
Kulinskaya and Hoaglin ﻿
BMC Medical Research Methodology          (2023) 23:146  
https://doi.org/10.1186/s12874-023-01939-z

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Research
Methodology

On the Q statistic with constant weights 
in meta‑analysis of binary outcomes
Elena Kulinskaya1*† and David C. Hoaglin2† 

Abstract 

Background  Cochran’s Q statistic is routinely used for testing heterogeneity in meta-analysis. Its expected value 
(under an incorrect null distribution) is part of several popular estimators of the between-study variance, τ 2 . Those 
applications generally do not account for use of the studies’ estimated variances in the inverse-variance weights 
that define Q (more explicitly, QIV ). Importantly, those weights make approximating the distribution of QIV rather 
complicated.

Methods  As an alternative, we are investigating a Q statistic, QF , whose constant weights use only the studies’ arm-
level sample sizes. For log-odds-ratio (LOR), log-relative-risk (LRR), and risk difference (RD) as the measures of effect, we 
study, by simulation, approximations to distributions of QIV and QF , as the basis for tests of heterogeneity.

Results  The results show that: for LOR and LRR, a two-moment gamma approximation to the distribution of QF works 
well for small sample sizes, and an approximation based on an algorithm of Farebrother is recommended for larger 
sample sizes. For RD, the Farebrother approximation works very well, even for small sample sizes. For QIV , the standard 
chi-square approximation provides levels that are much too low for LOR and LRR and too high for RD. The Kulinskaya 
et al. (Res Synth Methods 2:254–70, 2011) approximation for RD and the Kulinskaya and Dollinger (BMC Med Res 
Methodol 15:49, 2015) approximation for LOR work well for n ≥ 100 but have some convergence issues for very small 
sample sizes combined with small probabilities.

Conclusions  The performance of the standard χ2 approximation is inadequate for all three binary effect measures. 
Instead, we recommend a test of heterogeneity based on QF and provide practical guidelines for choosing an appro-
priate test at the .05 level for all three effect measures.

Keywords  Effective-sample-size weights, Inverse-variance weights, Heterogeneity, Random-effects model

Background
When the individual studies in a meta-analysis report 
binary outcomes in the treatment and control arms, the 
most common measure of effect is the odds ratio (OR) 
or its log (LOR). The LOR is popular in medical research, 
but some substantive arguments favor the relative risk or 
risk ratio (RR) [1]. Popular measures of effect also include 
the risk difference (RD).

The standard random-effects analyses routinely assess 
heterogeneity by using Cochran’s Q statistic [2], whose 
definition involves estimated variances of the studies’ 
estimated effects. To indicate the role of those vari-
ances (in the reciprocal scale), we refer to the original 
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Q as QIV  . The inverse-variance weights, based on esti-
mated variances, underlie various shortcomings of that 
approach [3].

In studying estimation of the overall effect in random-
effects meta-analyses of the mean difference (MD), 
the standardized mean difference (SMD), and LOR, 
we found that SSW, a weighted mean whose constant 
weights involve only the studies’ arm-level sample sizes, 
performed well, avoiding shortcomings associated with 
estimators that use inverse-variance weights based on 
estimated variances [4, 5].

We also previously studied QF , a version of Cochran’s 
Q statistic that uses those constant weights. QF belongs 
to a class of generalized Q statistics introduced by Der-
Simonian and Kacker [6]. That work produced favorable 
results for the mean difference [7] and the standardized 
mean difference [8]. The present paper takes an impor-
tant further step by investigating QF for LOR, LRR, and 
RD.

The distribution of QIV  for binary effect measures is 
especially complex as it includes correlations between 
estimated weights and effects, and also depends on nui-
sance parameters, such as success probabilities in the 
control arms. The standard chi-square approximation is 
not reliable for small to medium sample sizes [9].

Zhang et  al. [10] includes an extensive overview of 
statistical models for meta-analysis, summarizes the 
six previous studies that compared procedures for test-
ing heterogeneity of binary-based effect measures, and, 
importantly, gives a comprehensive description of 30 
tests of between-study heterogeneity, accompanied by 
simulation estimates of the Type I error rates for 29 of 
those tests. However, those tests do not include gener-
alized Q statistics with constant weights, such as QF . In 
most situations they considered, Zhang et al. [10] recom-
mend the test proposed by Kulinskaya and Dollinger [11].

In another recent publication, in the setting of sparse 
data under the Poisson distribution (i.e., small counts of 
events) Sangnawakij et al. [12] develop an exact test for 
heterogeneity of relative risks (i.e., ratios of event rates). 
Unfortunately, their simulations are limited to very sparse 
data (the total number of events in the two groups is 1 or 
2) and appear to show deterioration in the achieved levels 
when the number of studies exceeds 10.

To approximate the null distribution (no heterogene-
ity) of QF , we derive the conditional central moments of 
LOR, LRR, and RD, and investigate the use of the Fare-
brother approximation and a two-moment gamma-
approximation. Simulation of the actual null distribution 
of Q for LOR, RR, and RD enables us to study the accu-
racy of approximations for those null distributions and 
the empirical level when τ 2 = 0 . For comparison we 
include the usual version of Q ( QIV).

Section  “Study-level estimation of log-odds-ratio, log-
risk-ratio, and risk difference” briefly reviews study-level 
estimation of LOR, LRR, and RD. Section  “Random-
effects model and the Q statistic” reviews the generic 
random-effects model and describes the Q statistic. Sec-
tion “Approximations to the null distributions of QF and 
QIV” discusses approximations to the distributions of 
QF and QIV  . Section  “Results” describes the simulation 
design and summarizes the results. Section  “Example: 
Smoking cessation” examines an example of meta-analy-
sis using LOR and LRR. Sections “Discussion” and “Con-
clusions” offer a discussion and conclusions.

Methods
Study‑level estimation of log‑odds‑ratio, log‑risk‑ratio, 
and risk difference
Consider K studies that used a particular individual-level 
binary outcome. Study i ( i = 1, . . . ,K  ) reports XiT and XiC , 
the numbers of events in the niT subjects in the Treatment 
arm and the niC subjects in the Control arm. It is customary 
to treat XiT and XiC as indep`endent binomial variables:

The log-odds-ratio for Study i is

where p̌ij is an estimate of pij.
As inputs, a two-stage meta-analysis uses estimates of 

the θi ( ̂θi ) and estimates of their variances ( ̂v2i  ). It is help-
ful to have an unbiased estimator of θ . For a binomial 
random variable X ∼ Bin(n, p) , we denote the maxi-
mum-likelihood (ML) estimator of p by p̃ = X/n . Böh-
ning and Viwatwongkasem [13] studied estimators of p 
of the form (X + a)/(n+ 2a) . Use of a = 0.5 and hence 
p̂ = (X + 0.5)/(n+ 1) eliminates O(1/n) bias and pro-
vides the least biased estimator of LOR [14]. We use p̂ 
when estimating LOR, but also, for comparison, retain 
the use of p̃ in standard methods.

The (conditional, given the pij and nij ) asymptotic vari-
ance of θ̂i , derived by the delta method, is

estimated by substituting p̂ij for pij . This estimator of the 
variance is unbiased in large samples, but Gart et al. [14] 
note that it overestimates the variance for small sam-
ple sizes. They also give approximate conditional higher 
moments of LOR.

(1)XiT ∼ Bin(niT , piT ) and XiC ∼ Bin(niC , piC ).

(2)
𝜃i = loge

(

piT (1 − piC )

piC (1 − piT )

)

estimated by

𝜃̌i = loge

(

p̌iT (1 − p̌iC )

p̌iC (1 − p̌iT )

)

,

(3)

v2
i
= Var(𝜃̂i) =

1

niTpiT (1 − piT )
+

1

niCpiC (1 − piC )
,
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The log-risk-ratio (LRR) for Study i is

where p̌ = (X + 1/2)/(n+ 1/2) provides an unbiased 
(to order O(n−2

) ) estimate of log(p) [15]. An unbiased (to 
O(n−3

) ) estimate of the variance of ρ̂ [15] is

and Pettigrew et  al. [15] also give approximate condi-
tional higher moments for log(p̂).

The risk difference (RD) for Study i is

Its variance is

estimated by substituting p̃ for p. The moments of the 
binomial distribution directly yield the conditional higher 
moments of RD.

All three binary effect measures (LOR, LRR, and RD) 
have the form η = h(pT )− h(pC) . This relation facili-
tates calculation of conditional moments of η̂ from the 
moments of h(p). Additional file 1 gives the details. Even 
when they are not available in closed form, our simula-
tions yield an exact calculation of conditional central 
moments of η̂ for all three effect measures, similar to the 
implementation of Kulinskaya and Dollinger [11] for LOR.

Random‑effects model and the Q statistic
We consider a generic random-effects model: For Study i 
( i = 1, . . . ,K  ) the estimate of the effect is θ̂i ∼ G(θi, v

2
i ) , 

where the effect-measure-specific distribution G has 
mean θi and variance v2i  , and θi ∼ N (θ , τ 2) . Thus, the θ̂i are 
unbiased estimates of the true conditional effects θi , and 
the v2i = Var(𝜃̂i|𝜃i) are the true conditional variances.

Cochran’s Q statistic is a weighted sum of the 
squared deviations of the estimated effects θ̂i from their 
weighted mean θ̄w =

∑
wiθ̂i/

∑
wi:

In [2] wi = 1/v̂2i  , the reciprocal of the estimated vari-
ance of θ̂i , hence the notation QIV  . In what follows, we 
examine QF , discussed by DerSimonian and Kacker [6] 
and further studied by Kulinskaya et  al. [7], in which 
the wi are arbitrary positive constants. In QF we specify 

(4)
𝜌i = loge(piT ) − loge(piC ) estimated by

𝜌̂i = loge(p̌iT ) − loge(p̌iC ),

(5)

�Var(𝜌̂) =
1

XT + 1∕2
−

1

nT + 1∕2
+

1

XC + 1∕2
−

1

nC + 1∕2
,

(6)
�i = piT − piC estimated by �̂i = p̃iT − p̃iC .

Var(Δ̂i) = piT (1 − piT )∕niT + piC (1 − piC )∕niC ,

(7)Q =

∑
wi(θ̂i − θ̄w)

2.

wi = ñi = niCniT /ni , the effective sample size in Study i 
( ni = niC + niT).

Define W = wi , qi = wi/W  , and �i = θ̂i − θ . In this 
notation, and expanding θ̄w , Eq. (7) can be written as

We distinguish between the conditional distribu-
tion of Q (given the θi ) and the unconditional distri-
bution, and the corresponding moments of �i . For 
instance, the conditional second moment of �i is 
Mc

2i = v2i  , and the unconditional second moment is 
M2i = E(Θ2

i
) = Var(𝜃̂i) = E(v2

i
) + 𝜏

2.
Under the generic REM, it is straightforward to 

obtain the first moment of QF  as

This expression is similar to Eq. (4) in [6]; DerSimonian 
and Kacker use v2i  instead of its unconditional mean E(v2i ).

Kulinskaya et  al. [7] also provide expressions for the 
second and third moments of QF  , but these moments 
require higher moments of � , up to the fourth and the 
sixth moments, respectively. The variance of Q is given 
by

where M4i = E(�4
i ) is the fourth (unconditional) central 

moment of θ̂i.
Section "Study-level estimation of log-odds-ratio, 

log-risk-ratio, and risk difference"  discusses obtaining 
the conditional moments of LOR, LRR, and RD. How-
ever, the unconditional moments depend on the mech-
anism generating the arm probabilities piC and piT .

In the standard REM for LOR, we would assume 
logit(piT ) = logit(piC)+ θi for θi ∼ N (θ , τ 2) . The inter-
cept piC may also be random (i.e., piC ∼ H(·) ). Further, 
piC and piT  may be correlated. Similarly, in the stand-
ard REM for RD, we would assume piT = piC +�i for 
�i ∼ N (�, τ 2) . However, the distribution of �i needs 
to be restricted, to ensure that probabilities lie within 
(0,1). Before this is resolved, we cannot derive uncon-
ditional moments of RD. Similarly, for LRR, we assume 
that piT = exp(log piC + ρi) , and the distribution of ρi 
needs to be restricted to keep values of piT  within (0,1). 
Bakbergenuly et al. [16] give a detailed discussion.

(8)Q = W




�

qi(1− qi)�
2
i −

�

i �=j

qiqj�i�j



.

(9)
E(QF ) = W

[

∑

qi(1 − qi)Var(Θi)

]

= W
[

∑

qi(1 − qi)(E(v
2

i
) + �

2)

]

.

(10)

W −2Var(Q) =
∑

i

q2
i
(1 − qi)

2(M4i −M2

2i
) + 2

∑

i≠j

q2
i
q2
j
M2iM2j ,
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Fortunately, in the fixed-intercept models (i.e., when 
the piC are fixed), assuming also homogeneity of effects 
( τ 2 = 0 ), the unconditional and conditional moments 
of each binary effect measure coincide. Therefore, the 
conditional moments of Q are sufficient to obtain a 
moment-based approximation to the distribution of QF 
under homogeneity.

Approximations to the null distributions of QF and QIV

For meta-analysis of mean differences (MD), Kulinskaya 
et  al. [7] considered the distribution of QF , a quadratic 
form in normal variables, which has the form Q = �

TA� 
for a symmetric matrix A of rank K − 1 . Because, for 
MD, the vector � has a multivariate normal distribu-
tion, N (µ,�) , the distribution of QF can be evaluated by 
the algorithm of Farebrother [17] (after determining the 
eigenvalues of A� and some other inputs). If the vari-
ances in � are the true variances, Farebrother’s algorithm 
evaluates the exact distribution of Q. In practice (as 
in our simulations), it is necessary to plug in estimated 
variances. Encouragingly, the resulting approximation is 
quite accurate for MD. Kulinskaya et al. [7] also consid-
ered a two-moment approximation and a three-moment 
approximation. The three-moment approximation regu-
larly encountered numerical problems, so we do not 
include it here.

For the binary effect measures, QF is a quadratic form 
in asymptotically normal variables. The Farebrother algo-
rithm may provide a satisfactory approximation for larger 
sample sizes, though it may not behave well for small n. 
To apply it, we again plug in conditional or unconditional 
estimated variances. (In the fixed-intercept models, the 
two coincide under the null, τ 2 = 0 .) We investigate the 
quality of that approximation, which we denote by F SSW, 
and the two-moment approximation (2M SSW), which 
is based on the gamma distribution. For each of these 
two approximations, we investigate two approaches to 
estimating piT to plug into the calculation of the second 
and fourth central moments of an effect measure, η̂i . The 
“naïve” approach estimates piT from XiT and niT . For the 
“model-based” approach, we observe that each of LOR, 
LRR, and RD has the form η = h(pT )− h(pC) , which 
facilitates calculation of conditional moments of η̂ from 
the moments of h(p). We obtain estimated moments 
from the relation ĥ(piT ) = ĥ(piC)+ η̄ for a fixed-weights 
mean effect η̄ . Thus, we study four new approximations to 
the null distribution of QF : F SSW naïve, F SSW model, 
2M SSW naïve, and 2M SSW model.

The null distribution of QIV  is usually approximated by 
the chi-square distribution with K − 1 degrees of free-
dom. For the binary effect measures, as also for both MD 
and SMD, this approximation is not accurate for small 
sample sizes [9]. For RD and LOR, Kulinskaya et al. [18] 

and Kulinskaya and Dollinger [11], respectively, provided 
an improved approximation to the null distribution of 
QIV  based on a two-moment gamma approximation; we 
denote the approximation for LOR by KD and that for 
RD by KDB. Biggerstaff and Jackson [19] used the Fare-
brother approximation to the distribution of a quad-
ratic form in normal variables as the “exact” distribution 
of QIV  . Jackson et  al. [20] extended this approach to a 
Q with arbitrary weights in a meta-regression setting. 
When τ 2 = 0 , the Biggerstaff and Jackson [19] approxi-
mation to the distribution of QIV  is the χ2

K−1 distribution.

Results
Simulation design
Our simulation design follows that described in [5]. Mainly, 
we varied four parameters: the overall true effect ( θ , ρ , or � ), 
the number of studies (K), the studies’ total sample size (n or 
n̄ , the average sample size), and the probability in the control 
arm ( piC ). We kept the proportion of observations in the 
control arm (f) at 1/2. We generated only the null distribu-
tion of Q (the between-studies variance τ 2 = 0 ). To study 
power of the test for heterogeneity of LOR, however, we also 
varied the between-studies variance ( τ 2).

For LOR the values of θ (0, 0.1, 0.5, 1, 1.5, and 2) aim to 
represent the range containing most values encountered 
in practice. LOR is a symmetric effect measure, so posi-
tive values of θ suffice. However, for RR we considered both 
negative and positive values of ρ from −1.5 to 1.5 in steps 
of 0.5. For RD, for comparative purposes, we used the same 
pairs (piC , piT ) as for RR. Table 1 gives the details.

The numbers of studies (K = 5, 10, and 30) reflect the 
sizes of many meta-analyses and have yielded valuable 
insights in previous work.

The values of τ 2 (0(0.1)1) systematically cover a reason-
able range.

In practice, many studies’ total sample sizes fall in the 
ranges covered by our choices (n = 20, 40, 100, and 250 
when all studies have the same n, and n̄ = 30, 60, 100, and 
160 when sample sizes vary among studies). The choices 
of sample sizes corresponding to n̄ follow a suggestion of 
Sánchez-Meca and Marín-Martínez [21], who constructed 
the studies’ sample sizes to have skewness 1.464, which 
they regarded as typical in behavioral and health sciences. 
For K = 5 , Table 1 lists the sets of five sample sizes. The 
simulations for K = 10 and K = 30 used each set of une-
qual sample sizes twice and six times, respectively.

The values of piC are .1, .2, and .5 to provide a typical 
range of small to medium risks.

The values of piC and true effect ( θi , ρi or �i ) defined 
the probabilities piT , and the counts XiC and XiT were 
generated from the respective binomial distributions. We 
used a total of 10, 000 repetitions for each combination of 
parameters. We discarded “double-zero” and “double-n” 
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studies and reduced the observed value of K accordingly. 
Next, we discarded repetitions with K < 3 and used the 
observed number of repetitions for analysis.

R statistical software [22] was used for simulations. The 
user-friendly R programs implementing our methods are 
available in [23], and we report the detailed simulation 
results in [24].

Evaluating the approximations to the null distributions 
of QF and QIV

Under the null hypothesis the p-values of a parametric 
test, obtained from the (continuous) distribution func-
tion of the test statistic, are uniformly distributed on 
[0, 1] . Our simulations produce information on the accu-
racy of an approximation, F̂  , for the distribution func-
tion of Q. From the value of Q in each of M iterations, 
we calculate the p-value, p̃ = 1− F̂(Q) . For selected 
values of the upper tail area p, the results of the M iter-
ations yield p̂(F̂ , p) = #(p̃ < p)/M , which estimates 
P(1− F̂(Q) < p) , the actual level (or rejection rate) of 
the approximate test based on Q, at nominal level p. Con-
veniently, this approach does not require the true distri-
bution function of Q, which is generally not available in 
closed form.

We can examine these results by plotting p̂(F̂ , p) versus 
p, a type of probability–probability (P–P) plot [25]. To 
focus on the difference, we flatten the P–P plot by plot-
ting the error, p̂(F̂ , p)− p versus p. The importance of a 
given error varies with p (e.g., the error cannot be more 
negative than −p ), so a further step plots the relative 
error, (p̂(F̂ , p)− p)/p versus p. Because of the use of the 

values of p̃ in assessing heterogeneity, we judge the per-
formance of the approximations by their relative errors 
when p is in the usual range, say from .01 to .1. The fig-
ures for relative error in the next sections go a little far-
ther, to p = .25.

To show the performance of various tests of hetero-
geneity, we plot achieved empirical levels of the corre-
sponding approximations at the nominal .05 level versus 
θ , ρ , and � , respectively. The figures show 0 ≤ θ ≤ 2 for 
LOR, −0.5 ≤ ρ ≤ 1.5 for LRR, and −0.04 ≤ � ≤ 0.35 for 
RD. For LOR, we also plot empirical power of the tests 
based on the approximations under study at the nominal 
.05 level versus τ 2.

Figures 1, 2, 3, 4, 5, 6 and 7 are based on piC = .1 . Addi-
tional figures for piC = .2 and piC = .5 are in Additional 
file 1.

Our full simulation results are available as an arXiv 
e-print [24]. The figures in the e-print include flattened 
P–P plots for p = .001, .0025, .005, .01, .025, .05, .1, .25, .5 
and the complementary values .75, ..., .999, and plots at 
empirical level .05, but not relative error plots.

Although the summaries do not separate QF and QIV  , the 
two 2M SSW approximations and the two F SSW approxi-
mations pertain to the null distribution of QF , and ChiSq, 
KD, and KDB pertain to the null distribution of QIV .

Simulation results for approximations to the null 
distributions of QF and QIV for LOR
Relative error
None of the six approximations has smaller relative error 
than any of the others. ChiSq, however, often has the largest 

Table 1  Values of parameters in the simulations

Parameter Equal study sizes Unequal study sizes

K (number of studies)  5, 10, 30

n or n̄ (average (individual) study size — 20, 40, 100, 250 30 (12,16,18,20,84),

  total of the two arms) 60 (24,32,36,40,168),

  For K = 10 and K = 30 , the same set of unequal 100 (64,72,76,80,208),

  study sizes is used twice or six times, respectively. 160 (124,132,136,140,268)

f (proportion of observations in the control arm) 1/2

  piC (probability in the control arm) .1, .2, .5

  θ (true value of LOR) 0, 0.1, 0.5, 1, 1.5, 2

  τ
2 (variance of random effects for LOR) 0(0.1)1

ρ (fixed value of LRR)

  For piC = .1 or .2  −0.5 , 0, 0.5, 1, 1.5

  For piC = .5 −1.5 , −1 , −0.5 , 0, 0.5

pT  (fixed probability in the treatment arm)

  for RD (and for RR),

  when piC = .1 .06, .10, .16, .27, .45

  when piC = .2 .12, .20, .33, .54, .90

  when piC = .5 .11, .18, .30, .50, .82
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Fig. 1  Relative error in the level of the test for heterogeneity of log-odds-ratio, vs upper tail area, for four approximations to the null distribution 
of QF and two approximations to the null distribution of QIV , when piC = .1 . The rows correspond to the combinations of θ = 0 and θ = 1.5 with 
n = 40 and n = 100
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Fig. 2  Empirical levels at nominal level of significance .05, vs θ , for four approximations to the null distribution of QF for log-odds-ratio and for two 
approximations to the null distribution of QIV , when piC = .1 . First three rows: equal sample sizes n = 40, 100 and 250; fourth row: unequal sample 
sizes, n̄ = 160
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Fig. 3  Empirical power at nominal level α = .05 vs τ 2 , for four approximations to the distribution of QF for log-odds-ratio and for two 
approximations to the null distribution of QIV , when piC = .1 , f = .5 , equal sample sizes. The rows correspond to the combinations of θ = 0 and 
θ = 1.5 with n = 40 and n = 100
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Fig. 4  Relative error in the level of the test for heterogeneity of log-relative-risk, vs upper tail area, for four approximations to the null distribution of 
QF and the chi-square approximation to the null distribution of QIV , when piC = .1 . The rows correspond to the combinations of ρ = 0 and ρ = 1.5 
with n = 40 and n = 100
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Fig. 5  Empirical level at nominal level of significance .05, vs ρ , for four approximations to the null distribution of QF for log-relative-risk and for the 
standard chi-square approximation to the null distribution of QIV , for unequal sample sizes, n̄ = 60 and 160. First two rows: piC = .1 ; second two 
rows: piC = .2
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Fig. 6  Relative error in the level of the test for heterogeneity of risk difference, vs upper tail area, for four approximations to the null distribution of 
QF and two approximations to the null distribution of QIV , when piC = .1 . The rows correspond to the combinations of � = 0 and � = 0.35 with 
n = 20 and n = 40
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Fig. 7  Empirical level at nominal level of significance .05, vs � , for four approximations to the null distribution of QF for risk difference and for two 
approximations to the null distribution of QIV , when piC = .1 . First two rows: equal sample sizes n = 40 and 100; second two rows: unequal sample 
sizes, n̄ = 30 and 100
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relative error (in magnitude), at values of p that matter in 
practice. Also, situations with K = 30 and small n (or n̄ ) are 
especially challenging for all six approximations.

Figure  1 shows relative error when piC = .1 . For 
θ ≤ 0.5 , 2M SSW naïve has relative error closest to 0 
when n ≤ 40 (KD is second best), and 2M SSW model 
and F SSW model are the best approximations when 
n ≥ 100 . However, when θ ≥ 1 , ChiSq is always the 
worst, and the performance of the other approximations 
varies with n and θ . For example, F SSW naïve is no better 
than ChiSq when n ≤ 40 , is slightly better when n = 100 , 
and has very little error when n = 250 ; KD has substan-
tial negative error when n = 20 , is inferior to 2M SSW 
naïve when n = 40 , and has small positive error (increas-
ing with K) when n = 100 . As a single choice when θ ≥ 1 , 
2M SSW naïve seems satisfactory.

When piC = .2 , 2M SSW naïve works well for n ≤ 40 , 
but F SSW naïve is best when n ≥ 100 (Fig. A.1).

When piC = .5 , F SSW naïve is the best approxima-
tion for n ≤ 100 when θ ≤ 1 . For θ ≥ 1.5 , F SSW model 
works better than F SSW naïve for n < 100 . (Figure A.2). 
Results are similar for equal and unequal sample sizes.

In the above summary, the dependence on piC and θ 
shows the challenge of choosing an approximation for the 
null distribution of Q for LOR. We can readily exclude 
ChiSq, which never fits the distribution of QIV  well. Oth-
erwise, the best approach is unclear.

Empirical level
When piC = .1 , all methods are rather erratic for very 
small sample sizes. But, for equal sample sizes as small as 
40, 2M SSW naïve has reasonable empirical levels, from 
.045 to .07 when K ≤ 10 . For K = 30 , its levels are too 
high for θ < 0.5 , but close to the nominal .05 thereafter 
(Fig.  2). 2M SSW naïve also performs well for unequal 
sample sizes when n̄ = 60 (not shown). When n ≥ 100 , 
F SSW model performs as well as or better than (for 
larger K) 2M SSW naïve, with levels for both methods 
somewhat lower than nominal. KD also has reasonable 
levels, somewhat higher than nominal, when K = 5 and 
10. F SSW naïve and ChiSq both have very low levels for 
n < 100 , but when n = 250 , F SSW naïve achieves prac-
tically nominal levels. KD is then the second best, with 
levels between .05 and .06, and levels of all other methods 
are too low. The behavior is similar for unequal sample 
sizes, as Fig. 2 shows for n̄ = 160.

When piC = .2 , 2M SSW naïve and F SSW model 
(for θ < 0.5 ) are the best choices for small sample sizes 
such as n̄ = 30 and n = 40 , and F SSW naïve is the best 
choice for n ≥ 100 or n̄ ≥ 100 , achieving nominal lev-
els (Fig.  A.3). KD is second best, with levels that are 

somewhat too high, and all other methods have very low 
empirical levels.

When piC = .5 , F SSW model performs very well for 
very small sample sizes, n = 20 and n̄ = 30 . F SSW naïve 
and KD are the best choices for n ≥ 100 , though the for-
mer’s levels are somewhat too low when θ = 2 (Fig. A.4).

In summary, 2M SSW naïve is the best choice for small 
sample sizes, and F SSW naïve works well for large sam-
ple sizes, when LOR is approximately normal. This is 
achieved when n ≥ 100 for piC ≥ .2 and only at n = 250 
for piC = .1 . KD is also a good choice when n ≥ 100.

Empirical power
Proper comparisons of power assume that the tests have 
the same level (rejection rate under the null hypothesis). 
We have not attempted to modify the approximations, to 
align their levels with the nominal .05 level. Thus, our sim-
ulations yielded empirical power at the nominal .05 level.

All methods have rather low empirical power when 
n ≤ 40 . It increases with n, K, θ , and piC . K has the 
strongest impact, followed by piC , θ , and n. The order of 
the actual levels for all tests mostly defines the order of 
their power at all τ 2 values. The only exception is that the 
power curves of ChiSq and F SSW naïve sometimes cross 
(Figs. 3, A.5, A.6).

ChiSq has the lowest empirical power. For example, 
when piC = .1 , θ = 0 , and n = 40 , its power is less than 
.05 for 0 ≤ τ

2
≤ 0.7 . Depending on n and θ , either 2M 

SSW naïve or F SSW naïve is usually the second worst, 
probably because their actual levels are too low. All three 
have extremely low power when n ≤ 40 . KD also has very 
low power when n = 20 , but its power improves, starting 
at n = 40 ; it often has the highest power when n ≥ 100 , 
but its levels are also too high then.

Overall, when piC = .1 , power is reasonable when 
n ≥ 100 and K = 30 , Fig. 3, or when n = 250 for smaller 
K. For piC ≥ .2 , power improves when n ≥ 40 , and all 
methods have similar power when n ≥ 100 (Figs. A.5, A.6).

Simulation results for approximations to the null 
distributions of QF and QIV for LRR
2M SSW model and F SSW naïve often failed to converge 
for large values of ρ , especially for small n. As an exam-
ple, for piC = .1 , K = 30 , and ρ = 1.5 , the number of 
repetitions that converged was only 716 when n = 20 and 
only 1890 when n = 40 . Similarly, even more problem-
atic combinations of parameters were piC = .2 , ρ = 1.5 , 
K = 5, 10 and 30 and piC = .5 , θ = 0.5 , K = 5, 10 and 
30, where only a few repetitions converged. For some of 
these combinations (but not for others), piT was rather 
high, at .82 or .9, perhaps resulting in removal of more 
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“double-n” studies. In our plots, we discarded all combi-
nations that had less than 20% convergence.

Relative error
Figure  4 shows that, when piC = 0.1 , four of the five 
approximations are completely unsatisfactory for very 
small sample sizes. 2M SSW naïve is better than the 
others for p between .01 and .1, but far from usable. For 
n ≥ 100 , F SSW model, 2M SSW model, and 2M SSW 
naïve usually provide a reasonable fit when ρ ≤ 1 , and 
2M SSW naïve is better than the other two for larger ρ . 
Overall, the quality of all approximations deteriorates 
as K increases.

When piC = 0.2 , 2M SSW naïve is best for n = 20 , 
and both 2M approximations work well for n = 40 . For 
n ≥ 100 , F SSW naïve is the best when ρ ≤ 1 , but ChiSq 
is the best when ρ = 1.5 (Fig. A.7).

When piC = .5 , 2M SSW naïve is a good choice for 
small n when ρ ≤ 0 , but F SSW model appears to fit better 
when ρ > 0 or n ≥ 100 . Uncharacteristically, ChiSq is also 
not a bad choice when piC = .5 and ρ > 0 (Fig. A.8).

Empirical level
For very small sample sizes and piC = .1 , no tests are 
reliable. 2M SSW naïve is the best choice from n = 40 
or n̄ = 30 to n = 100 (Figs.  5 and A.9), though when 
n = 40 it behaves erratically for K = 30 (Fig.  A.9). For 
these sample sizes, the levels of 2M SSW naïve are 
often below nominal, though they typically stay above 
.03. For larger sample sizes, the levels become too low, 
and we do not recommend 2M SSW naïve then. F SSW 
model works well when K = 5 and n = 100 for equal, 
but not for unequal, sample sizes.

ChiSq and F SSW naïve have extremely low levels, 
near zero, for n ≤ 100 . The levels improve for larger 
sample sizes, with F SSW naïve approaching nominal 
levels faster. By n̄ = 160 , this is the best method when 
ρ ≥ 0 , and the levels are around .03 at .05 nominal. By 
n = 250 , F SSW naïve holds the nominal .05 level well. 
For ρ < 0 (i.e., for small probabilities in both arms), F 
SSW model works well when n̄ = 160 . For larger ρ and 
K = 5 or 10, ChiSq seems better than F SSW model.

When piC = .2 , 2M SSW naïve is the best approxima-
tion for n < 100 , and F SSW naïve for n ≥ 100 (Figs. 5 
and A.9).

When piC = .5 , F SSW model is the best method in 
all cases (Fig. A.10).

In summary, we recommend 2M SSW naïve for 
n < 100 and F SSW naïve for larger sample sizes when 
piC ≤ .2 . The choice between the two methods for 
n = 100 depends on the value of piC : 2M SSW naïve 

when piC = .1 , F SSW naïve when piC = .2 . When 
piC = .5 , F SSW model is the best choice.

Simulation results for approximations to the null 
distributions of QF and QIV for RD
Only KDB had convergence issues for very small sample 
sizes combined with small probabilities. The worst con-
vergence, only 35.3%, occurred for piC = .1 , � = −0.04 
and K = 5 . For n = 40 , the same configuration resulted 
in 83.8% convergence. The only other problematic config-
uration was piC = .2 , � = −0.08 , n = 20 and K = 5 , with 
a convergence rate of 86.1%.

Relative error
Figure  6 shows that the 2M SSW model and F SSW 
model approximations fit well when piC = .1 , starting 
from n = 20.

When piC = .2 (Fig. A.11), 2M SSW model and F SSW 
model work well for small sample sizes, and so does KDB 
unless � ≥ 0.7 , making piT ≥ .9 . In that case, both SSW 
naïve approximations work well.

When piC = .5 (Fig. A.12), 2M SSW model and F SSW 
model work well for n ≥ 20 . All approximations fit rea-
sonably well for n ≥ 100.

Empirical level
Empirical levels of the F SSW model approximation to the 
null distribution of QF are reasonably close to the nomi-
nal .05 level for equal sample sizes as low as n = 20 and 
unequal sample sizes as low as n̄ = 30 , and the 2M SSW 
model approximation is almost as good. For piC = .1 , the 
empirical levels are about .03 at � = −0.04 but increase 
to .04 or better for non-negative values of � . When 
n ≥ 100 or n̄ ≥ 100 , both approximations are very close 
to the nominal level. The KDB approximation is much too 
conservative for small sample sizes, but by n = 100 it has 
levels between .04 and .05 for � ≥ 0 . The naïve approxi-
mations to the distribution of QF have levels that are too 
high for � ≥ 0 and decrease slowly with n, to between .05 
and .06 at n = 100 . ChiSq has even higher levels, espe-
cially for large values of � at K = 30 . When n = 100 , its 
levels are between .07 and .09 at K = 30 (Fig. 7).

For piC = .2 , the results are similar. The two model-
based approximations provide very good results by 
n = 40 or n̄ = 60 , KDB performs somewhat better, and, 
for K = 30 and large � , ChiSq is even worse (Fig. A.13). 
The results are also similar for piC = .5 . The main differ-
ence is that achieved empirical levels are relatively insen-
sitive to increase in � . Thus, for n = 100 , ChiSq provides 
stable levels of about .06 for K = 5 , .07 for K = 10 and 
.08 for K = 30 (Fig. A.14).
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In summary, we recommend using F SSW model, 
which provides very good results for very small sample 
sizes, n = 20 or n̄ = 30.

Example: Smoking cessation
Stead et  al. [26] conducted a systematic review of 
clinical trials on the use of physician advice for smok-
ing cessation. We use the data from the subgroup of 
interventions in which the treatment involved only 
one visit (Comparison 3.1.4, p. 54). The first version of 
the report was published in 2001. In an update, pub-
lished in 2004, 17 studies included this comparison. 
The 2013 update includes one more study, by Unrod 
(2007). For each study, Table A.1 gives the number of 
subjects in the Treatment and Control arms and the 
number who were nonsmokers at the longest follow-
up time reported (either 6 months or 12 months). The 
definition of “nonsmoker” varies among the studies. 
Some studies required sustained abstinence, and oth-
ers only asked about smoking status at that time (point 
prevalence). Stead et al. analyzed relative risk. We ana-
lyze both odds ratio and relative risk. Kulinskaya and 
Dollinger [11] analyzed the odds ratio. Figure 8 shows 
that both OR and RR are reasonable effect measures 
for these data.

One feature of the figure stands out: the single-visit 
interventions were not a great success. No study’s ces-
sation rate exceeded 20%. Interestingly, of the seven 
studies with cessation rates above 10% in the Treatment 

arm, all reported a point prevalence based on subjects’ 
self-reports, and only two of them used any validation 
(e.g., expired CO or salivary cotinine). (Two studies 
reported relatively low point prevalence, and one of 
those used a form of validation.) The weaker the out-
come measure, the easier it is to achieve success.

The studies were mostly balanced, though two studies 
had substantially more subjects in the treatment arm. 
Sample sizes varied from 182 to 3128, with an average of 
836 patients per study. The mean probabilities of smok-
ing cessation were rather low in both arms, at .058 in the 
treatment arm and .043 in the control arm.

The standard LOR IV-based meta-analysis of the origi-
nal 17 studies by the method of Mandel and Paule (MP) 
[27] used by Stead et  al. gives θ̂ = 0.4774 with stand-
ard error 0.1148 and p < .0001 for the intervention 
effect ( ̂τ 2MP = 0.0754 ). The fixed-weights effect estimate 
of LOR is higher, at 0.7127. QIV = 24.84 , and the chi-
square approximation on 16 df provides a p-value of .079. 
Table 2 gives the p-values for all methods of testing het-
erogeneity. As the sample sizes are rather high, our simu-
lations suggest that the KD and F SSW model methods 
give p-values closest to nominal (Fig. 2, row 4). These two 
p-values are .035 and .05, respectively. F SSW naïve gives 
a similar p-value of .38. The other three methods provide 
considerably higher p-values.

The results for LRR in these 17 studies are simi-
lar. The standard MP IV-based meta-analysis for LRR 
results in ρ̂ = 0.4369 with standard error 0.1105 and 

Fig. 8  Observed values of p̂iT  vs p̂iC (blue dots) for the original 17 studies in the meta-analysis by Stead et al. [26] of single-visit interventions for 
smoking cessation, and their expected values obtained by the IV MP method. Green: based on LRR ρ̂ = 0.4369 ; red: based on LOR θ̂ = 0.4774
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p < .0001 for the intervention effect ( ̂τ 2MP = 0.0759 ). 
The fixed-weights effect estimate of LRR is higher, at 
ρ̂ = 0.6883 . The QIV  statistic is 25.69, with a chi-square-
based p-value of .059. Table  2 shows the p-values for 
all methods. From our simulation results (Fig.  5, row 
4), we expect the F SSW naïve method to have p-value 
closest to nominal at .032, and the rest of the methods 
to give somewhat higher p-values. This is exactly what 
happens in this example.

In the analysis of LOR, addition of the 18th study 
somewhat increased the p-value for the standard Q test, 
to .107, and the KD p-value to .052, but it hardly affected 
the p-values of the four new methods. The recommended 
F SSW naïve test rejects homogeneity of LRR at the .05 
significance level, with p = .033.

Discussion
Cochran’s Q statistic [2] is widely used for testing het-
erogeneity in meta-analysis. It also underlies a number 
of popular estimators of the heterogeneity variance τ 2 . 
Therefore, reliable approximations for its null distribution 
are important to the practice of meta-analysis. However, 
its use of inverse-variance weights based on estimated 
variances and the complicated relation between effect 
measures and those weights make it difficult to obtain 
good approximations to the null distribution of QIV  . Our 
previous work for the mean difference and the standard-
ized mean difference [7, 8] considered, instead, approxi-
mations to the null distribution of the alternative statistic 
QF , which uses weights based on effective sample sizes. 
For both effect measures, the Farebrother approximation 
worked well.

In the present study, we proposed four new approxi-
mations to the null distribution of QF for the three 
binary effect measures, LOR, LRR, and RD, and inves-
tigated their quality by simulation. For comparison, we 
also considered two approximations to the correspond-
ing null distributions of QIV  : the standard chi-square 
approximation and the improved approximations by 
Kulinskaya et  al. for RD [18] and Kulinskaya and Doll-
inger for LOR [11].

The four new approximations are based on the Fare-
brother approximation, which works well under nor-
mality, and the two-moment gamma approximation. 
For each of these approximations, we investigated two 
approaches to estimation of piT  (which is used in the 
calculation of the second and fourth central moments of 
an effect measure): “naïve” estimation of piT  from XiT 
and niT  and “model-based” estimation, which uses the 
fixed-effects meta-analysis estimate of the overall effect 
to obtain p̂iT  from p̂iC . Overall, the 2-moment gamma 
approximation proved better for small sample sizes and/
or probabilities, where the distributions of the binary 
effect measures are far from normal. However, the find-
ings are not straightforward and very much depend on 
the particular effect measures and configurations. The 
risk difference presents the best-case scenario: the F 
SSW model approximation provides very good results 
for very small sample sizes, n = 20 and n̄ = 30.

Including previous work [7, 8], we now have extensive 
results, for five common measures of effect (MD, SMD, 
LOR, LRR, and RD), on the performance of QF , on accu-
racy of approximations to its distributions, and on com-
parisons with QIV  . The details confirm that the features 
for binary data differ substantially from those for, say, 
normal means. Also, the present paper demonstrates 
that the Q statistics behave very differently for risk dif-
ferences and log-odds-ratios. Thus, each type of data 
requires a specific practical solution. This paper and our 
previous papers are necessary steps in that direction. 
They should point the way to further improvements.

An additional advantage of the sample-size-weighted 
methods, including QF  , is that they would be more 
robust than the IV methods, to publication bias. Pub-
lication bias may arise from a negative association 
between sample sizes and effect sizes in meta-analyzed 
studies. SSW methods downweight these inflated 
results from the small studies. Inverse-variance weights 
are also inversely proportional to sample sizes, but for 
binary data, they also depend on the probabilities in the 
control arm and the effects. Therefore, their behavior 
under small-sample bias may be quite erratic.

Table 2  The p-values from six methods for testing heterogeneity in the meta-analysis by Stead et al. on the use of physician advice for 
smoking cessation

Data Measure χ
2 KD 2M SSW model 2M SSW naïve F SSW model F SSW naïve

17 studies LOR 0.079 0.035 0.088 0.085 0.050 0.038

LRR 0.059 0.081 0.078 0.044 0.032

18 studies LOR 0.107 0.052 0.090 0.087 0.052 0.038

LRR 0.080 0.082 0.079 0.046 0.033
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One could consider assessing heterogeneity by esti-
mating the parameter for the between-study vari-
ance in a mixed-effects logistic regression model. That 
approach, however, would assume likelihoods that QF 
does not need, and results in [28] and [29] show that it 
does not work well.

Conclusions
For LOR or LRR, dependence on piC and the effect value 
makes choice of an approximation for the null distribu-
tion of Q rather challenging, though the inadequate per-
formance of the standard χ2 approximation is quite a 
universal conclusion. The improved approximations by 
Kulinskaya et al. [18] and Kulinskaya and Dollinger [11] 
to the null distribution of QIV  work better than the χ2 
approximation for n ≥ 100 , though they may encoun-
ter some convergence issues for small sample sizes and/
or probabilities. Instead, we recommend using a test of 
heterogeneity based on QF and provide practical guide-
lines for choosing an appropriate test at the .05 level for 
all three effect measures.

In further work, we intend to explore related methods 
of estimating the heterogeneity variance τ 2 based on QF.
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