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Abstract 

Background Days alive without life support (DAWOLS) and similar outcomes that seek to summarise mortality and 
non‑mortality experiences are increasingly used in critical care research. The use of these outcomes is challenged by 
different definitions and non‑normal outcome distributions that complicate statistical analysis decisions.

Methods We scrutinized the central methodological considerations when using DAWOLS and similar outcomes and 
provide a description and overview of the pros and cons of various statistical methods for analysis supplemented with 
a comparison of these methods using data from the COVID STEROID 2 randomised clinical trial. We focused on readily 
available regression models of increasing complexity (linear, hurdle‑negative binomial, zero–one‑inflated beta, and 
cumulative logistic regression models) that allow comparison of multiple treatment arms, adjustment for covariates 
and interaction terms to assess treatment effect heterogeneity.

Results In general, the simpler models adequately estimated group means despite not fitting the data well enough 
to mimic the input data. The more complex models better fitted and thus better replicated the input data, although 
this came with increased complexity and uncertainty of estimates. While the more complex models can model sepa‑
rate components of the outcome distributions (i.e., the probability of having zero DAWOLS), this complexity means 
that the specification of interpretable priors in a Bayesian setting is difficult.

Finally, we present multiple examples of how these outcomes may be visualised to aid assessment and interpretation.

Conclusions This summary of central methodological considerations when using, defining, and analysing DAWOLS and 
similar outcomes may help researchers choose the definition and analysis method that best fits their planned studies.

Trial registration COVID STEROID 2 trial, ClinicalTrials.gov: NCT04509973, ctri.nic.in: CTRI/2020/10/028731.
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Background
Mortality has traditionally been the primary outcome 
in most randomised clinical trials (RCTs) in critically ill 
patients [1]. However, count outcomes such as the num-
ber of days alive without life support (DAWOLS; typically 
including use of mechanical ventilation, vasopressors/
inotropes, or renal replacement therapy) and days alive 
out of hospital (DAOH) are increasingly used [2]. This is 
motivated by the fact that these outcomes convey more 
information than binary outcomes such as mortality [3], 
and their use may reduce the risk of inconclusive RCTs 
due to the lack of power to reject clinically important 
effect sizes for mortality [4, 5]. Further, these outcomes 
not only consider mortality, but also resource use, and 
as they consider both illness severity (length of periods 
with life support or in-hospital) and mortality, these 
outcomes can be considered patient-important [2, 6–8] 
and may further be associated with other adverse out-
comes [6, 7]. Finally, these outcomes easily incorporate 
occurrent events (e.g., new episodes of life support or 
readmissions).

However, using, analysing, and reporting DAWOLS, 
DAOH, and similar outcomes come with challenges 
compared to those for mortality [2]. These challenges are 
related to the outcome definitions, including the han-
dling of death and the non-normal distributions, which 
complicate statistical analyses and may affect the choice 
of estimand(s) (the quantity estimated in a statistical 
analysis) and effect measure(s) [2]. Consequently, these 
outcomes are frequently analysed using various methods, 
including both regression-based methods and non-par-
ametric tests [2]. Non-parametric tests have previously 
been recommended [9] and are frequently used [2], but 
they have important limitations that hamper their use-
fulness in more complex RCT designs (e.g., multi-arm 
trials or adaptive platform trials [10]). First, most non-
parametric statistical tests primarily provide P-values 
without quantifying effect sizes and uncertainty, which is 
necessary to assess the clinical importance of a treatment 
effect. Second, most non-parametric tests either preclude 
adjustment for covariates (e.g., the Mann–Whitney U/
Wilcoxon rank-sum test) or allow only single-variable 
stratification (e.g., the van Elteren test), and most can 
only compare two groups at a time [9]. Thus, regression-
based methods that allow not only testing null hypoth-
eses, but also estimation of effect sizes may be more 
appropriate and informative [11] and are increasingly 
used for these outcomes [2].

In this manuscript, we provide an overview of impor-
tant conceptual and methodological considerations when 
using DAWOLS, DAOH, and similar outcomes, includ-
ing the advantages and disadvantages of different choices, 
aimed at clinical researchers planning and conducting 

RCTs using these outcomes. In addition, we discuss dif-
ferent regression-based statistical approaches for ana-
lysing these outcomes along with a worked example 
comparing different models in a real trial dataset.

Methods
Scope
We provide an overview of important methodological 
considerations when using DAWOLS and similar out-
comes along with a discussion and comparison of various 
approaches to statistical analysis. We focus on regres-
sion-based statistical methods that allow comparison of 
more than two treatment arms, adjustment for multi-
ple covariates (e.g., stratification variables, as generally 
recommended [12], or important prognostic baseline 
variables, which can increase power [13]), assessment of 
interactions and heterogeneous treatment effects, quan-
tification of effect measures with measures of uncer-
tainty, and, finally, the use of prior information and ability 
to generate complete posterior distributions when used 
in a Bayesian context [10, 14]. We focus on both techni-
cal, theoretical, and practical advantages/disadvantages 
of different choices and models and provide a worked 
example illustrating and comparing these definitions and 
models by re-analysing data from the COVID STEROID 
2 randomised clinical trial [15].

COVID STEROID 2 trial data
We analyse and visualise data from the COVID STER-
OID 2 trial, which compared a higher (12 mg; interven-
tion) with a lower (6 mg; control) dose of dexamethasone 
daily for up to 10 days among patients with coronavirus 
disease 2019 and severe hypoxia defined as the require-
ment of at least 10 L of oxygen/minute or mechanical 
ventilation [15]. Randomisation was stratified by site, age 
less than 70 years and use of invasive mechanical ventila-
tion. DAWOLS was assessed at day 28 with data available 
for 971 patients. The trial was approved by the Commit-
tees on Health Research Ethics in the Capital Region 
of Denmark (H-20051056), and all additional relevant 
national/local authorities, conducted in accordance with 
the Declaration of Helsinki, and all patients or their legal 
surrogates gave informed consent [15]. Additional details 
are presented elsewhere [15]. In the primary analyses of 
the trial, the actual DAWOLS values were used without 
penalising death, but for these analyses, we assigned a 
value of 0 (or -1 on the ordinal scale) days to non-survi-
vors. As all data from the COVID STEROID 2 trial were 
used, no formal sample size calculation was conducted 
for this study. The outcome data from the COVID STER-
OID 2 trial using different handling of non-survivors are 
presented with relevant summary statistics in Fig. 1.
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Outcome operationalisation
Central methodological considerations when operation-
alising DAWOLS, DAOH, and similar outcomes are sum-
marised in Fig. 2.

First, the outcome definition, including restrictions (e.g., 
due to maximum follow-up durations) and handling of death, 
is central. Most commonly, deceased patients are assigned 
the worst possible value (0 days or a categorical value worse 
than all possible actual values when analysed as an ordinal 
outcome) [2], which has previously been recommended to 
ensure that death is treated as the worst outcome in the anal-
yses [7, 16, 17], even for patients that may be weaned from life 
support or discharged for shorter periods before they die. In 
some cases, and especially when longer follow-up periods are 
used, the actual values (without penalising death) may be pre-
ferred [8], and the use of these outcomes without penalising 
death is also relatively common [2].

Second, the expected outcome distribution should be 
considered, including whether inflation (peaks) at the 
minimum and/or maximum values is expected. This 
may be informed by data from similar, previous studies 
and will be affected by how death is handled. DAWOLS 
and DAOH typically have skewed distributions with 
substantial inflation at the minimum value (as a sub-
stantial proportion of the patients either die before 
getting off life support or discharged, or die within the 
follow-up period if death is penalised, which usually 
makes the minimum inflation higher) and sometimes at 
the maximum value (due to truncation of the follow-up 
period; consequently, shorter follow-up periods usually 
increase inflation at the maximum value).

Third, the effect measure (estimand) of primary inter-
est (e.g., mean difference, the difference in proportions 
of patients with the minimum/maximum/all values, 

Fig. 1 Distributions of days alive without life support (DAWOLS) at day 28 in each treatment group (control group, 6 mg, in red and intervention 
group, 12 mg, in blue) in the COVID STEROID 2 trial [15]. The distribution of DAWOLS calculated in three different ways are presented: the absolute 
values (without penalizing death); after assigning the value 0 to non‑survivors; and after assigning the value of ‑1 to non‑survivors. Horizontal axes: 
number of days; vertical axes: number of patients. Abbreviations: IQR: interquartile range, min./between/max.: percentages of patients with the 
minimum value, values larger than the minimum value and smaller than the maximum value, and the maximum value
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etc.) must be specified. Most commonly, mean differ-
ences are used [2], as these weigh values and differences 
across the full range of the distributions being com-
pared. However, the effect measure of primary interest 
will depend on the actual trial and trial context.

Fourth, the need for individual predictions or assess-
ment of heterogenous treatment effects (e.g., subgroup 

analyses) must also be considered, as this may require 
certain restrictions to prevent predictions beyond 
the scale of the outcome and may affect the choice of 
model. For example, if only mean values are of interest, 
models need not be able to reproduce a distribution 
of predicted values that resemble the actual outcome 
distribution.

Fig. 2 Flowchart illustrating the necessary decisions and considerations when using days alive without life support and similar outcomes in 
randomised clinical trials. Considerations related to individual steps are further elaborated in the text
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Finally, an analysis plan should be pre-specified, includ-
ing which effect measure(s) will be used and how model 
adequacy will be assessed; whether any potential sensi-
tivity analyses will be conducted; and which alternative 
approaches may be used if data are distributed differently 
than expected, if key assumptions are unexpectedly vio-
lated, or if the model fit is inadequate. If multiple models 
are outlined in the analysis plan due to limited knowl-
edge about the distribution of the outcome data, the plan 
should include a clear strategy for selecting the primary 
analysis model.

When comparing models and approaches in this study, 
we focus on DAWOLS defined as the total number of 
days alive without life support up to a specified maxi-
mum number of days, possibly re-scaled to a proportion 
of the maximum number of days and with dead patients 
assigned the worst possible value (0  days or a category 
worse than the lowest possible value when modelled as 
an ordinal variable, i.e., -1).

Models
We focus on four specific regression models, with 
increasing complexity:

1. Linear regression, which primarily models mean val-
ues with no lower or upper limits

2. Hurdle-negative binomial regression [18], a two-part 
count model restricted to non-negative values, con-
sisting of two sub-models:

a. A logistic regression model modelling the prob-
abilities of 0 days

b. A negative-binomial model, an over-dispersed 
count model modelling the means for all patients 
with ≥ 1 day with no upper limit

3. Zero–one-inflated beta-regression [19, 20], a three-
part model modelling the proportion of days, consist-
ing of three sub-models:

a. Two logistic regression models modelling the 
probabilities of having a proportion of either 0 or 
1, and for these patients, the probability of having 
a proportion of 1

b. A beta regression model (using a beta distribu-
tion that may be unimodal, U-shaped, or uni-
form) modelling the proportion of days for all 
patients with more than 0 and less than the maxi-
mum number of days

4. Cumulative logistic regression (also known as pro-
portional odds logistic regression) [21, 22], an ordi-
nal regression model, which models the cumulative 

probabilities for each category (each possible number 
of days) restricted to predicting values that appear in 
the dataset and with the ability to include death as 
distinct outcome category worse than all other cat-
egories

These models all support as many treatment arms and 
covariates as desired and can be used to estimate both 
relative and absolute differences (by calculating either 
adjusted conditional or marginal estimates for each treat-
ment group), thus enabling interpretation according to 
clinical importance, which is ideally done on the absolute 
scale [23]. How the different (sub-)models handle a typi-
cal DAWOLS distribution is illustrated in Fig. 3.

Additional details on these models, including their 
structure, parameters estimated, key assumptions, avail-
able effect measures, presentation of results, and ben-
efits and challenges with each model are summarised in 
Table S1 in Additional file 1.

Parameter estimation and model comparison
We used Bayesian parameter estimation fitting all mod-
els using R software version 4.2.1 (R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria) 
and Stan [24] (cmdstanr version 2.29.2) through the 
brms [25] R package version 2.18.0. While general con-
siderations would be similar for frequentist methods, 
Bayesian posterior distributions enable straightforward 
calculation of all derived quantities with appropriate 
uncertainty estimates facilitating comparison in these 
examples. Default (flat or very weakly informative) pri-
ors having minimal influence on the results were used 
for all analyses; all analyses used 4 chains with 10,000 
total iterations (2,500 warmup iterations) each, and con-
vergence was assessed using the updated Rhat statistic 
[26] (≤ 1.01 in all models). Code to fit the models and the 
exact priors are included in Additional file 1.

The original analyses of the COVID STEROID 2 trial 
were adjusted for stratification variables [15]; these anal-
yses were unadjusted for simplicity and ease of compari-
son, as non-collapsibility of some (sub-)models would 
require marginalisation to facilitate comparability. This 
would increase unnecessary complexity in this setting 
[27] but must be considered if the primary analysis model 
for a future trial is based on a model-comparison based 
strategy (which should ideally be pre-defined).

To facilitate comparison of different models, we esti-
mated the expected mean number of DAWOLS for 
each patient/treatment group using predictions for 
patients in each treatment group calculated by com-
bining predictions from all parts of the hurdle-nega-
tive binomial model, the zero–one-inflated beta model 
(with proportions multiplied by the maximum number 
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of days possible), and the cumulative logistic regression 
model (with probabilities multiplied by each possible 
number of days and summed); predicted values were all 
truncated to the possible outcome space where neces-
sary (including for -1 assigned to non-survivors in the 
cumulative logistic regression model, which was both 
replaced with 0 and used as is). We used these values 
to estimate the mean differences (the most common 

estimand for these outcomes [2]) and ratios of means 
to facilitate comparison of all models using the same 
estimands.

We compared models using root mean squared errors 
(RMSEs) and median absolute errors (MAEs) of model 
predictions compared to the outcome data used to fit the 
models (on the number of DAWOLS-scale), and, further, 
by calculating the differences between the predicted and 

Fig. 3 Different models’ handling of days alive without life support (DAWOLS) using COVID STEROID 2 trial data [15]. Horizontal axes: number or 
proportion of days; vertical axes: number of patients. The linear regression models the mean value of the distribution. No limits are imposed; thus, 
predictions outside the valid value space in both directions may occur (indicated by the arrows). The hurdle‑negative binomial regression models 
the proportion of patients with exactly 0 days (red) in a logistic regression sub‑model and the mean counts for all patients with ≥ 1 day (blue) 
using a (zero‑truncated) negative binomial sub‑model. Predictions lower than the valid value space are thus not possible, while predictions above 
the maximum valid value may occur (indicated by the arrow). The zero–one‑inflated beta‑model consists of three sub‑models and models the 
proportion of DAWOLS. Two logistic regression models estimate the probabilities of having either a proportion of 0 or 1 (0 or 100%, red and green), 
and the probabilities of a proportion of 1 (100%, green) conditional on having either 0 or 1. A beta regression models the proportion of DAWOLS 
for patients with > 0 and < 1 (> 0% and < 100%, blue) proportion of DAWOLS. The combined model has lower and upper limits corresponding 
to the valid parameter space; thus, proportions < 0 or > 1 cannot be predicted. The cumulative logistic regression model separately models the 
probabilities of all distinct values in the dataset as ordinal categories under the proportional odds assumption (Table S1 in Additional file 1). Thus, 
only values occurring in the dataset will be predicted and specific clinical events (e.g., death) may be included as separate categories, for example, 
as a category worse than all other values (here ‑1, black, with all other values visualised using unique colours), although this may complicate 
prediction on the absolute scale
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observed mean number of DAWOLS in each treatment 
group. These summary measures were calculated using 
the complete posterior distributions and summarised 
using median posterior values with 95% percentile-based 
credible intervals (CrIs). As models used different out-
come transformations and different distributional fami-
lies, information criteria-based model comparison was 
not possible [28].

Model fitness was in particular assessed using graphi-
cal posterior predictive checks [29] comparing poste-
rior predictive outcome distributions sampled for each 
group with the observed outcome distributions. We 
also used posterior predictive checks to visually com-
pare the distribution of expected (mean) values from 
each model in each treatment group to the observed 
group means. In addition, we visually assessed the pro-
portional odds assumption of the cumulative logistic 
regression model.

Finally, we produced several examples of how the raw 
data can be presented graphically to provide additional 
information and to supplement the statistical summary 
measures by illustrating potential differences across the 
full range of distributions, inspired by previous RCTs 
[30–32].

Results
Measures of model fitness are presented in Table 1.

RMSEs were almost identical across models (slightly 
higher from the cumulative logistic model when pre-
dicting -1 for the worst category, corresponding to 
non-survival); the MAEs were also similar. The differ-
ences between predicted and actual mean number of 
DAWOLS in each group were smallest for the linear, 

hurdle-negative binomial, and zero–one-inflated beta 
models and somewhat larger for the cumulative logistic 
regression model. While the magnitudes of these differ-
ences may be of limited importance, estimates in each 
group were pulled closer in this model. This is likely 
explained by the proportional odds assumption being 
somewhat violated (Fig. S1 in Additional file 1).

Predicted means in each group, mean differences, 
and ratios of means are similarly presented in Table 1. 
Posterior predictive checks are presented for all model-
dataset combinations in Figs. S2-S11 in Additional 
file 1; increased model complexity generally led to gen-
erated data distributions more like the actual data. Pre-
dicted mean values from the linear and hurdle-negative 
binomial models were close to the actual mean values; 
for the zero–one-inflated beta model, point estimates 
were slightly lower than the actual values, and for the 
cumulative logistic model (which had a cumulative 
odds ratio of 1.21, 95% CrI 0.96 to 1.53), predictions 
in both groups were closer to each other than in the 
actual dataset. The linear and hurdle-negative binomial 
models did not generate data similarly distributed to 
the COVID STEROID 2 trial dataset, which had sub-
stantial inflation at both 0 and 28 days. The zero–one-
inflated beta and cumulative logistic regression models 
generatively replicated the trial data relatively well. 
Mean values in each group were predicted well by all 
models, although the cumulative logistic model slightly 
overpredicted mean values in the control group and 
underpredicted mean values in the intervention group, 
drawing the group means closer to each other.

Examples of how the raw data may be visualised are 
presented in Fig. 4.

Table 1 Measures of model fitness

Model fitness, predictions, and effect estimates for all four models fit to the COVID STEROID 2 trial data [15]; days alive without life support at day 28 was modelled 
after assigning 0 days to non-survivors in all models except the cumulative logistic model, where non-survivors were assigned -1 (i.e., a category worse than all other 
categories). Values are presented posterior medians with 95% percentile-based credible intervals. Effect estimates were calculated by predicting the mean value for 
one patient in each group (as no covariate adjustments were used in these models).

Model Root mean 
squared errors

Median 
absolute errors

Control group 
difference in 
predicted vs. 
observed means

Intervention 
group difference 
in predicted vs. 
observed means

Control group 
mean

Intervention 
group mean

Mean difference Ratio of means

Linear 12.6 (12.6 to 12.6) 13.1 (12.0 to 13.9) 0.02 (‑1.11 to 1.15) 0.01 (‑1.09 to 1.13) 14.9 (13.8 to 16.0) 16.5 (15.4 to 17.6) 1.59 (‑0.01 to 3.18) 1.11 (1.00 to 1.23)

Hurdle‑negative 
binomial

12.6 (12.6 to 12.7) 13.1 (12.0 to 13.9) ‑0.01 (‑1.20 to 1.23) 0.00 (‑1.21 to 1.20) 14.9 (13.7 to 16.1) 16.4 (15.2 to 17.6) 1.58 (‑0.16 to 3.28) 1.11 (0.99 to 1.24)

Zero–one‑
inflated beta

12.6 (12.6 to 12.6) 13.2 (12.1 to 13.9) ‑0.03 (‑1.15 to 1.11) ‑0.12 (‑1.23 to 0.96) 14.8 (13.7 to 16.0) 16.3 (15.2 to 17.4) 1.49 (‑0.09 to 3.05) 1.10 (0.99 to 1.22)

Cumulative 
logistic (death 
converted to 
0 days in predic‑
tions)

12.6 (12.6 to 12.6) 13.0 (12.0 to 13.9) 0.13 (‑0.99 to 1.25) ‑0.17 (‑1.24 to 0.90) 15.0 (13.9 to 16.1) 16.3 (15.2 to 17.3) 1.28 (‑0.26 to 2.84) 1.09 (0.98 to 1.20)

Cumulative 
logistic (death 
predicted as 
‑1 days)

13.0 (13.0 to 13.0) 13.3 (12.3 to 14.4) 0.14 (‑1.01 to 1.30) ‑0.17 (‑1.27 to 0.93) 14.7 (13.5 to 15.8) 16.0 (14.9 to 17.1) 1.32 (‑0.27 to 2.92) 1.09 (0.98 to 1.21)



Page 8 of 12Granholm et al. BMC Medical Research Methodology          (2023) 23:139 

Discussion
We have provided an overview of the necessary method-
ological considerations and a discussion of four different 
regression models for assessing skewed and non-trivially 
distributed outcomes such as DAWOLS and compared 
these models in real data from the COVID STEROID 2 
trial [15]. We have described the models including their 
key assumptions, structures, data requirements, avail-
able effect measures, and aspects related to the presen-
tation of results (Table  S1 in Additional file  1). There is 
no universal best model, and all models have advantages 

and disadvantages. While the simpler models do not fit 
the data well enough to mimic the input data, they ade-
quately estimated group means, are simpler to interpret, 
and are easier to use in a Bayesian context with informa-
tive priors. In contrast, the more complex models pro-
vided better fits to the data and were better at generating 
new, similar data, although none were perfect. The more 
complex models can describe separate components of 
the outcome (i.e., the probability of having 0 or more 
DAWOLS), which may be relevant in some settings. 
However, this comes at increased complexity, increased 

Fig. 4 Example visualisations illustrating how visual presentation of days alive without life support or similar outcome data may aid interpretation, 
using days alive without life support after 28 days from the COVID STEROID 2 trial [15]. Upper left sub‑plot: cumulative percentage of patients 
(vertical axis) with less than or as many days alive without life support as listed on the horizontal axis in each group, after assigning ‑1 days 
to non‑survivors. This sub‑plot shows that patients in the control group had less days alive without life support over the full range of values. 
Upper right sub‑plot:”heat map” visualising the proportion of patients (horizontal axis) with each value in each group after assigning 0 days to 
non‑survivors; this figure is similar to an overturned stacked bar plot, displaying the entire distributions with each unique value having its own 
colour in a red‑to‑blue gradient (with colours corresponding to the number of days illustrated in the legend below the plot). Similar to the first 
sub‑plot, this sub‑plot shows that, over the full range of values, patients in the control group had fewer days alive without life support. Lower 
sub‑plots: distributions of patients in each possible state (vertical axes: alive and home; alive and in hospital; alive, in hospital and on life support; 
dead) on each day after randomisation (horizontal axes) separately in the two treatment groups. This sub‑plot shows additional details compared 
to the first two: mortality was higher in the control group with more early deaths, and survivors were on life support longer compared to the 
intervention group
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uncertainty, increased difficulty related to the use of 
meaningful priors, and in some cases, somewhat larger 
errors for estimated mean values.

Linear regression is easy to interpret, simple to work 
with, and may be used if separate estimates for specific 
counts, such as minimum/maximum values, are not 
needed. While the assumption of normally distributed 
residuals (Table  S1 in Additional file  1) will usually be 
violated when modelling outcomes such as DAWOLS, 
means and uncertainty metrics (confidence/credible 
intervals) may be adequately estimated for larger sam-
ples, due to the central limit theorem [33, 34] in the fre-
quentist setting, if Bayesian posterior distributions are 
used, or if bootstrapping [35] is used to estimate robust 
standard errors. Thus, linear regression often works well 
even with large departures from normality [36] and, in 
practice, also often for probability and proportion data 
[37]. As an alternative, quantile regression [38, 39] may 
be used to estimate (adjusted) medians. While quantile 
regression does not have the same distributional assump-
tions as linear regression, it is computationally more 
complex and requires relatively more data to adequately 
estimate uncertainty and may thus not work as well in 
smaller samples [39].

Multi-part models, including hurdle-negative binomial 
and zero–one-inflated beta models may better genera-
tively replicate data and provide combined and separate 
estimates for each sub-model. This may be important if a 
treatment has opposite effects on, e.g., mortality and the 
duration of organ support in survivors/non-survivors, 
leading to opposing differences in the probabilities of 
0 days and the mean number of days in all other patients. 
Such opposing effects may hamper the interpretation of 
the combined estimate and decrease power [17]; however, 
this may also be assessed by analysing mortality sepa-
rately as is usually done and recommended [2]. Zero–one-
inflated beta regression may be theoretically preferable to 
hurdle-negative binomial models if some inflation at the 
maximum value is expected; however, hurdle-negative 
binomial models are simpler to work with and estimated 
the group means better in these examples. Consequently, 
even if some inflation at the maximum value is expected, 
a hurdle model may be an appropriate choice if the pri-
mary interest revolves around modelling the proportion 
of values of 0 and > 0, and hurdle models may also offer 
increased precision compared with three-part models 
due to the use of one less sub-model. Alternatively, longer 
follow-up durations may be chosen to limit the inflation 
to the maximum value. Similar models not covered here 
include hurdle-Poisson models (Poisson models are less 
flexible than negative binomial models, which may lead 
to inferior fits [40]), hurdle-log-normal models suitable 
for modelling non-negative continuous (non-count) data, 

and zero-inflated negative binomial/Poisson models (sim-
ilar to hurdle models, but model 0 as coming from two 
separate processes and thus complicates interpretation). 
Finally, beta-binomial models (an over-dispersed bino-
mial model) may also be considered for count outcomes 
with maximum values [40–42]. This model may provide 
fits like the zero–one-inflated beta regression with higher 
precision (as it does not consist of multiple sub-models) 
but without the ability to separately estimate minimum/
maximum values. Alternatively, an ordinal beta regression 
model has recently been proposed and may likewise be 
considered [43].

The cumulative logistic regression model assessed has 
the least distributional assumptions and may fit data well 
overall. However, the ordinal odds ratio is somewhat dif-
ficult to interpret, as it is not on an absolute or clinically 
interpretable scale. Thus, defining a clinically relevant 
difference is difficult, unless mean values are estimated 
by combining the probabilities of all counts in the data. 
The central assumption of this model (i.e., odds being 
proportional) may not hold, and, from a clinical perspec-
tive, treatment effects may plausibly be different, at least 
in magnitude, on mortality and the number of days alive 
and without life support in survivors. Thus, while viola-
tions of the proportional odds assumption do not neces-
sarily invalidate the model (Table S1 in Additional file 1) 
[44], they may affect results, especially if means or other 
absolute effect measures are calculated. In such situa-
tions, the use of proportional odds models may lead to 
under-/overestimated group means (and consequently 
incorrect mean difference estimates), as seen in these 
analyses. Of note, the proportional odds assumption may 
be relaxed using the (constrained) partial proportional 
odds model [45], although this further increases the com-
plexity of both modelling and interpretation.

In addition to the overall statistical model used, 
detailed graphical presentation of the overall and daily 
raw data and presentation of probabilities of minimum/
maximum values and overall mortality for the same 
period of follow-up is advisable to ease interpretation and 
to ensure that opposing directions of effects on mortality 
and the number of days in survivors are not present, as 
the combined estimate may not be clinically meaning-
ful if this is the case [17]. Different visualization options 
are available; methods that visualize the distributions of 
DAWOLS (e.g., the two upper sub-plots in Fig. 4) are rel-
atively easy to interpret and quickly provides an overview 
and an impression about whether different directional 
effects are present. More details may be conveyed using 
more complex plots (e.g., the lower sub-plot in Fig.  4 
illustrating the proportions of patients in different states 
each day), however, the added complexity require more 
scrutiny to fully interpret.
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Strengths and limitations
This study comes with several strengths. First, we have 
provided an overview (Fig.  2) of the central methodo-
logical considerations and decisions, including each 
model’s technical, theoretical, practical, and interpre-
tational aspects. This is important in practice, as inter-
pretability may be a valid reason to choose one model 
over another, especially if individual predictions are 
not needed. Second, we used Bayesian methods and 
graphical posterior predictive checks to provide an 
intuitive and visual interpretation of how well models 
fit the complex distributions and allow easy calculation 
of derived, combined effect estimates (including uncer-
tainty) for multi-part models. While these analyses were 
conducted in a Bayesian context, most considerations 
discussed in this manuscript apply equally to the fre-
quentist setting.

The study comes with limitations, too. First, we only 
compared models in a single dataset; we have thus pro-
vided an example, but relative model performance and 
goodness-of-fit in other datasets may differ somewhat. 
Comparing model performance in multiple, real datasets 
would be valuable moving forward and is likely prefer-
able to simulation-based model comparison, as the com-
plexity of the distributions of DAWOLS and DAOH is a 
challenge with results likely to depend substantially on 
the data-generating model used in such simulations. 
Second, we considered a limited number of models 
and only focus on regression models, without consid-
ering non-parametric tests due to the limitations out-
lined in the background. Time-to-event/survival models 
have been used in some RCTs employing variants of 
DAWOLS (e.g., RCTs focusing on mechanical ventila-
tion where all patients are ventilated at baseline [46]), 
but these methods have not been covered here, as they 
are often not suitable, e.g., when not all patients start on 
life support or when a substantial number of patients get 
on/off life support at multiple times during admission, 
or where hospital readmission after initial discharge 
is common or relevant. More complex models such as 
Gaussian processes and kernel density estimators, which 
may provide better fits to data, and longitudinal Markov/
state-transition models could be considered, all of which 
use all daily available information without collapsing the 
results into a single number of days. Importantly, the 
considered models are all well-documented, relatively 
easy to use and interpret, and are implemented in sta-
ble and well-documented software packages [25]. Finally, 
we have not in detail discussed the general benefits and 
disadvantages of DAWOLS or similar types of outcomes 
and their different definitions; this has been done else-
where [2, 8, 17, 46] and is beyond the scope of the pre-
sent manuscript.

Recommendations
As there are potential advantages and disadvantages 
with all models used to analyse DAWOLS and similar 
count outcomes, it is paramount to pre-specify a sta-
tistical analysis plan based on careful considerations of 
the expected data distributions, clinically relevant effect 
measures of interest, and the important benefits and 
trade-offs with the model chosen. As illustrated previ-
ously, choosing different distributions may affect results 
and their interpretation [40]. Thus, the approach must 
be pre-specified, and ideally include a primary plan and 
a plan for assessing model assumptions and fitness with 
alternative approach(es) to be invoked if the primary 
proves inappropriate [34, 40]. Further, sensitivity analy-
ses using different approaches may be considered to 
assess the influence of model choice. Finally, we strongly 
recommend that detailed outcome data are presented 
and considered (graphically and/or as separate compo-
nents) to ease interpretation and to avoid misleading 
conclusions if opposing effects on different components 
cancel out in whole or in part [17]. Presentation of sepa-
rate mortality data at the same follow-up time point is 
especially important [2].

Conclusions
In conclusion, we have discussed important meth-
odological considerations when analysing DAWOLS 
and similar count outcomes. We have discussed and 
assessed several regression models that are extendable 
and suitable for both simple and complex RCTs, enable 
estimation of treatment effects regardless of the num-
ber of treatment arms, and allow for adjustment for 
several covariates. The discussed models all come with 
advantages and disadvantages, and while no model is 
globally recommended, this manuscript should help 
clinical trialists, statisticians, and other researchers 
make an informed choice.
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