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Abstract 

Background  A considerable amount of various types of data have been collected during the COVID-19 pandemic, 
the analysis and understanding of which have been indispensable for curbing the spread of the disease. As the pan-
demic moves to an endemic state, the data collected during the pandemic will continue to be rich sources for further 
studying and understanding the impacts of the pandemic on various aspects of our society. On the other hand, naïve 
release and sharing of the information can be associated with serious privacy concerns.

Methods  We use three common but distinct data types collected during the pandemic (case surveillance tabular 
data, case location data, and contact tracing networks) to illustrate the publication and sharing of granular informa-
tion and individual-level pandemic data in a privacy-preserving manner. We leverage and build upon the concept of 
differential privacy to generate and release privacy-preserving data for each data type. We investigate the inferential 
utility of privacy-preserving information through simulation studies at different levels of privacy guarantees and dem-
onstrate the approaches in real-life data. All the approaches employed in the study are straightforward to apply.

Results  The empirical studies in all three data cases suggest that privacy-preserving results based on the differen-
tially privately sanitized data can be similar to the original results at a reasonably small privacy loss ( ǫ ≈ 1 ). Statistical 
inferences based on sanitized data using the multiple synthesis technique also appear valid, with nominal coverage of 
95% confidence intervals when there is no noticeable bias in point estimation. When ǫ < 1 and the sample size is not 
large enough, some privacy-preserving results are subject to bias, partially due to the bounding applied to sanitized 
data as a post-processing step to satisfy practical data constraints.

Conclusions  Our study generates statistical evidence on the practical feasibility of sharing pandemic data with pri-
vacy guarantees and on how to balance the statistical utility of released information during this process.

Keywords  COVID-19 pandemic, Differential privacy, Geo-indistinguishability, Hotspot heat maps, Contact tracing 
network, Synthetic data

Introduction
Background
A huge amount of data of various types have been col-
lected during the COVID-19 pandemic, the analysis 
and interpretation of which have been indispensable to 
health authorities and experts to gain an understanding 
of the disease, identify risk factors, monitor and fore-
cast the spread of the disease, to evaluate the impacts of 
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the pandemic on different aspects of our society, and to 
implement strategies that mitigate negative impacts. As 
the pandemic shifts to an endemic state, the collected 
data will continue to serve as rich sources for further 
research on the disease and its impacts to prepare us for 
future pandemics.

Naïve release and sharing of the pandemic data can be 
associated with serious privacy concerns, especially con-
sidering that a huge amount and a great variety of data 
were collected quickly in a short period of time and the 
data privacy and ethics regulations were lagging behind 
at least in the initial stage of the pandemic. Many types 
of collected data are known to be associated with high 
privacy risk, such as disease status, medical history, 
locations, close contacts, employment/income status, 
etc. Privacy protection must be considered when shar-
ing and releasing data collected during the pandemic. 
Fortunately, this is not an unsolvable problem. Research 
questions of interest often revolve around learning pop-
ulation-level and aggregate information while privacy 
attacks focus on learning individual-level information. 
Therefore, if a privacy-preserving procedure can main-
tain accurate and useful aggregate information while 
guaranteeing individual-level privacy, it would make a 
potentially effective approach for data sharing.

Related work
Various types of privacy-preserving collection and analy-
sis of COVID-19 data were conducted during the pan-
demic. Google research teams applied differential privacy 
(DP) to generate anonymized metrics from the data of 
Google users who opted in for the Location History set-
ting in their Google accounts and produce the COVID-
19 community mobility reports [2], to understand the 
impacts of social distancing policies on mobility and 
COVID-19 case growth in the US [57], to generate 
anonymized trends in Google searches for COVID-
19 symptoms and related topics [23], and to forecast 
COVID-19 trends using spatiotemporal graph neural 
networks [33]. DP was integrated into deep learning to 
predict COVID-19 infections from imaging data [46, 54]. 
Butler et al. [12] applied DP to generate individual-level 
health tokens/randomized health certificates while allow-
ing useful aggregate risk estimates to be calculated.

There also exist privacy-preserving technologies and 
tools that protect sensitive information in location data 
and proximity data. These types of data were instru-
mental to track the trajectory of a COVID-19 case and 
for contact tracing (CT) so to identify people who might 
have close contact with COVID-19 patients. On the other 
hand, location and relational information can be highly 
revealing of personal information in general. Privacy-
preserving technologies and tools were developed and 

adopted in CT apps and software around the world dur-
ing the pandemic to track the spread of the disease. The 
apps collect users’ location data (e.g., GPS) or proximity 
data (e.g., Bluetooth), via either a centralized (e.g., Alipay 
Health Code and WeChat in China [28], Corona100m 
in South Korea [58], COVIDTracker in Thailand [1], 
ProteGo in Poland [25], and Pan-European Privacy-
Preserving Proximity Tracing (PEPP-PT) in EU [49]) or 
decentralized model (Safe paths [50] and the proximity-
based Google/Apple Exposure Notification (GAEN) sys-
tem [4] in the US) to identify and notify those who might 
have been near a COVID-19 patient and at high risk of 
contracting the disease. We refer readers to Wang and 
Liu [56] for a comprehensive review of the CT apps used 
during the pandemic.

Our work and contributions
Many privacy-preserving methods developed and imple-
mented during the pandemic, including the work men-
tioned in Section “Related Work”, focus on information 
shared with governments, health officials, and the public 
so to facilitate quick decision-making and timely actions 
during the pandemic. In contrast, privacy-preserving 
COVID-19 data release for research use has received less 
attention, which is the major focus of our work. Sharing 
data for research use is not only critical for making sci-
entific discoveries, but also for producing real-world evi-
dence and generating new insights into how we can better 
handle similar crises in the future. Data for research use 
often contain more granular information compared to 
those shared with decision-makers and the public and 
are thus associated with higher privacy risks that must 
be mitigated before release, the topic we address in this 
work. We focus on the privacy-preserving release of syn-
thetic data generated at a pre-specified privacy budget. 
With synthetic data, data users may perform analysis on 
their own [8]. In summary,

•	 We leverage and build upon existing DP concepts 
and techniques and apply them to several common 
but distinct pandemic data types – surveillance data, 
case location data, and Contact Tracing Networks 
(CTNs) to demonstrate the publication of pandemic 
data with formal privacy guarantees. These three data 
types were routinely collected during the pandemic, 
provide different information on COVID-19, are dis-
tinct in terms of data structure and statistical analy-
sis, and are all subject to privacy risks.

•	 For case surveillance data, we use the flat Laplace 
sanitizer with DP guarantees and examine the sta-
tistical utility of log-linear models based on sani-
tized data in simulated data and real data published 
by the U.S. CDC. Our results suggest that simple 



Page 3 of 18Liu et al. BMC Medical Research Methodology          (2023) 23:120 	

approaches such as the flat Laplace sanitizer can 
be effective for releasing granular case surveillance 
data, providing a good balance between privacy and 
data utility.

•	 For location data, we demonstrate the application 
of the planar Laplace mechanism with geo-indis-
tinguishability guarantees to simulation data and a 
real South Korean case location dataset to examine 
inference from cluster point process models and 
the accuracy of hotspot heat maps based on sani-
tized locations. The method would be particularly 
useful for protecting location privacy when shar-
ing information at a local level or releasing hotspot 
heat maps on a relatively fine scale.

•	 For CTNs, we apply DP exponential random graph 
model (ERGM) to generate privacy-preserving syn-
thetic networks and investigate the utility of sani-
tized networks in inference from ERGMs and the 
preservation of descriptive structural network sta-
tistics. The results suggest DP-ERGM is relatively 
insensitive to ǫ and implies that small ǫ can be used 
to provide strong privacy guarantees without sacri-
ficing much of the utility.

•	 Our study generates statistical evidence on the 
practical feasibility of sharing different types of 
pandemic data with formal privacy guarantees. The 
approaches examined in this study do not target 
learning individual-level information but focus on 
preserving aggregated and population-level infor-
mation.

The rest of the paper is organized as follows. Section 
“Preliminaries” provides an overview of the basic con-
cepts in DP, some common randomized mechanisms for 
achieving DP, and an approach for obtaining valid infer-
ences from sanitized data. Sections “Privacy-preserv-
ing case surveillance data release”, “Privacy-preserving 
release of case location data” and “Privacy-preserving 
sharing of contact tracing networks” apply DP proce-
dures to release privacy-preserving case surveillance 
data, case location data, and CTNs, respectively, conduct 
simulation studies to examine the statistical utility of the 
privacy-preserving data, and apply the DP procedures to 
real pandemic data. Section “Conclusions” provides some 
final remarks on the implementations of DP methods in 
releasing COVID-19 data.

Preliminaries
We provide a brief overview of some common DP con-
cepts and mechanisms. The overview does not aim at 
covering every concept in DP but rather focuses on those 
used or mentioned in this paper.

Differential privacy

Definition 1  ((ǫ, δ)-DP [17, 19]). A randomized algo-
rithm M is of (ǫ, δ)-DP if for all dataset pairs of neigh-
boring data sets (D,D′

) differing by one record and for all 
subsets S ⊆ image(M),

D and D′ differing by one record (denoted by 
d(D,D′

) = 1 ) may refer to the case that they are of the 
same size but differ in at least one attribute value in 
exactly one record (bounded DP), or D′ has one record 
less than D or vice versa (unbounded DP) [35]. ǫ > 0 
and δ ≥ 0 are privacy budget or privacy loss param-
eters. When δ = 0 , (ǫ, δ)-DP becomes pure ǫ-DP; the 
smaller ǫ is, the more privacy protection there is on any 
individual in the data, as the released results M(D) and 
M(D′

) are similar in the sense that their probability 
density/mass function ratio is bounded with (e−ǫ , eǫ) . 
There is no consensus and lacks a universal guideline on 
the choice of ǫ [18]. ǫ typically ranges from 10−3 to 10 in 
empirical studies in the DP literature, depending on the 
type of information released, social perception of pri-
vacy, and expected accuracy of released data, among 
others. Real-life applications of DP often employ larger 
ǫ for better utility (e.g., US Census uses ǫ of 19.61 [11] 
and Apple Inc. sets ǫ at 2, 4, or 8 for different Apps [5]). 
δ , if not 0, is often set at a very small value (inversely 
proportional to poly(n)) and can be interpreted as the 
probability that the pure ǫ-DP is violated.

Definition 1 is the original DP definition. Relaxed ver-
sions and extensions exist, such as (ǫ, δ)-probabilistic 
DP (pDP) [43], (ǫ, τ )-concentrated DP (CDP) [20], zero-
concentrated DP [10] (zCDP), Rényi DP (RDP) [45], 
and Gaussian DP (GDP) [14].

DP provides a mathematically rigorous framework for 
protecting individual privacy when releasing and shar-
ing information. Many mechanisms and procedures 
have been developed to achieve DP. In this paper, we 
employ the Laplace mechanism with pure ǫ-DP to illus-
trate how to apply DP concepts and procedures to pro-
tect individual privacy when releasing COVID-19 data. 
When other types of DP guarantees are desired, such 
as (ǫ, δ)-(p)DP, corresponding mechanisms can be used, 
such as the Gaussian mechanism [16, 38].

Definition 2  (Laplace mechanism [19]). Let s = (s1, . . . , sr) 
be a statistic calculated from a dataset. The Laplace mech-
anism of ǫ-DP releases s∗ = s+ e , where e contains r 
independent samples from Laplace 0,�ǫ

−1  , where 
�1 = maxx,x′,d(x,x′)=1�s(x)− s(x′)�1 is the ℓ1 global sensi-
tivity of s.

(1)Pr(M(D) ∈ S) ≤ eǫPr(M(D′
) ∈ S)+ δ.
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The ℓ1 global sensitivity represents the maximum 
ℓ1 change in s between two neighboring data sets (in 
general, one can define ℓp(p ≥ 0) global sensitivity; 
see [38]). The larger the sensitivity, the more impact a 
single individual has on the value of s , and more noise 
would be needed to achieve ǫ-DP.

Every time a dataset is queried, there is a privacy 
cost (loss) on the individuals in the dataset. Data cura-
tors need to track the privacy cost during the querying 
process to ensure the overall privacy spending does not 
exceed a pre-specified level. Two basic composition 
principles in DP, parallel composition and sequential 
composition [44], can be used in privacy loss account-
ing, which are also used in later sections of the paper.

Definition 3  (Basic privacy loss composition of (ǫ, δ)-
DP [44]). If mechanism Mj of (ǫj , δj)-DP is applied to dis-
joint dataset Dj for j = 1, . . . ,P , the parallel composition 
states the total privacy loss in data ∪jDj from apply the 
P mechanisms Mj for j = 1, . . . ,P is (max{ǫj}, max{δj}) ; 
if Mj is applied to the same dataset D, the sequential 
composition states that the total privacy loss in D is 
(

∑

j ǫj ,
∑

j δj) from applying the P mechanisms Mj for 
j = 1, . . . ,P.

In layman’s terms, the two privacy loss composi-
tion principle states as long as there is no overlapping 
information between two datasets to which two DP 
mechanisms are applied, the overall loss for releas-
ing the query results is the maximum privacy spend-
ing between the two; otherwise, the loss adds up. 
The sequential composition on (ǫ, δ)-DP can be over-
conservative for repeated queries on the same data; 
advanced composition [21] for (ǫ, δ)-DP and the relaxed 
DP notions mentioned above (e.g., CDP, zCDP, RDP, 
GDP) all achieve tighter total privacy loss bound than 
the basic composition.

DP is a mainstream concept in privacy research and 
applications nowadays. Backed up by its mathemati-
cal rigor and robustness to various privacy attacks, the 
properties it has, including privacy loss composition, 
immunity to post-processing, and being future-proof, 
make it attractive for designing sophisticated DP pro-
cedures and algorithms for complicated analysis and 
learning problems. Immunity to post-processing and 
being future-proof refer to instances that informa-
tion released from a DP mechanism won’t leak addi-
tional information about the individuals in the dataset 
on which the information is based when it is further 
processed after the release or when there is addi-
tional information on these individuals in the future 
from other sources, as long as the original data is not 
accessed.

Geo‑indistinguishability
Andrés et  al. [3] extend the pure ǫ-DP concept to 
releasing privacy-preserving location data that are rep-
resented as pairs of 2-dimensional GPS coordinates, 
along with the planar Laplace mechanism to achieve 
such privacy guarantees.

Definition 4  (Geo-indistinguishability (GI) [3]). Let 
d(P,P′

) denote the Euclidean distance between any two 
distinct locations P and P′ , and ǫ be the unit-distance pri-
vacy loss. A randomized mechanism M satisfies ǫ-GI if 
and only, for any γ > 0 , any possible released location P∗ , 
and all possible pairs of P and P′ that d(P,P′

) ≤ γ,

M in Eq. (2) enjoys (ǫγ )-GI for any specified γ > 0 in 
the sense that the probability of distinguishing any two 
locations within a radius of γ , given the released loca-
tion P∗ , is eǫγ-fold the probability when not having P∗ . 
ǫ is the per-unit-distance loss and γ denotes how many 
units. The larger ǫ is, the larger the privacy loss (ǫγ ) is 
and the higher probability of identifying the true loca-
tion information within a radius of γ mile given the 
perturbed location information. Though increasing 
γ would also lead to higher privacy loss and the prob-
ability of identifying the true location is within a radius 
of γ but the large γ would make this identification less 
meaningful.

Definition 5  (planar Laplace mechanism [3]). Let the 
coordinates of the observed location P in the Euclidean 
space by (x,  y). The planar Laplace mechanism of ǫ-GI 
generates sanitized location P∗ with coordinates

r in Eq. (3) is the distance between P∗ and P and θ 
is the angle of P → P∗ in the Euclidean space, and r 
and θ are independent. The concepts of GI and planar 
Laplace mechanism are employed in Section “Privacy-
preserving release of case location data” for releasing 
privacy-preserving location data.

Precisely speaking, GI is more related to local DP 
[15], an extension of the pure ǫ-DP, than the latter per 
se, which is often used for releasing aggregate informa-
tion rather than an individual response.

Definition 6  (ǫ-local DP [15]). A randomi-
zation mechanism M provides ǫ local DP if 
Pr[M(x) ∈ �] ≤ eǫ · Pr[M(x′) ∈ �] for all pairs of 

(2)Pr(M(P) = P∗|P) ≤ eǫγ · Pr(M(P′) = P∗|P′).

(3)(x∗, y∗) = (x + r cos(θ), y+ r sin(θ)),where

(4)
r ∼ gamma(2, ǫ) = rǫ2e−ǫr

θ ∼ uniform(0, 2π) = 1/(2π).
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possible data points x and x′ from an individual and all 
possible output subset � from M.

Privacy‑preserving statistical inference
Sanitized outputs, compared to the original outputs, are 
subject to an extra source of variability due to the noise 
introduced through the randomized algorithm R for 
achieving DP. To account for the extra source of variabil-
ity for valid statistical inference, one may directly model 
the sanitization mechanism, which may complicate the 
regular inferential procedures either analytically or com-
putationally and is problem-specific. An alternative is 
the multiple syntheses (MS) approach that releases mul-
tiple sets of sanitized datasets or statistics and employs 
an inferential rule across the multiple sets to obtain valid 
inference [40]. The MS approach is general and straight-
forward to apply. We adopt the MS approach to obtain 
privacy-preserving inference from sanitized data in this 
paper.

Denote the number of released sets by m. Per sequen-
tial composition, the total privacy budget would be split 
into m portions, one per release. m ∈ [3, 5] is recom-
mended [40]. WLOS, suppose the parameter of interest 
is β and its l-th sanitized estimate is β̂(l) with estimated 
variance w(l) for l = 1, . . . ,m . The final inference of β , 
including hypothesis testing and confidence interval (CI) 
construction, is based on the following inferential rule.

Overview of case surveillance data, case location data, 
and contact tracing networks (CTNs)
We present the privacy-preserving release of three 
pandemic data types: subgroup case surveillance data 
(Section “Privacy-preserving case surveillance data 
release”), case location data (Section “Privacy-preserv-
ing release of case location data”), and CTNs (Section 
“Privacy-preserving sharing of contact tracing net-
works”). In each case, we describe data characteristics, 
introduce methods for sanitization, conduct a simula-
tion study to examine the impact of sanitization on sta-
tistical inference, and apply the method to a real data 
set when one is available. We choose the three data 

(5)β̄ = m−1
∑m

l=1
β̂
(l), T = m−1B+W

(6)

(𝛽 − 𝛽)T−1∕2 ∼ t𝜈=(m−1)(1+mW∕B)2 , where

B =
∑m

l=1
(𝛽(l) − 𝛽)2∕(m − 1) (between-set variability)

W = m
−1
∑m

l=1
w

(l) (within-set variability).

types because they were routinely collected during the 
pandemic, are distinct in terms of data structure and 
statistical analysis, and provide different information on 
COVID-19.

Case surveillance data are a listing of cases, together 
with attributes associated with the cases, such as 
demographics, exposure histories, etc. Surveillance 
data are crucial during the pandemic for monitoring 
and forecasting the spread of the disease, understand-
ing how COVID impacts the capacity of healthcare 
systems and providing necessary information to health 
authorities for quick decision-making. Case numbers 
reported at different geographical scales by demo-
graphic groups such as age, gender, race, and ethnicity 
provide valuable information for identifying risk fac-
tors and groups vulnerable to the disease and under-
standing the heterogeneity of the susceptibility to the 
disease. On the other hand, publishing such granular 
information may lead to re-identification and disclo-
sure risk, especially when data are sparse. This section 
focuses on publishing granular case numbers with pri-
vacy guarantees.

Location history data may be collected by health 
authorities when a person is diagnosed with COVID-19 
and interviewed about his or her whereabouts in the past 
few weeks [13, 48]. Patient location data are critical for 
health authorities to take measures to limit the spread of 
the disease. With individual-level location data, research-
ers can conduct spatial data analysis such as using point 
process models to understand the spatial trend of the 
cases or generating COVID-19 hotspot heat maps. How-
ever, location information, if shared as is, may cause seri-
ous privacy risks for the patients and can even lead to 
cyber-bullying [47].

Contact tracing (CT) is an effective approach for 
curbing the spread of COVID-19 during the pandemic. 
CT can be carried out manually by human tracers or 
digitally via GPS or Bluetooth devices. CT networks 
(CTNs), constructed from CT data, can be regarded as 
a social network, where individuals are the nodes and 
an edge between two people represents close contact 
between them (e.g., within 6 feet of each other for a 
cumulative total of 15 minutes or more over a 24-hour 
period). CTNs are of research interest as they provide 
information to better understand how physical prox-
imity affects the spread of the disease and human con-
tact behaviors during the pandemic, among others. 
However, sharing CTNs as is has privacy concerns as 
adversaries may link a CTN with other databases or use 
background knowledge to infer who was infected with 
COVID-19 and tell who was close physically (appearing 
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in the same place at the same time) based on the edge 
information in a CTN.

In summary, surveillance data help better under-
stand risk factors associated with COVID-19 and 
identify sub-populations that are vulnerable to the 
disease; location data can be used to explore relation-
ships between hotspots and residential characteristics 
to study issues such as residential racism and struc-
tural segregation during the pandemic, CTNs allow us 
to study how clustering of COVID-19 cases and how 
physical proximity may affect the spread of the disease, 
among others. Meanwhile, all three data types contain 
sensitive information and are subject to privacy risks, 
and may not be shared without privacy protection 
considerations.

Privacy‑preserving case surveillance data release
An example of case surveillance data is the COVID-
19 death count data released by the U.S. CDC website. 
Table 1 shows such a dataset we downloaded on May 24, 
2022 (Table  2 at https://​www.​cdc.​gov/​nchs/​nvss/​vsrr/​
covid​19/​health_​dispa​rities.​htm) with some minor modifi-
cations (we removed the race group “unknown’ and col-
lapsed age groups (0, 4] and [5, 17] to a single <18 group, 
and age groups [75, 84] and ≥85 to a single >74 group). 
Table 1 contains two attributes – age group and race/eth-
nicity; each has 7 levels, leading to a 7× 7 contingency 
table. The sample size is n=998, 262 , assumed to be pub-
lic information.

Method
Publishing a privacy-preserving case number dataset 
can be formulated as releasing a multi-dimensional 
histogram or contingency table. The most straight-
forward approach for achieving DP when releasing 

a histogram and contingency table is the flat Laplace 
sanitizer, which injects noise from the Laplace mech-
anism directly into each cell count in a histogram or 
contingency table; methods that achieve better utility 
in sanitizing count data for certain analyses exist, at 
the cost of more complicated implementation, such as 
[9, 22, 26, 30, 37, 59–61, 63], just to name a few. Given 
that there exist many methods for sanitizing count 
data, many aiming at improving the utility of a certain 
type of analysis and not straightforward to implement, 
and our main goal is to demonstrate the application of 
DP in releasing count data in general without a specific 
downstream analysis task in mind, we employ the flat 
Laplace mechanism (we examined a couple of other 
approaches, but their performance is not as good as 
Laplace sanitizer in the in utility analysis. More details 
are provided in Section “Summary”).

In our problem setting, the Laplace sanitizer employs 
the Laplace mechanism in Definition 2 to sanitize each 
cell count of the multidimensional histogram/ con-
tingency table to be released. The l1 global sensitivity 
of releasing a histogram/table is 1 (WLOS, we use the 
unbounded DP unless mentioned otherwise; the sen-
sitivity is 2 if the bounded DP is used). Sanitized count 
in cell k is ỹk ∼ Laplace(yk , ǫ−1

) for k = 1, . . . ,K  cells. 
Sanitized counts may be negative as the support of the 
Laplace distribution is the real line. There are two ways 
to deal with this problem – to replace negative values 
with 0 and to re-draw until the sanitized value is non-
negative [39]. In either case, normalization would be 
needed if the total sample size n is fixed. Real non-neg-
ative sanitized counts can be rounded to obtain integer 
counts without compromising privacy due to the immu-
nity to post-processing property. Algorithm  1 lists the 
steps of the procedure.

Table 1  U.S. COVID-19 death counts by age and race/ethnicity (May 24, 2022)

Race/ethnicity = ‘unknown’ is not included in the table

NH Non-Hispanic, AIAN American Indian or Alaska Native, NHPI Native Hawaiian or Other Pacific Islander, “Mix” means “more than one race”

Age (ys) Race/Ethnicity

group NH White NH Black NH AIAN NH Asian NH NHPI NH Mix Hispanic Total

<17 387 274 15 36 11 30 303 1056

18-29 2263 1492 187 190 49 73 2015 6269

30-39 6661 4144 560 558 151 157 5919 18150

40-49 17269 8937 1021 1206 265 309 13981 42988

50-64 97418 35753 3198 5312 715 952 43657 187005

65-74 141409 37765 2901 7423 501 913 38422 229334

>75 380630 54576 3210 16504 449 1380 56711 513460

Total 646037 142941 11092 31229 2141 3814 161008 998262

https://www.cdc.gov/nchs/nvss/vsrr/covid19/health_disparities.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/health_disparities.htm
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Algorithm 1 Privacy-preserving release of case surveillance data via flat Laplace sanitizer

To obtain sanitized counts for a lower-dimensional his-
togram/contingency table from the sanitized histogram/
table at a more granular level, one may sum sanitized 
counts over corresponding cells to obtain cell counts in 
the lower-dimensional histogram/table. Per the immu-
nity to post-processing property, the summed counts are 
also privacy-preserving but are subject to a larger saniti-
zation variability since each contains the sum of multiple 
independent noise terms.

Simulation study
We use a simulation study to study how DP sanitiza-
tion affects statistical inference based on sanitized 
count data. We simulated 1,000 datasets from yk ∼ 
multinomial(n, pk ), where pk = �k/(1+ �k) , log(�k ) =

�
0
+ �

1
xk1 + �

2
xk2 + �

3
xk3 + �

4
xk1xk2 + �

5
xk1xk3 + �

6
xk2xk3 

for k = 1, . . . , 8 and X1 = {0, 1},X2 = {0, 1},X3 = {0, 1} 
are binary attributes. In each dataset, we sanitize 
y = {y}k=1,...,8 via the flat Laplace sanitizer indepen-
dently for m = 3 times to obtain differentially pri-
vate ỹ(l) and l = 1, . . . ,m , each at a privacy budget of 
ǫ/m , where ǫ is the total privacy budget. We exam-
ine two sample sizes at n = 200 and n = 1, 000 and 
four privacy loss parameters at ǫ = 0.5, 1, 2 and 5. We 
assume the total sample size n is fixed and normal-
ize the raw sanitized counts from the flat sanitizer via 
nỹ

(l)
k /

∑

l ỹ
(l)
k  . For utility check, we run the loglinear 

model log(�k ) = �0 + �1xk1 + �2xk2 + �3xk3 + �4xk1xk2+

�
5
xk1xk3 + �

6
xk2xk3 for k = 1, . . . , 8 , assuming ỹ(l)k ∼ Pois-

son(�k ), on each set of sanitized data to obtain inference 
on β1, . . . ,β6 using Eqs. (5) and (6). For comparison, we 
also run the same log-linear model on the original y.

The results are presented in Fig. 1 and the main obser-
vations are summarized as follows. The smaller ǫ or n is, 
the more impact the DP procedure has on the inference; 

i.e., larger bias and larger root mean squared error 
(RMSE). Regardless of n or ǫ , the coverage probability 
(CP) of the 95% CIs is always at the nominal level. At 
n = 1, 000 , the inference is barely affected by the DP sani-
tization even for ǫ = 0.5 . At n = 200 , the bias is notice-
able with relatively large RMSE for ǫ = 0.5 , acceptable 
at ǫ = 1 , and almost ignoble for ǫ > 1 , compared to the 
original inference.

Application to CDC case surveillance data
We apply the flat Laplace sanitized to the CDC in Table 1. 
If released data are not used for statistical inference or 
uncertainty quantification, we may release a single sani-
tized tabular dataset ( m = 1 ). Let ỹk = yk + ek , where 
ek ∼ Laplace(0, ǫ−1 ), for k = 1, . . . , 49 independently. 
Since n = 998, 262 is public knowledge, the sanitized ỹk is 
normalized as in ỹk ← nỹk/

∑

k ỹk to keep the total n at 
998, 262. An example sanitized dataset at ǫ = 0.5 is given 
in Table  2. There is some fluctuation in each cell count 
due to the sanitization, as expected. The column and 
row marginals are calculated by summing over the cor-
responding cell counts after sanitization.

If released data is used for statistical inference, we can 
use the MS approach to release multiple sets of sanitized 
tables. We sanitized yk with noise from Laplace(0, ǫ/m) 
independently to obtain m = 3 sets of sanitized ỹ(l)k  for 
l = 1, 2, 3 . Some examples of sanitized data are provided in 
the supplementary materials. For the statistical analysis on 
the sanitized data, we fitted a 2-way log-linear model with 
covariates age group and race/ethnicity (other analyses can 
also be run, such as logistic regression and Chi-squared 
test). There are 48 regression coefficients – 6 associated 
with age ( < 18 years is the reference group), 6 associated 
with race (non-Hispanic white is the reference group), 
and 36 parameters representing the interaction between 
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the two. The estimates of the regression coefficients are 
presented in Fig.  2. In summary, the privacy-preserving 
inferences based on the sanitized counts are similar to the 
original inference at all ǫ values, largely due to the large 
sample size of the data.

Summary
Case number data with granular information permits 
more complicated analysis and helps us understand 

better the pandemic, such as quantifying the effects of 
risk factors for COVID-19 as demonstrated in Fig.  2). 
We demonstrate via a simulation study and a real 
data application that useful privacy-preserving can 
be achieved, especially when n is large or people are 
willing to sacrifice some privacy ( ǫ is not too small). 
The results also suggest the flat Laplace sanitizer can 
be an effective approach for that purpose, despite its 
simplicity.

Fig. 1  Privacy-preserving inference in the log-linear model on sanitized counts obtained via the flat Laplace sanitizer in simulated data (1000 
repeats; m = 3)

Table 2  Flat Laplace sanitized ( ǫ = 0.5,m = 1 ) US COVID-19 death counts by age group and race/ethnicity on May 24, 2022

Race/ethnicity = ’unknown’ is not included in the table

 NH Non-Hispanic, AIAN American Indian or Alaska Native, NHPI Native Hawaiian or Other Pacific Islander, “Mix” means “more than one race”

Age (ys) Race/Ethnicity

group NH White NH Black NH AIAN NH Asian NH NHPI NH Mix Hispanic Total

<17 385 271 14 37 8 29 308 1052

18-29 2258 1491 186 198 49 72 2009 6263

30-39 6664 4140 562 558 145 156 5928 18153

40-49 17269 8937 1021 1202 266 299 13982 42976

50-64 97421 35753 3195 5311 713 952 43658 187003

65-74 141413 37766 2897 7427 501 914 38425 229343

>75 380642 54577 3209 16505 449 1379 56712 513472

Total 646053 142935 11084 31238 2130 3801 161021 998262
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Though we focus on the flat Laplace sanitizer for 
demonstration purposes, we also run a couple of other 
methods that sanitize count data in a hierarchical man-
ner in the simulation study and the case study. The 
two approaches are – - the universal histogram (UH) 
approach [30] and its extension UH-proportion or sim-
ply UHp that we extend UH for the case where the total 
sample size of the released data is fixed and public. 
The descriptions of the UH and UHp approaches, the 
details of their implementation, and the results from 
the simulation study and the case study are presented 

in the supplementary materials. In summary, UHp 
delivers comparable performance to the flat sanitizer in 
bias and RMSE for most of the parameters in the simu-
lation study but has slight under-coverage at ǫ = 1 and 
0.5. UH performs the worst (largest bias, RMSE, and 
some notable under-coverage). In the case study, there 
is some discrepancy between the privacy-preserving 
point estimates vs the original for both UH and UHp. 
For UH, some CIs are noticeably wider than the origi-
nal, mostly in the race/ethnicity groups that are rela-
tively small in size.

Fig. 2  Privacy-preserving results from the log-linear model on sanitized CDC COVID-19 death data via the flat Laplace sanitizer

Fig. 3  a Observed locations of 121 COVID-19 patients on Feb 20, 2020 in South Korea. b Hotspot heat map based on observed locations



Page 10 of 18Liu et al. BMC Medical Research Methodology          (2023) 23:120 

Privacy‑preserving release of case location data
We examine a privacy-preserving approach to releasing 
location data based on GI. We focus on releasing cross-
sectional location data at a given time point rather than 
travel trajectories [41], the latter being a topic for future 
research. Even though released data are cross-sectional, 
they can be released on a regular time basis, e.g., every 
day or every 3 days, allowing temporal examination of 
certain trends.

An example of location data is given in Fig.  3, which 
shows the locations of 121 COVID-19 patients on Feb 
20, 2020, in South Korea. The data can be found in the 
file “patientroute.csv” at https://​www.​heywh​ale.​com/​mw/​
datas​et/​5e797​e9e98​d4a80​02d2c​92d3/​file. The number of 
locations per subject ranges from 1 to 11; about 50% (62 
out of 121) has one location, 34.7% has 2 or 3 locations, 
and the rest 14% have ≥ 4 locations (one person has 11 
locations; all within the city of Gwangju). The timestamp 
information in hours, minutes, and dates is not available 
in the dataset.

Method
The approach we propose for releasing privacy-preserv-
ing location information is the doppelganger [41], based 
on the GI concept. The main idea behind doppelganger, 
as suggested by the name, is to release m ≥ 1 sanitized 
versions of the true location P via the planar Laplace 

mechanism so to satisfy GI guarantees. The privacy 
budget per location ǫ is split into m portion for m ≥ 2 , 
ǫ/m per release. Similar to case surveillance data, the 
main reason for releasing multiple perturbed locations 
( m ≥ 2 ) is to provide a way to quantify sanitization 
uncertainty and draw statistical inferences using the MS 
approach.

To generate a sanitized location (x∗, y∗) given the 
original location coordinates (x, y), we apply the planar 
Laplace mechanism in Eq. (3), with ǫ replaced by ǫ/m . 
ǫ is the per-unit-distance privacy loss, where the unit 
distance is supplied by the data curator and can be any 
value deemed appropriate for the task at hand, such as 
1 meter, 10 meters, 0.5 miles, etc (generally speaking, 
the choice depends on location type, area, among other 
considerations). In many cases of location sanitiza-
tion, there is public knowledge of where the locations 
belong and how many cases there are. For example, 
in the South Korean data, all cases are on the land of 
South Korea, instead of from its neighboring nations 
such as Japan or China, or in the ocean. Therefore, 
one would expect sanitized locations to be in the land 
of South Korea as well, and post-processing bounding 
will be applied to the out-of-bound sanitized locations. 
Algorithm  2 summarizes the steps of the sanitization 
procedure.

Algorithm 2 Privacy-preserving release of case location data via geoindistinguishability

https://www.heywhale.com/mw/dataset/5e797e9e98d4a8002d2c92d3/file
https://www.heywhale.com/mw/dataset/5e797e9e98d4a8002d2c92d3/file
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Simulation study
To evaluate the statistical utility of sanitized loca-
tions via doppelganger, we conduct a simulation 
study. We simulated 1,000 sets of location data in a 
square area of [0, 1] × [0, 1] from an inhomogene-
ous Matérn cluster point process with the radius of 
the clusters at 0.03 and the non-stationary log-density 
log(�(x, y;β)) = β0 + β1x + β2y+ β3x

2
+ β4y

2
+ β5xy   , 

where x and y are coordinates and � = (�
0
,… , �

5
) =

(4.53, 3.30, 3.43,−0.27, 1.58, 2.24) . The number of loca-
tions ranges from 769 to 1217 across the 1,000 repeats 
with an average of 970. In each simulated dataset, we san-
itized each location with the planar Laplace mechanism 
in Eq. (3) at ǫ = 5, 2, 1, 0.5 per 0.01 unit and m = 3 . We 
assume [0, 1] × [0, 1] is public information and sanitized 
locations thus should fall within [0, 1] × [0, 1] . On the 
other hand, the planar Laplace mechanism can generate 
an infinite r and any angle ∈ [0, 2π ] . To honor the loca-
tion boundaries, we set sanitized x∗ < 0 at 0 and at 1 if it 
is > 1 ; similarly for sanitized y∗ . We then fitted the inho-
mogeneous Matérn cluster point process model above 
and applied the inferential rule in Eq. (6) to obtain infer-
ence on β . The data simulation and analysis were con-
ducted using R package spatstat.core [6].

The results are presented in Table  3. In summary, the 
inferences at ǫ = 5 and ǫ = 2 are comparable to the 
original – close-to-0 bias, similar RMSE as the original, 
nominal converge at ǫ = 5 and slight under-coverage at 
ǫ = 2 . At ǫ = 1 and ǫ = 0.5 , the bias is notable; the RMSE 
values are similar to the original at ǫ = 1 , but much 
larger at ǫ = 0.5 ; the CP is around 83% to 85% at ǫ = 1 
and ranges from 60% to 88% at ǫ = 0.5 . The moderate to 
severe under-coverage is largely due to the bias in the β 
estimates, which in turn may be attributed to the bound-
ing applied to the sanitized locations. Bounding sanitized 
values can lead to biased inference [39].

Application to South Korea case location data
We apply the doppelganger to the real South Korean 
case location dataset (Fig.  3(a)) to release privacy-
preserving locations at ǫ = 5, 2, 1, 0.1 per 2 miles per 
individual. For an individual who has more than one 
location record, we further divided ǫ by the number of 
locations for that individual. That is, if an individual has 
h original location data points and we release m sani-
tized locations for each location at a privacy budget of 
ǫ/(mh) . Similar to the simulation study, we honor the 
fact that all cases are in South Korea and bounded sani-
tized locations within a rectangular that approximates 
the shape of South Korea, in a similar fashion as done in 
the simulation study.

We used two analyses to check the utility of the sani-
tized locations: to generate hotspot heat maps and to fit 
a point process model. We set m = 3 in both analyses but 
also examined m = 1 in the former as it does not involve 
statistical inference. The privacy-preserving heat maps 
are displayed in Fig.  4 with the same smoothing band-
width as in Fig. 3(b).

The privacy-preserving hotspot heat maps are very 
similar to the original heat map in Fig. 3(b) at ǫ ≥ 1 for 
both m = 1 and m = 3 and are a bit noisy at ǫ = 0.5 espe-
cially when m = 3 ; but the major hotspots (the cities of 
Busan, Seoul, and Daegu) are preserved at ǫ = 0.5 for 
m = 1 . In summary, for the purposes of generating heat 
maps, m = 1 is sufficient and each sanitized location is 
less noisy compared to using m = 3 , especially at small ǫ.

We fitted an inhomogeneous Matérn cluster point pro-
cess model with log-density log(�(x, y;�)) =�0 + �

1
x + �

2
y 

on the original data and the sanitized data. For this analy-
sis, we randomly selected one location if an individual has 
multiple original location records, resulting in one original 
location per individual. We applied the inferential rule in 
Eqs. (5) and (6) to obtain the point estimates and 95% CIs 
for (β0,β1,β2).

The results are presented in Table  4. In general, the 
privacy-preserving inferences are similar to the original, 
especially for β1 and β2 that quantify the linear trends of 
COVID intensity along the x and y coordinates, respec-
tively. In addition, the privacy-preserving point estimates 
are robust to ǫ ≥ 1 and some notable deviation from the 
original is only seen at ǫ = 0.5 . A surprising observation 
is a shrinkage in the CIs as ǫ decreases for ǫ < 5 , imply-
ing the inferences become more precise, at least for the 
range of the examined ǫ values, though the statistical 
insignificance remains unchanged across ǫ . The shrink-
age is counter-intuitive as one would expect the infer-
ences to get less precise as the locations are perturbed 
more at smaller ǫ . Indeed, as ǫ decreases, the sanitized 
locations are more scattered (Fig. 4), but the likelihood of 
a sanitized location being bounded at the boundary also 
increases, which may affect the within and between com-
ponents of the total variance in Eq. (5). More research 
is needed to better understand how the variability is 
affected by the sanitization and the bounding constraint.

Summary
The doppelganger method releases location data with 
privacy guarantees. The simulation study and the case 
study suggest the method can preserve important statis-
tical signals in the original data at a relatively low-level 
cost of privacy. The method would be particularly useful 
for protecting location privacy when sharing information 
at a local level or releasing hotspot maps on a relatively 
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fine scale. The finer the scale is, the more sparse the data 
become, the higher the privacy risk for re-identification 
from releasing location data, and the greater the need 
for effective privacy protection approaches, but also the 

noisier released sanitized locations. As the scale gets 
coarser, say at the city, regional, state, or national levels, 
the information released by the doppelganger can be very 
similar to the original location information.

Table 3  Privacy-preserving inferences of Matérn cluster point process model on simulated location data (1,000 repeats; m = 3)

Metric Parameter Original ǫ = 5 ǫ = 2 ǫ = 1 ǫ = 0.5

β0 -0.029 -0.022 0.016 0.142 0.571

β1 0.065 0.052 -0.022 -0.279 -1.180

bias β2 0.031 0.014 -0.074 -0.374 -1.389

β3 -0.085 -0.077 -0.028 0.154 0.801

β4 0.034 0.038 0.060 0.124 0.337

β5 -0.037 -0.024 0.048 0.303 1.160

β0 0.466 0.465 0.459 0.457 0.680

β1 1.234 1.232 1.211 1.189 1.549

RMSE β2 1.164 1.162 1.152 1.166 1.693

β3 1.006 1.003 0.986 0.958 1.159

β4 0.944 0.943 0.934 0.898 0.838

β5 0.985 0.982 0.972 0.989 1.431

β0 0.948 0.940 0.925 0.841 0.599

β1 0.938 0.932 0.914 0.845 0.719

CP β2 0.957 0.952 0.935 0.851 0.640

β3 0.938 0.929 0.909 0.842 0.769

β4 0.941 0.934 0.908 0.840 0.878

β5 0.947 0.939 0.916 0.827 0.638

Fig. 4  Privacy-preserving COVID-19 hotspot heat maps in South Korea on Feb 20, 2020
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Privacy‑preserving sharing of contact tracing 
networks
CT data are often collected as needed, that is, when a 
person is diagnosed positive for COVID-19. In those 
cases, a CTN may only contain COVID-positive indi-
viduals and their close contacts. That said, CTNs can be 
constructed in different ways from CT data, and they 
can be complex and large as people are mobile and may 
show up in various places at different times. We focus 
on CTNs constructed for a pre-defined population dur-
ing a pre-specified period of time (e.g., employees in an 
organization or students in a school in one day, 2 weeks, 
or 1 month, etc). For example, suppose the time period is 
one day, starting at noon on June 1 2020 ending at noon 
on the next day and the population is all students at a col-
lege. If a COVID-positive student named Tom was in a 
dining hall from noon to 1 pm on June 1, 2020, and had 
2 close contacts, at the library from 1:30 pm to 5 pm and 
had 1 close contact, and in his dorm from 5 pm to noon 
next day and had 5 close contacts, then Tom and all his 
8 close contacts are included in the CTN, along with 8 
edges, representing the 8 close contacts. We consider the 
privacy-preserving release of CTNs with relational infor-
mation only in this study; releasing CTNs with nodal 
attributes (such as demographic information or location 
information) with privacy guarantees is a topic for future 
research.

Method
We examine a few approaches for releasing privacy-pre-
serving CTNs and present one approach, DP-ERGM, in 
the main text and include the other two in the supple-
mentary materials. DP-ERGM stands for Differentially 
Private network synthesis via Exponential Random Graph 
Model [42]. The DP-ERGM procedure can be regarded as 
an application of the model-based differentially private 

synthesis (MODIPS) approach [40] to graph data with 
ERGM as the synthesis model. ERGMs are a family of 
popular statistical models for analyzing network data 
[51, 53]. Denote by E the adjacency matrix in a network 
( eij = 1 if an edge exists between node i and node j, eij = 0 
otherwise). ERGMs model the conditional distribution of 
e as

where S(E) is the summary statistics that characterize the 
network structure such as the number of edges, degree 
distribution, edge-wise shared partnership, etc. K (θ) 
is the normalizing constant summed over all possible 
adjacency matrix e′ and is often analytically intractable 
unless in small networks. Inference of θ is often based on 
approaches with approximate K (θ) , such as the Monte 
Carlo maximum likelihood estimation [27, 32]. Equa-
tion 7 is a simplified ERGM as we deal with CTN without 
nodal attributes in this study. In general, S may contain 
statistics not only constructed from e but also nodal sta-
tistics for networks with nodal attributes.

The steps of a general DP-ERGM procedure are pre-
sented in Algorithm  3. Regarding the ERGM on which 
the likelihood is based, it may be specified prior to the 
access to E or chosen using a privacy-preserving pro-
cedure given by E , costing a portion of the total privacy 
budget ǫ . Regarding posterior sampling with a pre-set 
privacy loss, readers may refer to [24, 40] for some of the 
available approaches; other options are through differ-
entially private MCMC sampling, such as Heikkilä et al. 
[31], Li et al. [36], Seita et al. [52] is naturally differentially 
private. Balle and Wang [7], Yıldırım and Ermiş [62] show 
that the penalty method for Metropolis-Hastings (MH) 
algorithms Wang et al. [55]

(7)p(E|�) =
exp

{

�T
S(E)

}

K (�)
, where K (�) =

∑

E
�

exp
{

�T
S(E�)

}

,

Table 4  Privacy-preserving Matérn cluster point process model parameter estimates based on sanitized locations in the South Korea 
location data ( m=3)

Estimate (95% CI)

Original ǫ = 5 ǫ = 2 ǫ = 1 ǫ = 0.5

β0 -64.2 (-153.5, 25.1) -65.1 (-157.0, 26.9) -63.0 (-147.0, 21.0) -63.8 (-140.6, 13.0) -57.5 (-129.8, 14.7)

β1 0.51 (-0.17, 1.19) 0.52 (-0.18, 1.21) 0.50 (-0.14, 1.14) 0.50 (-0.08, 1.08) 0.44 (-0.10, 0.99)

β2 0.03 (-0.50, 0.56) 0.03 (-0.52, 0.59) 0.03 (-0.48, 0.54) 0.05 (-0.42, 0.51) 0.07 (-0.39, 0.53)
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Algorithm 3 Privacy-preserving release of CTN via DP-ERGM

In addition to DP-ERGM, we also examined a random 
response (RR) mechanism for perturbing edge informa-
tion with DP guarantees [34] and a debiased version of 
the RR mechanism [42]. Both procedures perform signif-
icantly worse than the DP-ERGM procedure in the util-
ity analysis performed in Section Simulation Study unless 
the privacy loss is high ( ǫ > 5 ). The details on RR and 
RR-debias can be found in the supplementary materials.

Simulation study
To evaluate the statistical utility of sanitized CTNs, we 
conduct a simulation study. We simulated 500 sets of 
networks from an ERGM model with a single covariate 
s (edge count). In each simulated network, there are 100 
nodes. The networks were simulated to mimic real-life 
CTN (a CT dataset collected at the University of Notre 
Dame, USA, during the pandemic) in the degree distribu-
tion per individual. The real data are not shareable due to 
privacy and IRB reasons.

The ERGM used in the DP-ERGM procedure con-
tains edge count as a single covariate. We applied an 
approach in Liu [40] to draw a privacy-preserving pos-
terior sample on θ and also sanitized the edge count 
via the Laplace mechanism, which has a sensitivity of 
1 (flipping a relation between two nodes changes the 
edge count in a network by at most 1). We equally 
split the total privacy budget ǫ between drawing a 
posterior sample of θ and sanitizing the edge count 
given a network. Given the privacy-preserving sam-
ple of θ and the sanitized edge count, we generated a 
privacy-preserving CTN under the constraint that 
its edge count equals to the sanitized edge count. We 
examine ǫ= 5, 2, 1, 0.5 . The ERGM model fitting and 
network simulation were completed using R package 
statnet [29]. We conduct two utility analyses. In the 
first analysis, we examine the preservation of qualita-
tive information and descriptive statistics in sanitized 

CTNs; in the second analysis, we run the ERGM on 
sanitized networks to examine the inference on the 
model parameter. m is set at 1 and 3, respectively, in 
these two analyses.

For the first utility analysis, we calculate some com-
mon network summary statistics, including edge 
counts, triangle counts, degree distribution (DD), 
edgewise shared partners distribution (ESPD), and 
two-node centrality measures in a sanitized network. 
Edge and triangle counts are the numbers of edges and 
triangles in a network. The DD in a network with n 
nodes consists of dk for k=0, . . . , n−1 , where dk is the 
number of nodes that share an edge with exactly k 
other nodes. The ESPD consists of espk/edge count for 
k=1, . . . ,≤ n(n− 1)/2 , where espk is the number of 
edges whose two nodes are both connected with 
exactly k other nodes than themselves. The between-
ness centrality measures the centrality of a node in a 
graph and is defined for node i as the proportion of the 
shortest paths that connect nodes j and j′ while pass-
ing through node i ( j  = j′  = i) among all shortest paths 
that connect nodes j and j′ . There are multiple defini-
tions of closeness centrality and we use 

(

Ai
n−1

)2
/Ci , 

where Ai is the number of reachable nodes from node 
i, and Ci is the sum of distances from node i to all 
reachable nodes. If no nodes are connected with node 
i, its closeness centrality is 0.

The visualization of a single sanitized CTN from 
one of the 500 repeats is presented in Fig.  5(a) and 

Table 5  Inference of ERGM parameter based on sanitized CTNs 
( m = 3 ; 500 repeats)

Original ǫ = 5 ǫ = 2 ǫ = 1 ǫ = 0.5

bias -0.021 -0.021 -0.026 -0.031 -0.051

RMSE 0.171 0.172 0.174 0.187 0.260

CP 0.942 0.954 0.954 0.952 0.944
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provides a big-picture comparison between the sani-
tized vs the original networks in terms of density, 
clustering, etc. In summary, the density of the sani-
tized CTNs via DP-ERGM is similar to the original 
CTN at all the examined ǫ values. Note the nodes in 
the sanitized networks do not match the nodes in the 
original CTN as DP-ERGM samples a whole new sur-
rogate network from a differentially private ERGM 
model for release. The edge and triangle counts of 
the original networks are 39 and 10, respectively. The 
average (standard deviation) edge counts over 100 
sanitized CTNs are 38 (6.4), 39 (3.1), 39 (1.4), and 
39 (0.7) at ǫ = 0.5, 1, 2, and 5, respectively; the aver-
age (standard deviation) triangle counts over 100 
sanitized CTNs are 13 (9.2), 12 (7.4), 11 (6.8), and 11 
(7.1) at ǫ = 0.5, 1, 2, and 5, respectively. These num-
bers are consistent with the observations in Fig. 5(a). 
Figures 5(b) and 5(c) depict the DD and ESPD of the 

sanitized CTN. In the latter, we also calculate the 
total variance distance (TVD) in ESPD between the 
sanitized and original CTNs, which are presented in 
Fig.  5(c). Figures  5(d) and 5(e) show the box plots of 
the betweenness centrality and closeness centrality 
of the 100 nodes in the original and sanitized CTNs. 
Though there is some deviation in the DD, ESPD, 
and the distributions of the centrality measures in 
the sanitized CTNs from the original, the deviation 
is rather mild. In addition, the statistics are relatively 
stable across ǫ.

For the second utility analysis, we fitted the ERGM on 
the sanitized CTNs to obtain privacy-preserving infer-
ence on θ , the coefficient associated with edge count in 
ERGM, via the inferential rule in Eqs. (5) and (6). The 
results are presented in Table 5. In summary, the results 
are acceptable for the ERGM analysis at all examined ǫ 
(especially for CP).

Fig. 5  Comparison between original and sanitized CTNs on various network structural statistics. a examples of sanitized CTNs. b degree 
distribution. c Edgewise shared partner distribution (ESPD). d betweenness centrality. e closeness centrality
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Summary
The simulation study suggests that the DP-ERGM 
approach can produce privacy-preserving CTNs that 
are structurally similar to original CTNs by various 
statistical measures. In addition, the utility of sani-
tized CTNs is relatively insensitive to ǫ for the exam-
ined range of [0.5,  5], implying that a small ǫ can be 
used to provide strong privacy guarantees without 
sacrificing much of the utility. The sanitized CTNs 
can be shared with researchers who are interested 
in learning more about CTNs during the pandemic, 
without compromising individual privacy at a pre-
specified privacy cost.

Conclusions
We use three common data types – surveillance case 
numbers, case location information, and contact tracing 
networks – collected during the COVID-19 pandemic 
to demonstrate the release and sharing of privacy-pre-
serving data. In each data case, we apply randomized 
mechanisms with formal privacy guarantees to sani-
tize and release information aiming at the preservation 
of statistical utility and aggregate information that can 
be used to infer underlying population parameters, as 
shown in the simulation studies and real-life applica-
tions. The approaches do not target learning individual-
level information, which not only conflicts with the goal 
of privacy protection but is also unnecessary for the 
purposes of mining and understanding population-level 
information.

DP and its various extensions are state-of-the-
art concepts in privacy research and are quickly 
adopted in practice. Some of the methods we have 
demonstrated in the study are basic and have been 
routinely applied for privacy protection, such as the 
flat sanitizer; and some are recently proposed, such 
as DP-ERGM. For all the data types and examples 
examined in this study, synthetic data are generated 
and released at a pre-specified privacy budget and 
users may perform their own analysis on the syn-
thetic data without having to worry about additional 
privacy loss. Our simulation studies suggest that dif-
ferent DP procedures for a given statistical analysis 
procedure may lead to different utilities of sanitized 
information and also vary in the easiness of imple-
mentation, an observation well documented in the 
literature and also one of the reasons why new DP 
methods are constantly proposed to improve on the 
existing methods with either better utility or more 
straightforward implementation. In addition, abso-
lute privacy protection for individuals in a dataset 
only exists on paper unless the released information 
is completely random or independent of the dataset. 

In reality, there is always some loss of privacy when 
releasing new and useful information; the choice of a 
proper privacy loss is a key step when implementing 
DP procedures.

We hope our study and the examples shed light on the 
privacy-preserving sharing of COVID-19 data to help pro-
mote and encourage more data sharing for research use. 
For future work on this topic, we will continue to develop 
methods to deal with more complicated COVID-19 data-
sharing situations, such as releasing travel trajectories 
of COVID-19 patients, longitudinal data, and dynamic 
CTNs, CTNs with nodal attributes, among others.
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