracts were meeting abstracts, commen-
taries, articles where a QBA was not conducted but men-
tioned as further work, and articles solely focused on 
answering applied questions (and so included limited 
information on the statistical methodology used). In 

stage 3, we extracted from the full text information about 
the analysis of interest, the QBA method, and the soft-
ware used to implement the QBA.

Illustration of QBA software applicable for a linear 
regression analysis
From our software review, we identified those programs 
applicable when the analysis of interest is a linear regres-
sion of an unmatched study. For each program, we pro-
vide descriptions of the software and implemented QBA 
method.

We applied these QBA programs to data from the BCG 
and NHANES studies. For both examples, the naive anal-
ysis was the linear regression Y|X,  C with binary expo-
sure X. We used measured variables to represent the 
unmeasured confounders U. So, in effect our analyses 
examined the effect of not including certain confounders 
and we assumed that after adjustment for U and C there 
was no unmeasured confounding. In the BCG example, 
U represents a single unmeasured confounder, statisti-
cal significance was defined at the 5% level and adjust-
ment for U did not change the study conclusions. See 
Additional file 1 for the NHANES example where U rep-
resents multiple unmeasured confounders, statistical sig-
nificance was defined at the 1% level and adjustment for 
U did change the study conclusions.

When supported by the program, we calculated bench-
mark values for φ based on C and the bias-adjusted 
results when φ was set to (multiples of ) the benchmark 
values corresponding to the “strongest measured covari-
ate” (i.e., the covariate that had the strongest associations 
with X and Y).

As this is an illustrative example of applying a QBA 
to unmeasured confounding, we have ignored other 
potential sources of bias (such as missing data) and only 
considered a small number of measured covariates. We 
restricted our analyses to participants with complete data 
on Y, X, C and U.

Description of the BCG study
The BCG study is a follow-up of a dietary intervention 
randomised controlled trial of pregnant women and their 
offspring [29, 30]. Data were collected on the offspring 
(gestational age, sex, and 14 weight and height measures 
at birth, 6 weeks, 3, 6, 9 and 12 months, and thereafter at 
6-monthly intervals until aged 5 years) and their parents 
(anthropometric measures, health behaviours and socio-
economic characteristics). When aged 25, these offspring 
were invited to participate in a follow-up study in which 
standard anthropometric measures were recorded. We 
refer to the offspring, later young adults in the follow-up 
study, as the study participants.
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Our analysis was a linear regression of adult body mass 
index (BMI) at age 25 on being overweight at age 5 years 
(BMI ≥ 17.44 kg/m2 [33]). Measured covariates C were 
participant’s gestational age, sex, birth weight, and par-
ents’ height and weight measurements. The strongest 
measured covariate was maternal weight. The unmeas-
ured confounder U was a measure of childhood socioec-
onomic position (SEP) (paternal occupational social class 
based on the UK registrar general classification [34]) with 
U = 1 for professional or managerial occupations, and 
U = 0 otherwise.

Results
Software review
After excluding duplicates, our Web of Science search 
identified 780 papers (flowchart of the review shown in 
Supplementary Fig. 1 in Additional file 1). We excluded 
24 meeting abstracts and editorials, 379 articles that did 
not conduct a QBA to unmeasured confounding, and 
239 articles on applied analyses. Of the remaining 138, 29 
articles referred to 21 publicly available software imple-
mentations of a QBA.

Table 1 summarises the key features of the 21 software 
programs in ascending date-order of creation. All 21 pro-
grams implement a deterministic QBA, with only eight 
programs publicly available before 2017, and 17 imple-
mented in the free software environment R [35]. Seven 
programs implement a QBA applicable for a matched 
observational study, five for a mediation analysis, and 
nine for a standard regression analysis. Five of the seven 
programs for a matched analysis (sensitivityCaseControl, 
sensitivitymw, sensitivitymv, sensitivityfull and submax) 
implement related QBA methods [20, 36] but for differ-
ent types of matched observational studies. For exam-
ple, sensitivitymw is applicable to matched sets with one 
exposed subject and a fixed number of unexposed sub-
jects, and sensitivitymv to matched sets with one exposed 
subject and a variable number of unexposed subjects. 
Also, submax and sensitivityCaseControl exploit effect 
modification and different definitions of a case of disease, 
respectively, to further evaluate sensitivity to unmeas-
ured confounding. Among the programs for mediation 
analysis, MediationSensitivityAnalysis evaluates sensitiv-
ity to unmeasured confounding of the mediator-outcome 
relationship only, while the remaining programs can also 
evaluate sensitivity to unmeasured confounding of the 
exposure-mediator and exposure-outcome relationships.

Most programs require the outcome (of the analysis of 
interest) to be either binary or continuous. However, pro-
gram survsens implements a QBA specifically for a Cox 
proportional hazards regression analysis and is applicable 
for survival outcomes with or without competing risks. 
All programs can be applied to a binary exposure and 

seven programs are also applicable to a continuous or 
categorical exposure. Also, all programs allow the analy-
sis of interest to adjust for measured covariates C of any 
variable type and generally assume that U represents the 
part of the unmeasured confounder(s) that is independ-
ent of C. Nine programs use the measured covariates to 
calculate benchmark values for the bias parameters. The 
bias parameters represent the strength of the relation-
ships between U and the exposure, outcome, or mediator. 
Programs treatSens, Umediation, mediationsens, and sur-
vsens also allow the analyst to vary the parameters of the 
marginal distribution of U (e.g., for binary U the prob-
ability Pr(U = 1) ). Otherwise, these marginal parameters 
are set to a default value (e.g., Pr(U = 1) = 0.5).

Almost all programs report the values of the bias 
parameters at prespecified tipping points. Also, most 
programs output the bias-adjusted results (e.g., point 
estimate, CI or P-value for the exposure effect) at pre-
specified values of the bias parameter(s) (exceptions 
include isa, gsa, konfound, and R and Stata implementa-
tions of EValue). Note that, programs uMediation and 
ui summarise the bias-adjusted results using uncertainty 
intervals, which incorporates uncertainty about the val-
ues of the bias parameters and sampling variability. Fif-
teen programs generate a graphical plot of their QBA 
results.

Two programs also implement a QBA to other sources 
of bias: MediationSensitivtyAnalysis can assess sensitiv-
ity to measurement error of the mediatior, outcome and 
measured covariates, and EValue can assess sensitivity to 
differential misclassification of an outcome or exposure 
and to sample selection bias. Furthermore, both pro-
grams can simultaneously assess sensitivity to multiple 
sources of bias.

Illustration of QBA software applicable for a linear 
regression analysis
We describe and illustrate the following programs from 
Table 1 applicable for an unmatched analysis, where the 
exposure is binary and the exposure effect is estimated by 
a linear regression model: treatSens [48, 49], causalsens 
[42], sensemakr [76], EValue [52], and konfound [63]. For 
reasons of brevity, we excluded programs isa and gsa as 
they are similar to the more recently published treatSens.

Note that all five programs can be applied when β̂X |C is 
not null, irrespective of whether β̂X |C is statistically sig-
nificant or not, and when β̂X |C is null. However, for treat-
Sens the tipping point for the point estimate is fixed at 
the null, and so this feature can only be used when β̂X |C 
is not null.

Table  2 contains a summary of the five programs and 
immediately below we present the results from apply-
ing these programs to the BCG study. See Additional 
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Table 1 Software programs implementing a quantitative bias analysis to unmeasured confounding published 2011 to 2021

a  estimation of total effect of exposure in a sample of unmatched, independent observations from a single study; bcontinuous variable; c binary variable; d statistical 
significance; e categorical variable; f CI: confidence interval; g option to set the parameter of the marginal distribution of U; h R package EValue, Stata command evalue 
and web tool E-value calculator; i time to event variable

Analysis of interest Bias analysis

Name (Year 
created)

Environment Type of 
analysis

Outcome Exposure Mediator No. bias 
parameters

Benchmarking Graphical 
plot

Tipping 
point

isa[37, 38] 
(2011)

Stata simplea conb binc − 2 yes line null effect, 
stat. sig.d

gsa[11, 39] 
(2012)

Stata simple bin, con bin, con, 
 cate

− 2 yes scatter null effect, 
stat. sig.

SensitivityCase- 
Control[40, 41] 
(2012)

R matched bin bin − 1 no no none

causalsens[42, 
43] (2013)

R simple con bin − 1 yes line with  CIf null effect, 
stat. sig.

mbsens[44] 
(2014)

Stata matched bin bin − 1 no no none

sensitivi-
tymw[45–47] 
(2014)

R matched con, integer bin − 1 no no none

treatS-
ens[48–50] 
(2014)

R simple con bin, con − 2 [ +1 for 
p(U)]g

yes contour null effect, 
stat. sig.

sensitivi-
tymv[45, 46, 
51] (2015)

R matched con, integer bin − 1 no no none

EValueh (2017) 
[52–56]

R, Stata, Web 
tool

simple, 
meta-
analysis

bin, con, 
 TTEi

bin, con − 2 no line null effect, 
stat. sig.

rmpw[57, 58] 
(2017)

R mediation bin, con, cat bin bin, con, cat 2 or 4 yes contour stat. sig.

sensitivity-
full[45, 59, 60] 
(2017)

R matched con, integer bin − 1 no no no

submax[61] 
(2017)

R matched con, integer bin − 1 no no stat. sig.

Umedia-
tion[62] (2017)

R mediation bin, con bin, con bin, con 3 [ +1 or 2 for 
p(U)]

no line stat. sig.

konfound[63, 
64] (2018)

R, Stata, Web 
tool

simple bin, con bin, con − 2 yes bar, causal 
diagram

stat. sig.

sensme-
diation[65, 66] 
(2018)

R mediation bin, con bin, con bin, con 1 no line with CI null effect, 
stat. sig.

sensitivityCali-
bration[32, 67] 
(2018)

R matched con bin − 3 yes line stat. sig.

sense-
makr[68–70] 
(2019)

R, Stata, Web 
tool

simple con bin − 2 yes contour null effect, 
stat. sig.

ui[71] (2019) R simple bin bin − 2 no line with CI 
and UI

null effect, 
stat. sig.

mediation-
sens[17, 72] 
(2020)

R mediation con, bin bin con, bin 2 or 3 [ +1 for 
p(U)]

yes contour null effect, 
stat. sig.

survsens[73, 
74] (2020)

R simple TTE bin − 2 [ +1 for 
p(U)]

no contour null effect, 
stat. sig.

MediationSen-
sitivity- Analy-
sis[75] (2021)

Web tool mediation con bin, con, cat con 2 no contour null effect, 
stat. sig.
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file 1 for detailed descriptions of the five programs, our 
application of the five programs to the NHANES example 
(accompanying R and Stata code in Additional files 2 and 
3, respectively), and screenshots of the web tool imple-
mentations of sensemakr, EValue and konfound.

Results from analysing the BCG study
Of the 951 individuals invited to the participate in the 
follow-up study, complete data for X (childhood over-
weight), Y (adult BMI), C (gestational age, sex, birth 
weight and parents’ height and weight measurements) 
and U (childhood SEP) were available for 542 partici-
pants. The naive estimate, β̂X |C , was 2.21 kg/m2 ( 95% CI 
1.30, 3.11 kg/m2 ) and the fully adjusted estimate (i.e., 
adjusted for C and U) was 2.19 kg/m2 ( 95% CI 1.29, 3.09 
kg/m2 ). Also, the coefficient of U from the linear regres-
sion Y|X, C, U was −0.66 kg/m2 ( 95% CI −1.57, 0.25 kg/
m2 ) and the coefficient of U from the logistic regression 
X|C, U was −0.23 ( 95% CI −0.85, 0.35 ). Statistical signifi-
cance was defined at the 5% level.

We applied programs treatSens, causalsens, sensemakr, 
EValue, and konfound to data from the BCG study. For 
treatSens we used Probit regression for its treatment 
model because X was binary, for causalsens we used the 
one-sided confounding function because we assumed the 
exposure effect was the same in both exposure groups, 
and for EValue we calculated benchmark E-values by 
omitting one measured covariate at a time.  We begin 
with a description of the outputted results from each 
program and then compare the results across the five 
programs.

treatSens Program treatSens outputs a contour plot 
(Fig.  1(a)) where each contour represents the differ-
ent combinations of φ = (ζY , ζX ) that result in the 
same bias-adjusted estimate, β̂X |C ,U(φ) . For example, 
β̂X |C ,U(φ) = 0.43 standard deviations of BMI (SD-BMI; 
or equivalently β̂X |C ,U(φ) = 1.93 kg/m2 ) when ζY = 0.15 
and ζX = 1.00 , and when ζY = 1.00 and ζX = 0.15 . 
(Note that, treatSens standardises all continuous vari-
ables.) The black horizontal contour at ζY = 0 denotes  

Table 2 Brief descriptions of the quantitative bias analysis software applicable for a linear regression analysis

treatSens Bias parameters: φ = (ζ Y , ζ X ) where ζ Y and ζ X represent the coefficients of U from regressions Y|X, C, U and X|C, U, respectively. Bench-
marks: For each covariate Cj of C, the benchmarks for ζ Y and ζ X are the coefficients of Cj from regressions Y|X, C and X|C, respectively. Method: For 
prespecified values of φ = (ζ Y , ζ X ) , simulates U from model for joint distribution X, Y, U|C and then fits linear regression Y|X, C, U to the observed data 
and the simulated U to obtain β̂Y |X ,C ,U(φ) and its standard error. Output: Contour plot of β̂Y |X ,C ,U(φ) for different combinations of φ = (ζ Y , ζ X ) with 
added benchmark values and indications of the values of φ = (ζ Y , ζ X ) at the tipping points. Tabular outputs of the (1) values of φ = (ζ Y , ζ X ) at the tip-
ping points, (2) β̂Y |X ,C ,U(φ) and its standard error for prespecified values of φ = (ζ Y , ζ X ) , and (3) benchmark values for φ = (ζ Y , ζ X ) . Other: Standardises 
continuous variables to facilitate comparison between φ = (ζ Y , ζ X ) and their benchmark values.

causalsens Bias parameters: φ = (R2α) where the magnitude of R2α represents the proportion of unexplained variance in the potential outcomes of 
Y (to non-exposure and exposure) that is explained by U and the sign of R2α represents the direction of bias due to unmeasured confounding (e.g., if U 
explains 5% of the unexplained variance, set R2α = ±5% to allow for bias towards and away from the null). Benchmarks: Based on partial R2 of Y with 
each measured covariate. Method: Generates a modified outcome, Yadjφ  , adjusted for the bias due to unmeasured confounding using: (1) estimated 
probabilities Pr(X = 1|C) and a user-defined function (called the “confounding function”) for the average difference in the potential outcomes of Y 
between the exposure groups. Exposure effect results from regression Yadjφ |X , C are β̂Y |X ,C ,U(φ) , and its confidence interval (CI). Output: Line plot of 
β̂Y |X ,C ,U(φ) and its CI for prespecified values of R2α with each benchmark added as a positive and negative value (e.g., ±5%).

sensemakr Bias parameters: φ = (R2X∼U|C , R
2

Y∼U|X ,C ) where R2X∼U|C is the proportion of the variance of X, not explained by C, that is explained by U 
and R2Y∼U|X ,C is the proportion of the variance of Y, not explained by X and C, that is explained by U. Benchmarks: Calculates “benchmark bounds” for 
R2X∼U|C and R2Y∼U|X ,C based on partial R2 values of each measured covariate with X and Y, respectively. Method: (1) Formulae to calculate summary 
measuresa for the point estimate and its t-value (called “robustness measures”). (2) Formulae to estimate β̂Y |X ,C ,U(φ) and its t-value for prespecified 
values of φ = (R2X∼U|C , R

2

Y∼U|X ,C ) . Output: (1) Robustness values for the point estimate and its t-value at prespecified tipping points. (2) Contour plots 
of β̂Y |X ,C ,U(φ) and its t-value for different combinations of φ = (R2X∼U|C , R

2

Y∼U|X ,C ) . Plots indicate values of R2X∼U|C and R2Y∼U|X ,C that correspond to tipping 
points and (multiples of ) the benchmark bounds. Also, outputs a table of bias-adjusted results, β̂Y |X ,C ,U(φ) and its CI, when R2X∼U|C and R2Y∼U|X ,C equal (or 
equal multiples of ) their benchmark bounds.

EValue Bias parameters: φ = (RRXU , RRUY ) where (for binary X, Y and single, binary U), RRXU and RRUY denote risk ratios for X on U and U on Y (condi-
tional on C), respectively. Benchmarks: None provided. Method: Formulae to calculate summary measuresa (called “E-values”) for the point estimate 
and CI limit. Output: Line plots indicating the combinations of φ = (RRXU , RRUY ) at which β̂Y |X ,C ,U(φ) and its CI limit equate to their tipping point values 
with the E-values added to these plots. Other: Applicable for effect measures other than the risk ratio [52] and φ = (RRXU , RRUY ) is defined for a single 
or multiple unmeasured confounders of type continuous, categorical or mixed [77].

konfound Bias parameters: φ = (rX∼U|C , rY∼U|C ) where rX∼U|C and rY∼U|C denote the partial correlation of U with X and Y, respectively, conditional on 
C. Benchmarks: Based on partial correlations of each covariate Cj of C with X and Y given the remaining covariates. Method: Formulae to calculate: (1) 
“percent bias” the minimum percentage of β̂Y |X ,C explained by U at which the P-value for β̂Y |X ,C ,U(φ) equals statistical significance. (2) Summary meas-
urea (called “impact threshold”). Output: Reports percent bias depicted as a bar graph and impact threshold depicted as a causal-type diagram. Stata 
command outputs a table of benchmark values for φ = (rX∼U|C , rY∼U|C ) . Other: Percent bias and impact threshold evaluate how much unmeasured 
confounding would be needed to invalidate inference (i.e., change from statistically significant β̂Y |X ,C to statistically insignificant β̂Y |X ,C ,U(φ) ) or sustain 
inference (i.e., change from statistically insignificant β̂Y |X ,C to statistically significant β̂Y |X ,C ,U(φ)).

a: For φ = (φ1,φ2) , summary measure represents the minimum value of φ (when φ1 = φ2 ) at the prespecified tipping point value.
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the naive estimate of 0.49 SD-BMI (i.e., β̂X |C = 2.21 kg/m2 ),  
the red contour represents the combinations of φ that 
would result in a null exposure estimate, and the blue 
contours bracket statistically insignificant exposure 
estimates. The pluses and inverted triangles denote the 
benchmark values of φ based on measured covariates C: 
pluses represent covariates positively associated with 
adult BMI, and the inverted triangles represent covari-
ates negatively associated with adult BMI with those 
negative associations rescaled by −1 . The red cross furthest 
away from the origin denotes the strongest measured 
covariate (maternal weight).

causalsens Program causalsens outputs a line plot 
(Fig.  1(b)) where the black line represents the bias-
adjusted exposure estimates, the grey shaded area repre-
sents the corresponding 95% CIs, and the crosses denote 
the benchmark values for φ = (R2

α) with each benchmark 

appearing twice to allow for both directions of effect. Val-
ues of R2

α > 0 implies that individuals in the unexposed 
group tended to be healthier (i.e., lower adult BMI) than 
those in the exposed group even if everyone was of nor-
mal weight (or overweight) at age 5; and the converse for 
R
2
α < 0.

sensemakr Program sensemakr outputs four contour 
plots: Fig.  1 (c) and (d) show the contour plots for the 
exposure effect estimate and its t-value, respectively, gen-
erated under the assumption that accounting for U moves 
the exposure effect estimate closer to the null, and Supple-
mentary Fig. 2(a) and (b) (Additional file 1) show the same 
contour plots generated under the converse assumption. 
The contours have a similar interpretation as discussed for 
treatSens. For example, the red contour represents differ-
ent combinations of φ = (R2

X∼U |C ,R
2
Y∼U |X ,C) that result 

in a null exposure effect (Fig. 1(c)) and the critical t-value 

Fig. 1 Quantitative bias analysis for child overweight on adult body mass index (Barry Caerphilly Growth study). Red contour (null effect in (a) and 
(c), t-value at 5% significance in (d)), blue contours (bracket 5% statistically insignificant estimates), black contour or line (bias-adjusted estimates), 
grey shaded area ( 95% confidence intervals for bias-adjusted estimates), pluses, inverted triangles, crosses, and diamonds (benchmarks using 
maternal weight (MW)), and black triangle (naive estimate)
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corresponding to 5% statistical significance (Fig. 1(d)). The 
black triangle denotes the naive estimate, β̂X |C , and the 
red diamonds denote once, twice and thrice the bench-
mark bounds based on the strongest measured covariate.

The robustness values for β̂X |C and its t-value were 
18.76% and 11.56% , respectively. Thus, U would need to 
explain at least 18.76% (or 11.56% ) of the residual vari-
ance of both childhood overweight and adult BMI for 
the exposure effect adjusted for C and U to be null or in 
the reverse direction (or strictly positive but statistically 
insignificant).

EValue The E-value for β̂X |C and its lower CI limit were 
2.50 and 1.93, respectively. Thus, if the associations between 
U and adult BMI and childhood overweight were at least 
2.50 (or 1.93), on the risk ratio scale, then the exposure effect 
adjusted for C and U may be null or in the reverse direction 
(or strictly positive but statistically insignificant). Supple-
mentary Fig. 3 (Additional file 1) shows the combinations of 
φ = (RRUY ,RRXU ) that correspond to a null bias-adjusted 
estimate (red contour) and a strictly positive but statistically 
insignificant bias-adjusted estimate (black contour).

konfound The percent bias was 59.11% , depicted in 
the bar-graph shown in Supplementary Fig.  4 (Addi-
tional file 1), and the impact threshold was 0.13 with bias 
parameters rX∼U |C = rY∼U |C =

√
0.13 , depicted in the 

causal diagram shown in Supplementary Fig.  5 (Addi-
tional file 1). Therefore, in order for the exposure effect 
to be statistically insignificant after adjustment for C and 
U then (1) U would need to account for at least 59.11% of 
β̂X |C (i.e., β̂X |C ,U(φ) ≤ 0.90 kg/m2 ), and (2) the partial cor-
relations of U with adult BMI and child overweight must 
both exceed 0.36.

Comparison of the results Table 3 summarises the bias-
adjusted results of each program in scenarios where the 
associations between U and adult BMI and child over-

weight were half, once and twice as strong as the cor-
responding associations with the strongest measured 
covariate (i.e., φ set to 0.5, 1 and 2 × benchmark values for 
maternal weight).

Considering unmeasured confounding towards or 
away from the null, if U was comparable to the strong-
est measured covariate (with respect to its associations 
with adult BMI and child overweight) then treatSens and 
sensemakr report that adjusting for C and U would give 
similar results to those of the naive analysis and konfound 
indicates the exposure effect would remain statistically 
significant. Also, sensemakr’s robustness values were sub-
stantially higher than the benchmark bounds for R2

X∼U |C 
and R2

Y∼U |X ,C even when these benchmarks were based 
on all of C (Supplementary Table 1 in Additional file 1). 
Similarly, the benchmark E-values when omitting the 
strongest measured covariate and U were comparable 
to the E-values when omitting U only (Supplementary 
Table  2 in Additional file  1), indicating that the expo-
sure effect adjusted for C and U would remain above the 
null and statistically significant. Furthermore, treatSens, 
sensemakr, and konfound indicate that U would need to 
be more than double the strength of the strongest meas-
ured covariate in order to change the study conclusions 
(i.e., a null or doubling of the exposure effect, or a statisti-
cally insignificant effect). Conversely, causalsens suggests 
adjusting for U comparable to the strongest measured 
covariate could result in an exposure effect close to the 
null or more than double the naive estimate.

Provided the naive analysis included all of the impor-
tant confounders then it seems unlikely that the con-
founding effect of U, childhood SEP, could be more 
than twice as strong as the strongest measured covari-
ate, especially given that childhood SEP would likely be 
correlated with at least some of the measured covari-
ates. Therefore, under these assumptions, treatSens, 
sensemakr, konfound, and EValue indicates robust-
ness of the BCG study conclusions to unmeasured 

Table 3 β̂X |C ,U(φ) [ 95% confidence interval] when φ equals multiples of benchmark values for maternal weight (MW)

β̂X |C ,U(φ) [95% confidence interval] in kg/m2

If φ set to treatSens causalsens sensemakr konfound

Bias towards the null

   0.5× benchmark values of MW 2.19 [1.29, 3.09] 0.52 [−0.39, 1.42] 2.08 [1.18, 2.97] [excludes 0]

   1× benchmark values of MW 2.14 [1.24, 3.04] −0.19 [−1.09, 0.72]  1.94 [1.06, 2.82] [excludes 0]

   2× benchmark values of MW 1.91 [1.04, 2.78] −1.18 [−2.08,−0.28] 1.67 [0.82, 252] [excludes 0]

Bias away from the null

   0.5× benchmark values of MW 2.24 [1.34, 3.14] 3.90 [3.00, 4.80] 2.34 [1.45, 3.23] [excludes 0]

   1× benchmark values of MW 2.31 [1.42, 3.21] 4.60 [3.70, 5.51] 2.47 [1.60, 3.35] [excludes 0]

   2× benchmark values of MW 2.54 [1.67, 3.41] 5.59 [4.69, 6.50] 2.74 [1.89, 3.59] [excludes 0]
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confounding by childhood SEP which was inline with 
the fully adjusted results. In contrast, causalsens sug-
gested study conclusions could differ if we were able to 
adjust for childhood SEP.

Discussion
We have conducted an up-to-date review of software 
implementations of QBA to unmeasured confounding, 
and a detailed illustration of the latest software appli-
cable for a linear regression analysis of an unmatched 
study.

Remarks on the software review
All programs implement a deterministic QBA, and most 
are available in the free software environment R. The 
majority were developed in the latter half of the past dec-
ade and include programs available when the naive analy-
sis is a mediation analysis, meta-analysis and a survival 
analysis. Many programs include features such as bench-
marking and graphical displays of the QBA results to aid 
interpretation.

A limitation of our review was that we focused on soft-
ware described in the published literature, in particular 
between 2011 and 2021 (inclusive). Consequently, our 
review excluded unpublished software implementations 
and example-specific software code of QBAs (which may 
explain the absence of probabilistic QBAs in our review). 
Our reasoning for focusing on published literature was to 
provide the reader with a certain amount of confidence 
regarding the quality of the software (i.e., due to the peer-
review process). Additionally, we focused on software 
implementations that do not require any programming 
adaptions to encourage the uptake of QBAs among all 
users irrespective of their programming skills. We recog-
nise that additional software programs are available such 
as other implementations of QBA methods discussed in 
this review (e.g., another implementation of the E-value 
[78]), published software before 2011 (e.g., Stata com-
mand episens [79]), QBA methods published before 2011 
(e.g., Axelson et  al [80], R package episensr [81] imple-
menting a QBA method published in 2009 [7]), and pro-
grams of other QBA methods (e.g., TippingSens [82]).

Remarks on the comparison of software applicable 
for a linear regression analysis
Our illustrative example showed that even QBA soft-
ware applicable to the same naive analysis can implement 
distinct QBA methods. All programs were straightfor-
ward to implement and instantly generated the results 
except for treatSens which took about 10 minutes to 
run when applied to a moderately-sized dataset (see the 
NHANES example in Additional file  1). All programs 
provided information about the amount of unmeasured 

confounding at the tipping points; however, treatSens, 
sensemakr and causalsens also provided information 
on the bias-adjusted results for any specified level of 
unmeasured confounding with minimal extra burden to 
the analyst.

Out of the five programs we compared sensemakr per-
forms the most detailed QBA. It generates bias-adjusted 
results for prespecified levels of unmeasured confounding 
(similarly to treatSens and causalsens), reports a summary 
measure at prespecified tipping points (similarly to EValue 
and konfound) and conducts a QBA in a worse-case sce-
nario of unmeasured confounding (similarly to EValue). 
Program EValue implements a flexible QBA which can be 
applied to a wide range of effect measures and makes mini-
mal assumptions about the unmeasured confounding (e.g., 
allows U to be a modifier of the X − Y  relationship). How-
ever, the downside of this flexibility is that the analyst may 
be unaware of the additional assumptions required when 
converting their effect measure to the risk ratio scale and it 
can be challenging to establish plausible values for its bias 
parameters (either from external data or from benchmark-
ing). Also, a notable limitation of programs EValue and kon-
found is that they are restricted to establishing robustness 
to unmeasured confounding (i.e., cannot provide results 
adjusted for likely levels of unmeasured confounding) and 
konfound only considers sensitivity to changes in statistical 
significance. The upside of the programs’ simplicity is that 
they require only summary data and so can be easily applied 
to multiple published studies, with the EValue extended to 
random-effects meta analyses [55]. Three strengths of treat-
Sens over the other programs are: (1) its imputation-style 
QBA method will be familiar to many analysts, (2) its bias 
parameters (i.e., regression coefficients) are more likely to 
be reported by published studies than the bias parameters 
of the other programs (e.g., partial R2 values), and (3) treat-
Sens can also be applied when the analysis of interest is a 
non-parametric model (Bayesian additive regression tree). 
A potential weakness of treatSens is that it simulates U from 
a limited choice of joint distributions.

We compared software programs applicable when the 
analysis of interest is a linear regression since previous com-
parisons of QBA methods have primarily focused on analy-
ses of binary outcomes [10, 21–28]. Of the software we 
compared, programs konfound and EValue can be applied 
to a binary outcome, with EValue also applicable when the 
exposure effect is a hazard ratio. Future work could com-
pare QBA methodology for analyses of other types of out-
comes such as survival and categorical outcomes.

QBA with benchmarking
Several programs in our review provided benchmark val-
ues to aid interpretation of the QBA results. Note that, 
sensemakr can provide benchmark bounds for its bias 
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parameters based on a group of measured covariates 
which provides a useful aid when considering multiple 
unmeasured confounders. One noted issue with bench-
marking is that the benchmarks tend to be based on the 
naive models, Y|X, C and X|C, and do not adjust for the 
omission of U [32, 68]. See Cinelli and Hazelett for a dis-
cussion on why ignoring U can affect the benchmark val-
ues even when U is assumed to be independent of C [68]. 
Examples of QBAs using benchmarking that accounts for 
the omission of U include sensemakr, [32], and [83].

Multiple unmeasured confounders
Examples of QBAs tend to focus on a single unmeas-
ured confounder when in fact many weaker unmeasured 
confounders can jointly change a study’s conclusions 
[4]. However, several QBA methods are generalisable to 
multiple unmeasured confounders without burdening 
the analyst with additional bias parameters. For exam-
ple, a common assumption is that U represents a linear 
combination of multiple unmeasured confounders, with 
the elementary scenario that U is a single unmeasured 
confounder. A drawback of this appealing assumption 
is that the QBA tends to be conservative for multiple 
unmeasured confounders [68]. Alternatively, a QBA 
method may leave the functional form of U unspecified 
and instead define its bias parameters as upper bounds 
(such as the EValue where U is a categorical variable 
with categories representing all possible combinations 
of the multiple unmeasured confounders and its bias 
parameters RRXU and RRUY  are the maximum risk ratios 
comparing any two categories of U [77]). A drawback of 
these upper bounds is that they correspond to extreme 
situations, making it hard to locate appropriate bench-
mark values or external information. To address both 
drawbacks, a QBA could explicitly model each unmeas-
ured confounder separately whilst allowing for correla-
tions between the confounders, although this would 
then increase the number of bias parameters. If many 
unmeasured confounders are suspected, then the analyst 
should question if a QBA is suitable since the accuracy 
of a QBA generally relies on a study having measured 
key confounders. Importantly, a QBA is not a replace-
ment for a correctly designed and conducted study.

Deterministic and probabilistic QBAs
Our review did not identify any publicly available soft-
ware implementations of probabilistic QBAs published 
between 2011 and 2021 (inclusive). In part this may 
be due to the perception that probabilistic QBAs are 
more difficult to apply than deterministic QBAs (e.g., 
needing to choose probability distributions for the bias 
parameters) and the misconception that probabilistic 

QBAs require specialist software for Bayesian infer-
ence [7]. Note that, a probabilistic QBA with a uniform 
distribution on the bias parameters is equivalent to a 
deterministic QBA [7]. Although a deterministic QBA 
can suffice to demonstrate robustness or sensitivity of 
inferences (e.g., when a study has measured all known 
confounders) [8], a probabilistic approach has several 
key advantages: (1) allows the user to specify that some 
values of the bias parameter(s) are more likely than 
others, (2) the results can be summarised in a format 
familiar to epidemiologists (i.e., a point estimate and 
corresponding interval estimate), (3) the interval esti-
mate gives a more accurate representation of the total 
uncertainty in a QBA (i.e., uncertainty about the bias 
parameters and uncertainty due to random sampling), 
and (4) for a QBA with more than two bias parame-
ters a probabilistic approach can be more practicable 
than a deterministic approach due to the challenges of 
presenting and interpreting the results when there are 
a large number of possible value combinations of the 
bias parameters [7]. Further work is needed to provide 
published software implementations of probabilistic 
QBAs.

Concluding remarks
In summary, there have been several new software 
implementations of deterministic QBAs, most of which 
are available in R. Deterministic QBAs are often inter-
preted as tipping point analyses with statistical sig-
nificance as one of the tipping points. Given the call 
to move away from reliance on statistical significance 
[84], we recommend QBA software that provide bias-
adjusted results for all specified values of the bias 
parameters to give a complete picture of the effect of 
unmeasured confounding (such as treatSens, sensemakr 
and causalsens). Our comparative evaluation has illus-
trated the wide diversity in the types of QBA method 
that can be applied to the same substantive analysis 
of interest. Such diversity of QBA methods presents 
challenges in the widespread uptake of QBA methods. 
Guidelines are needed on the appropriate choice of 
QBA method, along with greater availability of software 
implementations of probabilistic QBAs and in plat-
forms other than R.
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