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Abstract 

Background  Historically, a priori power and sample size calculations have not been routinely performed cost-
effectiveness analyses (CEA), partly because the absence of published cost and effectiveness correlation and variance 
data, which are essential for power and sample size calculations. Importantly, the empirical correlation between cost 
and effectiveness has not been examined with respect to the estimation of value-for-money in clinical literature. 
Therefore, it is not well established if cost-effectiveness studies embedded within randomized-controlled-trials (RCTs) 
are under- or over-powered to detect changes in value-for-money. However, recently guidelines (such as those 
from ISPOR) and funding agencies have suggested sample size and power calculations should be considered in CEAs 
embedded in clinical trials.

Methods  We examined all RCTs conducted by the Canadian Cancer Trials Group with an embedded cost-effective-
ness analysis. Variance and correlation of effectiveness and costs were derived from original-trial data. The incremental 
net benefit method was used to calculate the power of the cost-effectiveness analysis, with exploration of alternative 
correlation and willingness-to-pay values.

Results  We identified four trials for inclusion. We observed that a hypothetical scenario of correlation coefficient 
of zero between cost and effectiveness led to a conservative estimate of sample size. The cost-effectiveness analy-
sis was under-powered to detect changes in value-for-money in two trials, at willingness-to-pay of $100,000. Based 
on our observations, we present six considerations for future economic evaluations, and an online program to help 
analysts include a priori sample size and power calculations in future clinical trials.

Conclusion  The correlation between cost and effectiveness had a potentially meaningful impact on the power 
and variance of value-for-money estimates in the examined cost-effectiveness analyses. Therefore, the six considera-
tions and online program, may facilitate a priori power calculations in embedded cost-effectiveness analyses in future 
clinical trials.
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Highlights 

• Analysts may use the online program presented in the present study to examine the a priori power of cost-effective-
ness analyses.

• Analysts may potentially apply the considerations presented in this paper in the planning stage of future cost-effec-
tiveness analyses.

Background
The increasing cost of anticancer agents over the past two 
decades has generated discussion in the literature regard-
ing the value of the novel anticancer therapies [1]. Spe-
cifically, concerns in literature have been presented due 
to the disproportionally modest survival benefits of novel 
cancer therapeutic agents, compared to the substantial 
increases in cost [2]. However, phase III anticancer trials 
are conventionally designed to detect improvements in 
efficacy and not necessarily changes in value-for-money 
[3, 4].

Currently, CEAs embedded in cancer trials are com-
monly completed without formal sample size and power 
calculations [5]. However, a recent ISPOR Good Research 
Practices Task Force report has suggested the inclusion 
of sample size calculations for CEAs embedded in clinical 
trials [5]. Additionally, research grant funding agencies 
may commonly request statistical sample size justifica-
tions even for secondary economic evaluation endpoints 
in cancer clinical trials [personal communication: Mat-
thew Cheung, Co-chair of Committee on Economic 
Analysis, Canadian Cancer Trials Group, Nov 11, 2022]. 
However, there is currently a paucity of information in 
published literature with respect to empirical estimates of 
sample size parameters [5, 6]. Therefore, analysts may not 
be able to examine the power of CEAs embedded in clini-
cal trials, despite its recognised importance in literature 
[5]. Additionally, the likelihood a new treatment is cost 
effective based on Bayesian methods, may be challenging 
to estimate because prior variance and covariance distri-
butions are also not well established in literature [6, 7].

Importantly, because information regarding vari-
ances of cost and co-variances of cost and effectiveness 
are often not well established in the literature, a priori 
sample size or power calculations for cost-effectiveness 
analysis endpoints typically are not done or only partly 
done by making some assumptions regarding cost differ-
ences between the experimental and control groups and 
the corresponding variances [6, 8]. Additionally, because 
most new cancer treatments improve survival and 
increase costs compared to the standard, there is reason-
able theoretical justification that covariance may be non-
ignorable in these trials [9]. Therefore, in the absence of 
a priori power calculations, cost-effectiveness analyses 
may be under- or over-powered to detect changes in 

value [9]. Additionally, because many new cancer agents 
enter the market with incremental cost effectiveness 
ratios near willingness-to-pay thresholds, cost-negotia-
tions resulting in lower drug prices may reduce the asso-
ciated power of cost-effectiveness analyses [10].

An understanding of the relationship between the 
variances of and correlation between incremental cost 
and incremental effectiveness and their influence on 
power and sample size is not currently available for 
cancer trials with embedded economic evaluations [11]. 
To our knowledge, the Canadian Cancer Trials Group 
(CCTG) is currently the only oncology trial group with 
a standing committee, the Committee on Economic 
Analysis, dedicated to designing cost-effectiveness 
analyses to be embedded within randomized controlled 
trials with collection of cost and resource utilization 
prospectively. Therefore, we aimed to examine power 
calculations in cost-effectiveness analyses embedded 
within RCTs conducted by the CCTG, in order to bet-
ter understand and facilitate future health technology 
assessments.

In this paper, we demonstrate the calculation of 
power and sample size of cost-effectiveness analy-
ses based on the paradigm of incremental net benefit 
developed by Willan and Lin [11] using original trial 
cost and effectiveness individual patient data from 
phase III trials conducted by the CCTG [12–19]. The 
statistical model is summarized in the Methods section, 
followed by an application to cost-effectiveness analy-
ses conducted by CCTG with respect to correlation 
coefficients and willingness-to-pay values in the Results 
section. We then discuss the practical implications of 
our demonstration in the Discussion section, providing 
guidance on the design of trial-based economic analy-
ses and an online resource to enable sample size and 
power calculations.

Methods
Selection of Studies and Parameter Calculation
The present study examined all RCTs conducted by CCTG 
with an embedded cost-effectiveness analysis. Variance 
and correlation of effectiveness and costs were derived 
from original-trial data. The primary analysis examined 
the power of the cost-effectiveness analysis based on the 
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incremental net benefit method, with exploration of alter-
native correlation and willingness-to-pay values.

Statistical Methods of Calculating the Sample Size 
and Power based on the Paradigm of Incremental Net 
Benefit
Conventionally, incremental cost-effectiveness ratios 
(ICERs), and associated confidence intervals, are a 
common method of quantifying value and uncertainty 
respectively, in cost-effectiveness analyses of anticancer 
agents [4, 6]. In a two-arm randomized controlled trial, 
let the mean effectiveness of the treatment and stand-
ard arms be E1 and E0 respectively. Additionally, the 
mean in costs in the treatment and standard arms are 
represented as C1 and C0 respectively. The ratio between 
the change in mean cost and the change in mean effec-
tiveness is the ICER, defined as:

where �C = C1 − C0 and �E = E1 − E0 are the cost and 
effectiveness difference between the treatment and the 
control groups, respectively.

The present analysis quantifies cost-effectiveness 
through the incremental net benefit (INB) method. This 
method was selected because sample size calculations 
based on the INB method and the willingness-to-pay 
value (or threshold), are well established in statisti-
cal literature [4], and are one of the commonly used 
methods, when sample size calculations are conducted 
in cost-effectiveness analyses [20]. In cost effective-
ness analyses, the willingness-to-pay value is typically 
defined as the amount of money that a decision maker 
or society is willing to pay for a 1-unit improvement in 

efficacy [21, 22]. For a two-arm randomized controlled 
trial, the INB is defined as

Importantly, the ICER may be calculated as a special 
case of the INB. Specifically, the ICER may be calcu-
lated as the horizontal intercept of the plot of b(λ) (y 
axis) and λ (x axis).Therefore, when the INB is calcu-
lated as � · (�E)− (�C) = 0 , willingness-to-pay value 
λ is equivalent to the ICER. Furthermore, the confi-
dence limits for b(ICER) cross the horizontal axis at the 
Fieller limits for a specified ICER, allowing for further 
inferences [6, 11, 23]. Therefore, without the loss of 

ICER =
C1 − C0

E1 − E0
=

�C

�E

(1)b(�) = � · (�E)− (�C)

generality, the INB is used in the present analysis; how-
ever, the practical problems encountered when imple-
menting the ICER method are similarly applicable [6, 
11]. However, because ICER is a ratio of the cost and 
effectiveness, statistical inferences such as the corre-
sponding standard error may be difficult to obtain. [6, 
11]. Additionally, standard errors may be unreason-
able in some cases (e.g., when the change in efficacy is 
close to zero, resulting in a standard error that is close 
to infinity).

The hypothesis test of the cost-effectiveness for a will-
ingness-to-pay value may be examined as:

where the alternative hypothesis may be interpreted as 
suggesting the treatment is demonstrated to be cost-
effective. Additionally, failing to reject the null hypothesis 
implies that the cost-effectiveness of the treatment, when 
compared to the control, is at or below the willingness-
to-pay threshold, barring the lack of statistical power to 
reject the null hypothesis. Further, in the present study, 
the hypothesis test H0 : b(�) ≥ 0, versus H1 : b(�) < 0 
is also examined in the CO.17 and CO.17 KRAS trials. 
This hypothesis test was included to examine the impact 
of the correlation coefficient on non-cost-effective trials. 
Importantly, the latter hypothesis test is unrealistic in 
CEAs, however the trends are generalizable to the former 
hypothesis test with respect to the impact of the correla-
tion coefficient.

Variance and Sample Size Calculations
For a study with sample size n , where n0 and n1 represent the 
sample sizes of the control and treatments groups respec-
tively, the variance of the INB b(�) can be estimated as:

where σ 2
Ej

 and σ 2
Cj
, j = 0, 1 are the variance of effectiveness 

and costs in the control and experimental groups, respec-
tively. Additionally, ρj is the correlation coefficient 
between effectiveness and cost in the group j, j = 0, 1 . 
Conventionally, the variance of ICER is calculated 
through bootstrap methods or Fieller’s theorem in some 
cases. A derivation of the Fieller’s confidence limits when 
b(�) crosses the horizontal axis is presented in Willan 
(2006) [24] as well as Zethraeus and Löthgren [23]. Vari-
ance and correlation of effectiveness and costs were 
derived from original-trial data using intent-to-treat 
analyses, over the entire trial time horizon. Detailed deri-
vations and formulas of these parameters are presented 
by Willan [9]. Additionally, details with respect to the 

H0 : b(�) ≤ 0, versus H1 : b(�) > 0

(2)σ 2
b(�) =

1

n0

(
�
2σ 2

E0
+ σ 2

C0
− 2�ρ0σE0σC0

)
+

1

n1

(
�
2σ 2

E1
+ σ 2

C1
− 2�ρ1σE1σC1

)
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parameter estimates are presented in the associated 
CEAs of the examined trials [16–19]. The smallest impor-
tant difference in incremental net benefit is defined as 
b(�)δ = �× (�E)− (�C) . Therefore, as examined by 
Willan and Lin (2001), to test the one-sided hypotheses 
at the α level and (1− β)× 100% power, the total sample 
size is given by:

where the type I error, α in Eq.  (3), is the probability of 
claiming that the treatment cost-effective if the null 
hypothesis is true, which is usually set to be α = 0.05 . 
The type II error, β in Eq. (3), is the probability of failing 
to reject the null hypothesis, when the true INB is equal 
to or less than b(�)δ . Therefore, z1−α and z1−β are quan-
tiles of a standard normal distribution with respect to 
(1− α) and the power, respectively.

In general, a priori assumptions based on existing 
literature regarding �E and variance of �E , are used 
to inform the primary endpoint of the efficacy sam-
ple size calculations of the clinical trial. Specifically, in 
phase III clinical trials, efficacy sample size calculations 
are typically based on the target hazard ratio and the 
assumption of an exponential survival distribution [3]. 
Therefore, in the present analysis, the sample size cal-
culation is based on the assumption that survival time 
follows an exponential distribution. In comparison, the 

treatment effectiveness �E and variance σ 2
�E were cal-

culated analytically, based on individual patient data.
To have a better understanding on what roles the 

correlation coefficients will play in the sample size and 
power determination, we make some simplification 
based on the following assumptions:

1.	 The study will be balanced between the control and 
experimental arms n0 = n1 = n

2
.

2.	 The costs in the control and experimental arms have 
the same variance σ 2

C0
= σ 2

C1
= σ 2

C

3.	 The effectiveness in the control and experimental 
arms have the same variance σ 2

E0
= σ 2

E1
= σ 2

E

4.	 The correlation coefficients in the control and experi-
mental arms are the same: ρ0 = ρ1 = ρ

(3)n =

(
z1−α + z1−β

)2 · σ 2
b(�)

b(�)2δ

These assumptions have been made to facilitate illus-
trative comparisons with respect to the impact of the 
correlation coefficient on sample size calculation and 
should be applied to external cost-effectives analyses 
cautiously. Based on these assumptions, we can re-
write variance formula Eq. 2 as

Since b(�)δ = � · (�E)− (�C) , let z =
(
z1−α + z1−β

)2
, 

for example, when one-sided alpha = 0.05 and 
power = 80%, we have z = 6.18 and 4 × z = 24.72. There-
fore, we can replace the quantities in the sample size 
Eq. 3 with the corresponding terms for cost differences 
and the effectiveness differences in incremental net 
benefit analysis and obtain the following sample size 
formula

where π = ne
de

 , and denotes the ratio of the total expected 
sample size (ne) and the expected number of events (de) . 
The parameter π will be fixed once the design for the pri-
mary effectiveness endpoint is finalized. For example, in a 
trial with sample size ne = 500 and the final analysis will 
be triggered when de = 400 events are observed, then 
π = 500

400
= 1.25 . Furthermore, as examined by Willan & 

Lin [11], the corresponding power function is given by:

where �(·) is defined as the cumulative distribution func-
tion for a standard normal random variable. The power 
curve gives the probability of rejecting the hypothesis 
H0 : b(�) ≤ 0 in favour of the hypothesis H1 : b(�) > 0 , 
at the level α , for a given smallest important difference 
in incremental net benefit value, b(�)δ [11, 25]. There-
fore, in the present study, the smallest important differ-
ence may be conservatively calculated as a function of the 
observed �E and �C values, because discussion in liter-
ature exists regarding the best method of defining b(�)δ 
[24]. However, because the intent of the present analy-
sis was to examine the practical implications of the cor-
relation coefficient between effectiveness and cost, with 
respect to a priori sample size or power calculations for 
cost-effectiveness analysis, the results may be generaliz-
able to other methods of defining b(�)δ . Additionally, as a 

(4)σ 2
b(�) =

4

n

(
�
2σ 2

E + σ 2
C − 2�ρσEσC

)

(5)n = 4 · z ·
�
2πσ 2

E + σ 2
C − 2�ρ

√
πσEσC

�2(�E)2 + (�C)2 − 2�(�E)(�C)

(6)
P(δ) = �




�b(�)δ�
V [�b(�)]

− Z1−α


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
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4
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×

�
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E
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sensitivity analysis the present study also examined a fre-
quentist method of b(�)δ . Briefly, this frequentist method 
is characterized as the minimum b(�)δ value that satisfies 
Eq. 6 [6]. Further information on this frequentist method 
of b(�)δ is available in Lachin [26].

Additionally, the methods examined in the present 
study may be extended to non-censored data based on 
the mean parameter estimates, as examined in Willan 
[6, 11].

Results 
Summary of included trials
In the present analysis, we included all the trials for 
which CCTG had completed a cost-effectiveness analy-
sis, including empirically calculated variances (of means 
of cost and effectiveness), correlation coefficients, as well 
as means of the �C and �E . In total, we identified four 
trials, and one retrospective subgroup analysis from one 
of the four trials for inclusion. The present analysis found 
that the standard deviation for the cost of the experi-
mental arm ranged from $10,000 to $35,000. The stand-
ard deviation for the effectiveness of the experimental 
arm was observed to range from 0.1-years to 2.72-years. 
The correlation coefficient between �C and �E were 

observed to be low to moderate in all the included trials 
(0.042 to 0.44) (Table 1).

Correlation coefficient analysis
The correlation coefficient analysis of the present study 
examined value-for-money estimates changed, as a func-
tion of original-trial cost and effectiveness correlation. 
We applied the proposed variance formula for health 
economic to four different CCTG studies: BR.10, BR.21, 
CO.17 (all patients and a sub study of CO.17 KRAS wild 
type) and LY.12. First, we examined the impact of the cor-
relation between the �C and �E on the variance of b(�) . 
The results of the correlation coefficient analysis are sum-
marized in Table  2. Additionally, contour plots examin-
ing the impact of ρ and b(�) with respect to the variance 
of b(�) are presented in Fig.  4  of the Additional file  1: 
Appendix. Below we use the CO.17 trial (all patients) to 
demonstrate how the variance of b(�) changes as a func-
tion of the correlation coefficient ρ , which can vary from 
-1 (minimum) to 1 (maximum).

The trial CO.17 is a randomized controlled trial com-
paring the efficacy of cetuximab plus best supportive care 
(n = 287) versus best supportive care (n = 285) in patients 
with refractory advanced colorectal cancer. Assum-
ing that the willingness-to-pay is $100,000 per life-year 
gained, then the variance of b(�) is given by

When ρ = 0 , the variance σ 2
b(�)

= 8, 571 . When 
ρ = 0.44 , the variance σ

2
b(�)

= 5, 477 , which is a decrease 
of 36.1%. When ρ = −1 or 1, the variance will be 
increased or decrease by 82.0%, respectively. Assum-
ing that the willingness-to-pay is $200,000 per life-year 
gained, then the variance of b(�) is given by

Which is a linear function of the correlation coefficient 
ρ . When ρ = 0 , the variance is 28,778. When ρ = 0.44 , 

σ 2
b(�) = 8, 574 − 3, 516 · ρ

σ 2
b(�) = 28, 778− 7, 032 · ρ

Table 1  Summary of Cost and Survival differences for selected CCTG trials

E1 Experimental arm effectiveness, C1 experimental arm cost, ρ Correlation Coefficient, SE Standard Error, σ Standard deviation, CAD Canadian Dollars
a  LY.12 is a non-inferiority design. For LY.12, survival is defined as the restricted mean QALY from randomization to stem cell mobilization

Trial n Survival E1 (Years) Cost C1 (CAD) ρ  

SE σ   SE σ  

BR.10 172 0.2930 2.717 3,757 34,840 0.124

BR.21 731 0.0325 0.622 558 10,668 0.203

LY.12a 519 0.0045 0.073 1,807 29,103 0.042

CO.17 (all patients) 567 0.0184 0.309 958 16,130 0.44

CO.17 (KRAS subgroup) 226 0.0296 0.316 1,598 16,987 0.43

Table 2  Variance of the incremental net benefit estimates by 
correlation coefficient, assuming a willingness-to-pay threshold 
of $100,000

ρ Correlation Coefficient

Trial Variance Relative 
Changes

ρ = 0   ρ = observed  

BR.10 1,744,993 1,690,399 3%

BR.21 21,792 20,318 7%

LY.12 6,922 6,800 2%

CO.17 (all patients) 8,571 5,477 36%

CO.17 (KRAS subgroup) 22,780 14,610 36%
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the estimated correlation coefficient from the trial data, 
the variance σ

2
b(�)

= 21, 746 , which is a decrease of 21.5%. 
When ρ = −1 or 1, the variance will be increased or 
decrease by 48.8%, respectively. The relative changes of 
the variance when ρ = 0 and ρ = observed , at a willing-
ness-to-pay value of $100,000, across all the examined 
trials is presented in Table 2. In the examined trials, the 
correlation coefficient accounted for a reduction range 
of 2% to 36% of the INB variance. Further, based on the 
CO.17 example, we appreciate that the larger the cor-
relation coefficient, the greater the reduction of INB 
variance.

The relationship between the correlation coefficient 
and confidence intervals of the INB estimate, across a 
range of willingness-to-pay (�) values ($0 to $250,000), 
are examined in Fig. 1. In all the included trials, when the 
willingness-to-pay increased from $100,000 to $200,000, 
the width of the confidence intervals of the INB estimate 
also increased. Additionally, in all the included trials 
when the correlation coefficient was assumed as ρ = 0 , 
the confidence intervals of the INB estimate, were slightly 
more conservative (i.e., wider), compared to the observed 
correlation coefficient value. Further, in all the included 
trials when the correlation coefficient was assumed 
as ρ = 1 , the confidence intervals of the INB estimate 
underestimated the observed confidence interval (i.e., 

too narrow). Inferences with respect to the ICERs of 
the examined trials are also possible, as the ICER and 
the Fieller limits are represented as the intersection at 
the horizontal axis of the INB estimate and confidence 
intervals, respectively [11, 23]. Additionally, the �E and 
�C values used to derive the INB estimates based on the 
cost-effectiveness analysis in all the examined trials, are 
presented in the (Additional file 1: Appendix Table 1).

Sample size and power calculations
In order to examine the relationship between the cor-
relation coefficient and the power and sample size of 
the examined trials, we applied the power formula pre-
sented in Eq.  6, to the four CCTG trials (and one sub-
group analysis), when ρ = 0 , ρ = observed , and ρ = 1 . 
This analysis examines the probability of rejecting the 
null hypothesis H0 : b(�) ≤ 0,  versus H1 : b(�) > 0 (and 
H0 : b(�) ≥ 0, versus H1 : b(�) < 0 in the CO.17 and 
CO.17 KRAS trials), at willingness-to-pay threshold of 
$100,000 (Fig. 2).

In all the examined trials, when the correlation coef-
ficient was assumed to equal the correlation coefficient 
observed in the associated cost-effectiveness analysis, 
the sample size needed to detect a change in the INB 
value decreased compared to ρ = 0 . In trials with cor-
relation coefficients close to zero (LY.12: ρ = 0.042 ) the 

Fig. 1  Impact of the correlation coefficient on the confidence intervals of the incremental net benefit across willingness-to-pay values
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sample size required to have 80% power to reject the 
null hypothesis, changed minimally. However, in tri-
als with relatively higher correlation coefficients (CO.17 
(all patients):ρ = 0.44 ) the magnitude of the sample size 
reduction, in order to have 80% power to reject the null 
hypothesis, was also relatively higher. Additionally, this 
trend was also observed in all trials when the b(�)δ value 
was defined using a frequentist method, (Additional 
file  1: Appendix Fig.  1). This observation was expected 
because, based on formula 4, it is straightforward to 
appreciate the relationship between the sample size and 
the correlation coefficient ρ . As the correlation coeffi-
cient increases, the required sample size decreases. The 
relationships between the correlation coefficient and 
confidence intervals of the INB estimate, across a range 
of willingness-to-pay (�) values ($0 to $250,000), are 
examined in Fig. 1.

In order to examine the relationship between the 
power and sample size of the included trials across will-
ingness-to-pay thresholds, we also applied the power 
function presented in Eq.  6, to the four CCTG tri-
als (and one subgroup analysis) at willingness-to-pay 
thresholds of $50,000, $100,000, and $150,000. Fig-
ure  3 examines the probability of rejecting the null 

hypothesis H0 : b(�) ≤ 0 , versus H1 : b(�) > 0 (and 
H0 : b(�) ≥ 0, versus H1 : b(�) < 0 in the CO.17 and 
CO.17 KRAS trials), assuming the correlation coefficient 
observed in the cost-effectiveness analysis. The observed 
cost effectiveness analyses were under-powered (< 80%) 
to reject the null hypothesis at a willingness-to-pay value 
of $100,000 in two of the examined trials. Further, when 
the INB value was close to 0 at the examined willingness-
to-pay threshold, as in BR.10 at a willingness-to-pay 
value of $100,000, the sample size needed to reject the 
null hypothesis increased considerably, compared to the 
other examined trials.

Furthermore, in order to examine the relationship 
between power and sample size of the examined trials, as 
a secondary analysis we also examined two-sided hypoth-
esis testing in Additional file 1: Appendix Figs. 2 and 3. 
Specifically, the null and alternative hypothesis are mod-
elled as H0 : b(�) = 0,  and  H1 : b(�) �= 0 . In Fig.  2 the 
correlation coefficient was modelled as ρ = 0 , ρ = 1 , and 
ρ = observed , and the willingness-to-pay threshold was 
examined as $100,000. In Fig.  3, the correlation coeffi-
cient was examined as ρ = observed and the willingness-
to-pay threshold was examined at $50,000, $100,000, and 
$150,000. In general, we observed similar trends to those 

Fig. 2  Impact of the correlation coefficient on the sample size power function curve, at the willingness-to-pay threshold of $100,000

 Legend: Panels a), b), and c) were examined based on the hypothesis test: H0 : b(�) ≤ 0 , versus H1 : b(�) > 0 . Panels d) and e) were examined 
based on the hypothesis test H0 : b(�) ≥ 0 , versus H1 : b(�) < 0
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examined in the primary analysis. Predictably, the sam-
ple sizes observed in the two-sided testing analysis were 
larger compared to the primary analysis.

Discussion
In this paper we examine the application of the INB 
method for calculating sample size and power in eco-
nomic evaluations, using original trial data from the 
CCTG. In general, the present analysis reported that 
the correlation coefficient between �E and �C , had 
a potentially meaningful impact on the power and 
sample size calculations in the examined economic 
analyses. Specifically, when the correlation coefficient 
increased from ρ = 0 to ρ = observed , the variance of 
the INB decreased. Additionally, when the correlation 
coefficient increased from ρ = 0 to ρ = observed the 
sample size needed to detect the smallest important 
differences in value also decreased. The present analysis 
examined the INB; however, by varying the willingness-
to-pay value, inferences with respect to the ICER are 
also possible.

Because of the historical absence of a priori cost-
effectiveness analysis power calculations in pivotal 

cancer trials [5, 11], we have also developed an easy-to-
use online program (http://​stata​pps.​tk/​icer_​sampl​esize), 
for analysts to calculate power and sample size at the 
design stage of cost-effectiveness analyses. Additionally, 
as an illustrative example of the program, possible input 
parameters for the BR.21 trial is presented in Fig.  5  of 
the Additional file  1: Appendix. Importantly, the appli-
cation of our proposed program may be informed by the 
empirical observations presented in the current study. As 
examined by Willan (2001), the proposed methods may 
be used to identify a subset of the trial population for 
cost-effectiveness analysis, in contrast to historical meth-
ods, which required larger sample sizes compared to the 
corresponding effectiveness analysis, to detect changes 
in cost-effectiveness [4, 11]. This program will also deter-
mine the standard deviation of the effectiveness outcome 
based on the design of the original clinical trial, including 
type I error rate, power, survival probability of the con-
trol arm at a given time point and the hazard ratio.

In the present analysis, we observed a low to modest 
correlation between �E and �C in all the examined tri-
als. Based on the sample size analysis, assuming the cor-
relation coefficient ρ = 0 may be a conservative estimate 
to ensure sufficient power of cost effectiveness analyses. 

Fig. 3  Impact of the willingness-to-pay threshold on the sample size power function curve, at the correlation coefficient observed in the respective 
trial

Legend: Panels a), b), and c) were examined based on the hypothesis test: H0 : b(�) ≤ 0 , versus H1 : b(�) > 0 . Panels d) and e) were examined 
based on the hypothesis test H0 : b(�) ≥ 0 , versus H1 : b(�) < 0

http://statapps.tk/icer_samplesize
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Additionally, when sufficient evidence of indication-spe-
cific correlation coefficients exists in literature, power 
calculations in cost-effectiveness analyses may consider 
correlation coefficients, in order to design more efficient 
economic evaluations when survival and costs are posi-
tively correlated. Further, as it is uncommon for cost and 
survival to be negatively correlated, negative correlation 
coefficients may only be applicable in unique clinical sce-
narios where a novel intervention would substantially 
reduce the utilization of a downstream expensive inter-
vention while increasing survival. Assuming a negative 
correlation coefficient without sufficient biological justi-
fication will lead to an overly conservative large sample 
size, just as assuming a positive correlation coefficient 
without sufficient biological justification will lead to an 
insufficiently small sample size.

In the BR.21 trial at a willingness-to-pay threshold 
of $100,000, the sample size needed to reject the null 
hypothesis was considerably larger, compared to the 
sample size of the actual cost-effectiveness analysis. 
The interpretation of failing to reject the null hypoth-
esis is that the cost-effectiveness of the treatment, 
when compared to the control, is not different from 
the willingness-to-pay threshold. Therefore, we cannot 
make a conclusion with respect to if a therapy is cost-
effective at the examined willingness-to-pay thresh-
old. Additionally, this sample size ballooning occurred 
when the INB estimate was near zero at the examined 
willingness-to-pay threshold. This observation may be 
relevant because novel first-in-class anticancer agents 
with no a priori pricing information conventionally 
enter the market with their prices based on the will-
ingness-to-pay threshold [10]. In these scenarios, cost-
effectiveness analysis may be under powered to reject 
the null hypothesis. Therefore, in the absence of a priori 
sample size or power calculations, cost-effectiveness 
analyses may not be able to identify if novel treatments 
are more or less cost-effective compared to the control 
treatments.

In two of the examined trials (and one subgroup 
population), the sample size required to reject the null 
hypothesis, was smaller compared to the correspond-
ing efficacy analysis, at ρ = observed and a willingness-
to-pay threshold of $100,000 (i.e. the cost-effectiveness 
analyses were over-powered). In practice, it may not be 
feasible for analysts to embed cost-effectiveness analy-
ses within clinical trials that require sample sizes larger 
than the corresponding efficacy analyses. However, a 
priori power calculations in cost-effectiveness analyses 
embedded within pivotal clinical trials may prioritize the 
development of cost-reduction therapies, and agents that 
preserve durable long-term response and survival. Addi-
tionally, when economic evaluations are over-powered, a 

priori power calculations may facilitate the identification 
of a population subset for sub-group cost-effectiveness 
analysis, in order to minimize wasting resources. Further, 
within a net benefit regression framework, power may 
also be derived based on a t-test or bootstrapping meth-
ods [27, 28]. The net benefit regression framework may 
also benefit similarly from the observations and proposed 
considerations presented in the current study.

Importantly, because the empirical parameter values 
observed in the present study could not be systemati-
cally compared to external studies, the validity of these 
estimates based on trial characteristics is not well estab-
lished (e.g., the impact of sample size, dropout, or type of 
outcomes). This limitation highlights the need for future 
CEAs to report detailed cost and efficacy variance and 
covariance data, in order to iteratively refine a range of 
possible values and formal guidelines for CEA analysts. 
Additionally, changes in price during cost-negotiations 
may result in changes to the associated sample size and 
power estimates. Therefore, analysts may consider exam-
ining a range of possible parameter estimates.

The proposed a priori cost-effectiveness power and 
sample size formula utilizes the predicted variance of the 
cost, effectiveness, and the correlation between cost and 
effectiveness as well as the expected event rate. The pre-
sent study addresses the gap in literature with respect to 
original trial data of cost and effectiveness variances, as 
well as the correlation between cost and effectiveness.

Considerations
Based on the empirical exploration of original-trial data, 
we present six potential considerations for future indi-
vidual patient-based economic evaluations embedded in 
clinical trials:

1.	 At the design stage of clinical trials, embedded CEAs 
may calculate �E and standard error of �E based 
on the efficacy assumptions for the primary efficacy 
endpoint statistical design.

2.	 At the design stage of clinical trials, embedded health 
care perspective CEAs may calculate �C based on 
the expected difference in the duration and costs 
of the experimental drug/regimen versus the con-
trol drug/regimen. If the price of the drug is not yet 
known at the time of the design, reviewers could 
identify a marketed drug from a comparable class 
(e.g., “me-too” drugs may base costs on the associ-
ated first-in-class drug) or a range of possible esti-
mates, before adjusting for cost add-ons or offsets.

3.	 At the design stage of future comparable cancer 
CEAs embedded in clinical trials, standard error of 
the control and experimental costs could be based on 
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the range of values observed in the trials from CCTG 
as reported in the present study ($500 to $4,000).

4.	 At the design stage of future comparable CEAs 
embedded in clinical trials, correlation coefficients 
between �C and �E , could be based on the range 
of values we observed in the present study ( ρ = 0 to 
0.5), where ρ = 0 will lead to a conservative estimate 
of sample size when the true ρ > 0 . These estimates 
may be examined as a range of possible values and 
should be iteratively refined as additional estimates 
become available in literature.

5.	 When the sample size of an examined trial is defined 
based on the efficacy analysis, the corresponding a 
priori cost-effectiveness analysis power calculations 
and potential trial population subset may be com-
pleted using the INB approach such as using our 
online calculator application.

6.	 Future cost-effectiveness analysis based on individual 
patient data should consistently report their observed 
variances and correlation coefficients of �E and �C 
in order to provide additional information to facili-
tate future power calculations in future studies in 
related cancer settings.

Conclusion
Based on our empirical observations of original-trial 
data, we present six potential considerations for future 
economic evaluations of clinical trials. Additionally, the 
online program presented in the paper may facilitate 
a priori calculations of power and sample size in future 
cost-effectiveness analyses.
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