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Abstract 

Background  Machine learning tools such as random forests provide important opportunities for modeling large, 
complex modern data generated in medicine. Unfortunately, when it comes to understanding why machine learning 
models are predictive, applied research continues to rely on ‘out of bag’ (OOB) variable importance metrics (VIMPs) 
that are known to have considerable shortcomings within the statistics community. After explaining the limitations of 
OOB VIMPs – including bias towards correlated features and limited interpretability – we describe a modern approach 
called ‘knockoff VIMPs’ and explain its advantages.

Methods  We first evaluate current VIMP practices through an in-depth literature review of 50 recent random forest 
manuscripts. Next, we recommend organized and interpretable strategies for analysis with knockoff VIMPs, includ-
ing computing them for groups of features and considering multiple model performance metrics. To demonstrate 
methods, we develop a random forest to predict 5-year incident stroke in the Sleep Heart Health Study and compare 
results based on OOB and knockoff VIMPs.

Results  Nearly all papers in the literature review contained substantial limitations in their use of VIMPs. In our dem-
onstration, using OOB VIMPs for individual variables suggested two highly correlated lung function variables (forced 
expiratory volume, forced vital capacity) as the best predictors of incident stroke, followed by age and height. Using 
an organized analytic approach that considered knockoff VIMPs of both groups of features and individual features, the 
largest contributions to model sensitivity were medications (especially cardiovascular) and measured medical risk fac-
tors, while the largest contributions to model specificity were age, diastolic blood pressure, self-reported medical risk 
factors, polysomnography features, and pack-years of smoking. Thus, we reach very different conclusions about stroke 
risk factors using OOB VIMPs versus knockoff VIMPs.

Conclusions  The near-ubiquitous reliance on OOB VIMPs may provide misleading results for researchers who use 
such methods to guide their research. Given the rapid pace of scientific inquiry using machine learning, it is essen-
tial to bring modern knockoff VIMPs that are interpretable and unbiased into widespread applied practice to steer 
researchers using random forest machine learning toward more meaningful results.
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Background
The amount of health data available for analysis has 
proliferated in recent years, along with the use of 
machine learning (ML) to model complex associa-
tions in high-dimensional data sets. Random forests 
are among the most accurate ML models, and are con-
tinuing to grow in popularity [1]. Since Breiman’s pub-
lication of his original random forest manuscript in 
2001 [2], it has been cited over 40,000 times in peer-
reviewed journals, with approximately 80% of these 
citations occurring in the last five years alone. But the 
popularity of random forests – and ML in general – 
neglect a major drawback: it is difficult to look inside 
the “black box” to determine which factors are driving 
the predictive abilities of the algorithm. Such knowl-
edge is exceedingly important for researchers who want 
to understand not just whether a predictive algorithm 
works, but why it works. (See Supplement for details on 
random forest methods.)

Recognizing the need to understand which features 
drive the predictive abilities of the random forest, Brei-
man originally proposed an ad hoc and computationally 
efficient approach called ‘out of bag’ Variable Importance 
(OOB VIMP) [2]. OOB VIMPs continue to be the default 
in most random forest software and are commonly used 
by applied researchers, despite serious drawbacks that 
are well-documented in the statistics community [3–6]. 
Specifically, they have limited interpretability and groups 
of correlated features tend to have inflated OOB VIMPs. 
This latter problem is particularly troublesome since 
complex high-dimensional data nearly always contain 
correlated features, and it is precisely these settings in 
which researchers most often turn to random forests.

Alternative VIMPs that address these limitations have 
been developed in the last few years [7, 8]. However, such 
methodological discoveries can often take a decade or 
more to fully integrate in the scientific community. The 
random forest itself took over 15 years to gain popular-
ity in applied research. The case of the Least Absolute 
Shrinkage and Selection Operator (LASSO) [9], another 
popular modeling approach, also exemplifies the problem 
of slow uptake of methodological discoveries. Nearly 99% 
of the > 46,000 LASSO citations came more than a dec-
ade after the method was first published in 1996. Given 
the accessibility of large data sets and the ability to use 
random forests without a full appreciation of their under-
lying assumptions and limitations, we cannot wait a dec-
ade for modern and recommended VIMP approaches to 
trickle into the applied research community.

The goals of this manuscript are to: (1) demonstrate 
why the common practices surrounding OOB VIMPs in 
random forests can lead to vague, potentially mislead-
ing, and non-reproducible scientific findings; (2) high-
light modern VIMP approaches that address limitations 
of OOB VIMPs but that have not yet been widely applied 
in medical research; and (3) demonstrate an organized 
analytic framework for using modern VIMPs to identify 
key predictors of incident stroke. We hope that our work 
will expedite the transfer of critically important knowl-
edge from the statistics community to applied research-
ers by introducing best practices for examining feature 
importance.

Scientific motivation: incident stroke prediction
As a scientifically important motivating example, we 
examine the role of overnight polysomnography (PSG) 
features for predicting 5-year incident stroke using data 
from the Sleep Heart Health Study (SHHS) [10] – a large 
multi-site cohort of community-dwelling older adults. 
Overnight PSG can produce hundreds of features related 
to arousals, oxygen saturation, respiratory events, heart 
rate, and sleep architecture. Many of these PSG features 
are used to identify obstructive sleep apnea, an emerg-
ing modifiable risk factor for incident stroke especially 
in men [11–14]. Other PSG features such as sleep archi-
tecture (e.g., time in specific sleep stages such as Rapid 
Eye Movement [REM] or N3 sleep), sleep continuity (e.g., 
time to fall asleep, minutes awake after first falling asleep) 
or sleep duration may also be predictive, although they 
are less widely studied as risk factors for stroke [15, 16].

Despite the potential promise of PSG derived met-
rics for stroke prediction, the use of PSG as a large-scale 
screening tool is limited because it is more burdensome 
and expensive relative to other well-established predic-
tors of stroke that are derived by self-report or infor-
mation widely available in health records, such as age, 
hypertension, dyslipidemia, diabetes, cardiovascular 
disease, anthropometry, and lifestyle behaviors [17–21]. 
We aim to understand the predictive value of PSG sleep 
measures in relation to other established clinical and self-
report measures from the SHHS, the largest US-based 
research cohort to examine incident stroke.

Given the high-dimensional nature of data within the 
SHHS – and the observation that sleep measures are 
often interconnected to one another and to other stroke 
risk factors including age, smoking, obesity, and hyper-
tension [16] – random forests present a promising 
alternative to traditional linear modeling approaches 
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because they allow for complex and empirically-driven 
combinations of features. However, given our particu-
lar interest in understanding the role of PSG-derived 
sleep features relative to other risk factors, we need to 
unpack the random forest model to determine which 
features are driving its predictive abilities.

OOB VIMP methods
The terminology ‘OOB’ originates from the procedure 
called ‘bagging’ or ‘Bootstrap Aggregating’ [22]. Bag-
ging is the process of combining results from trees gen-
erated across multiple bootstrap samples. (A bootstrap 
sample is a resample of the original training sample, the 
same size as the original sample, drawn with replace-
ment.) By construction, each bootstrap sample will, 
with exceedingly high probability: (a) contain dupli-
cates of individuals from the original sample, and (b) 
exclude some individuals in the original sample. Boot-
strap samples that do not contain data from an indi-
vidual i are considered OOB for that observation. OOB 
VIMPs leverage OOB samples to enhance computa-
tional efficiency.

To illustrate how OOB VIMPs are computed, consider 
a scenario with features X1-X10 used to predict incident 
stroke in a sample of individuals i = 1,..,N, each with the 
observation set zi = {xi1,…,xi10}. The steps to compute the 
OOB VIMP for X1 are as follows (also see Fig. 1a).

1.	 Construct the random forest in all N participants 
using X1-X10 as predictors.

2.	 For each participant i:

a.	 Use the random forest to predict the outcome for 
the corresponding observation set zi and calcu-
late the accuracy, Pi.

b.	 Replace the value of xi1 in zi with a randomly 
selected value of X1 while holding xi2-xi10 at the 
original values. Denote the new observation set 
for participant i as zi* = {xi1*, xi2,…,xi10}.

c.	 Find all trees in which i was not chosen in the 
resample (i.e., trees grown using the OOB sam-
ples for i), and thus was not used in the training 
of that tree. This subset of trees is called the sub-
forest for participant i.

d.	 Use the sub-forest for participant i to predict the 
outcome using the observation set zi* and denote 
the accuracy of this prediction by Pi*. Compute 
VIMPi = Pi-Pi*

3.	 Compute the VIMP for X1 as the average across all 
VIMPi.

4.	 The VIMPs for the remaining X2-X10 can be calcu-
lated by repeating Step 2–3 and substituting the val-
ues of the feature of interest.

The motivation behind the OOB VIMP is straightfor-
ward: if X1 plays an important role in the model, then 
randomly changing the value of X1 should lead to a 
change in the prediction and hence a change in the accu-
racy of that prediction. Conversely, if changing the value 
of X1 has little impact on the predicted value for most 
observations, then X1 would seem to be unimportant.

However, in the years following the introduction 
of OOB VIMPs, researchers noticed that they can 

Fig. 1  Methods for out of bag (OOB) VIMP (a) vs. knockoff VIMP (b)
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dramatically inflate the importance of features that are 
highly correlated with other features [3–6]. To explain, 
consider a simplified example of a random forest used to 
predict stroke with three features: X1, X2, and X3. Assume 
that X1 and X2 are true causal risk factors for stroke and 
that X3 is moderately correlated with X2 but not inde-
pendently related to the outcome. If we grow a random 
forest using X1-X3, given the randomness in the forest, 
X3 is likely to be used (split upon) in many trees. Thus, 
when X3 is shuffled to compute the OOB VIMP, there 
may be a sizeable drop in performance (corresponding 
to a relatively large OOB VIMP) because X3 was used to 
construct this random forest. However, the OOB VIMP 
indicates only that X3 was used within this specific ran-
dom forest model. It does not indicate: (a) that X3 is 
needed to predict stroke (it is not needed); (b) whether 
X3 has a relationship with stroke after accounting for 
other features (it does not); or (c) that if you took out X3, 
the model would perform worse (it may even perform 
better). In other words, these OOB VIMPs ask about the 
role of X3 in only the model constructed, rather than how 
well a model could have been constructed without rele-
vant information from X3.

Modern VIMP methods
Recent solutions explicitly address the limitations of 
OOB VIMPs: we broadly denote them as “removal”, 
“permutation”, and “knockoff” approaches. Removal 
approaches compare a model with the feature of interest 
to a model without the feature of interest [8]. Permuta-
tion approaches (e.g., Boruta importance) compare the 
performance of a model with the true feature of inter-
est versus model performance with a permuted feature 
[7, 23, 24]. Knockoff approaches compare a model with 
the feature of interest to a model with an altered version 
of the feature of interest called a knockoff. The knockoff 
is a simulated version of the variable of interest that has 
(approximately) the same association with other variables 
in the model but no true association with the outcome 
[25], and requires the generation of knockoff variables 
through a “knockoff generator” [26]. Among the many 
benefits of these more rigorous modern VIMPs, we note 
that they can be used with many types of predictive algo-
rithms and can theoretically be computed using any met-
ric of model performance.

The types of VIMPs described above each have differ-
ent strengths and weaknesses. However, we consider the 
knockoff approach to be the truest test of a feature’s pre-
dictive abilities of a variable of interest within a model 
because it directly compares the accuracy of a model 
built using the true feature of interest to the accuracy of 
a model that is identical in all ways except the feature of 
interest is not related to the outcome. In particular, the 

knockoff variables used in the second model may still be 
correlated with other features that are directly related to 
the response so long as the feature itself is not directly 
associated with it. In contrast, when we compare a model 
with the feature of interest to a model without the feature 
of interest (i.e., using removal VIMPs), the two models 
differ in their dependence among variables as well as the 
number of variables. These alterations can have unex-
pected consequences, especially when there are depend-
encies between the feature being tested and the other 
features in the model. In particular, random forests can 
sometimes incorporate features that have no relation-
ship to the response whatsoever [27]. For this reason, we 
focus on knockoff VIMPs for the remainder of this study.

To illustrate how knockoff VIMPs are computed, we 
again consider our set of features X1-X10 to predict an 
outcome. The steps to compute the knockoff VIMP for X1 
are as follows (also see Fig. 1b).

1.	 For participants in both training and testing samples, 
generate a knockoff variable for each feature X1-X10 
using a knockoff generator [25, 26].

2.	 Construct a random forest model (RF1) in a training 
sample using the true X1-X10 as predictors.

3.	 Construct a second random forest model (RF2) in the 
same training sample using the knockoff version of 
X1

* and other true predictors X2-X10.
4.	 For each participant i in an independent testing sam-

ple:

a.	 Use RF1 to predict the outcome based on their 
observation set zi = {xi1-xi10}. Compute the per-
formance Pi1.

b.	 Replace the value of xi1 in zi with its knockoff 
value of X1 while holding xi2-xi10 at the origi-
nal values. Denote the new observation set as 
zi* = {xi1*, xi2…,xi10}.

c.	 Use RF2 to predict the outcome based on the 
observation set zi*. Compute the performance 
Pi2.

d.	 Compute VIMPi = Pi1-Pi2.

5.	 Compute the knockoff VIMP for X1 as the average 
across all VIMPi.

6.	 The VIMP for the remaining X2-X10 can be calculated 
by repeating Steps 3–5 and substituting the values of 
the feature of interest.

An essential difference between OOB VIMPs and 
knockoff VIMPs is that the knockoff VIMP requires 
two random forest models: one built with the true fea-
ture of interest and one built with the altered feature of 
interest (i.e., the knockoff). In contrast, the OOB VIMP 
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only considers one random forest with the true variable. 
Thus, while knockoff VIMPs address critical limitations 
of OOB VIMPs, they require significantly greater compu-
tational cost because a new forest must be generated for 
each knockoff VIMP.

As with all statistical analyses, it is essential to precisely 
define the scientific question and carefully plan the corre-
sponding analytic strategy when using knockoff VIMPs. 
Knockoff VIMPs can answer questions of the form: “How 
much unique predictive information does the variable (or 
group of variables) contribute to the ML model, beyond 
what is offered by the other features in the model?” Thus, 
knockoff VIMPs do not determine whether the feature(s) 
in question alone can help predict the response (mar-
ginal importance), but rather, can those features further 
improve model performance once the information in 
the other features are accounted for (conditional impor-
tance). For a set of features to be deemed conditionally 
important, they must have unique predictive information 
that cannot be explained by complex combinations of 
any other features in the model. In practice, it can be dif-
ficult to show that an individual feature has strong con-
ditional importance, especially when using ML models 
like random forests that can uncover complex underlying 
associations. Although knockoff VIMPs are not biased 
towards interrelated measures, their interpretation still 
requires careful consideration. If two variables X1 and X2 
are related (even in a complex, non-linear way) and both 
are important for predicting the outcome, it is possible 
that their VIMPs will be dampened when examined in 
the same model simultaneously because one can be used 
in place of the other for prediction [25].

Advances in modern VIMPs also include formal 
hypothesis testing procedures to determine whether the 
calculated VIMPs are statistically different from zero 
[7, 8]. Thoughtful use of statistical inference for VIMPs 
may be beneficial when testing pre-specified hypotheses. 
However, in scenarios that are exploratory and used for 
hypothesis generation, we recommend emphasizing the 
magnitude of the VIMP over the p-value, which does not 
necessarily indicate a meaningful association [28].

Methods
Literature review
To evaluate the extent to which applied researchers 
acknowledge and address the limitations surrounding 
VIMPs, we performed an in-depth literature review of 50 
manuscripts (published between March 2022 and August 
2022) that cited the original random forest manuscript 
[2]. Manuscripts were selected from Web Of Science 
and were restricted to only English citations and Article 
or Review Article manuscript types. To focus on health-
specific applications, we further restricted our search to 

manuscripts listed under the following Research Areas: 
Neurosciences Neurology, Medical Informatics, Radiol-
ogy Nuclear Medicine Medical Imaging, Pharmacology 
Pharmacy, Public Environmental Occupational Health, 
Genetics Heredity, Health Care Sciences Services, 
Oncology, General Internal Medicine, Psychology, or 
Psychiatry.

SHHS demonstration
Sample
SHHS participants were recruited from nine existing epi-
demiological cohort studies focused on cardiovascular 
risk factors. Several of these cohorts over-sampled indi-
viduals who snore, given the study’s focus on sleep-dis-
ordered breathing. Those who met the inclusion criteria 
for SHHS (age 40 years or older; no history of treatment 
of sleep apnea; no tracheostomy; no current home oxy-
gen therapy) were invited to participate in a baseline 
examination that included self-report questionnaires, 
laboratory measurements, and an overnight at-home 
polysomnogram (PSG). After the initial SHHS visit, par-
ticipants were followed longitudinally for several health 
outcomes including adjudicated incident stroke. Parent 
cohorts provided ongoing surveillance for incident stroke 
per their specific protocols; additional details on proto-
cols and stroke adjudication is provided elsewhere [14].

The initial SHHS visit included N = 5,804 participants 
with publicly available data (National Sleep Research 
Resource; www.​sleep​data.​org), of whom N = 4,889 
(84.2%) had no prior stroke. From the 4,889, we further 
removed 31 (0.6%) people with > 20% missing data on fea-
tures of interest, resulting in N = 4,858. With this sample, 
we used random forest imputation (missForest function 
and package in R [29]) to impute missing data on features 
with no more than 20% missing data, considering a total 
of 641 features measured in SHHS. Our final analytic 
sample was N = 4,512 participants with no prior stroke 
and observed follow-up data for the outcome of adjudi-
cated incident stroke in 5 years. Within this final sample, 
N = 124 (2.7%) participants had incident stroke within 
5 years.

Variable selection and grouping
Our analytic question is “How much unique informa-
tion do PSG features contribute to predict incident stroke 
in the random forest, beyond what is offered by other 
established clinical and self-report risk factors?” To this 
end, we studied the literature for established and emerg-
ing predictors of stroke and identified 157 features (out 
of the 641 considered) with potential direct or indirect 
predictive abilities. We aimed to avoid high levels of 
redundancy when possible, although we did allow for 
some highly correlated variables when their combination 

http://www.sleepdata.org
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might have been of interest, and prioritized the selection 
of features with scientific and/or clinical interpretability. 
For PSG features – which are of particular interest in our 
application – we included 15 features that we also con-
sidered in a prior manuscript based on their strong clini-
cal and scientific value [24]. Overall, there were relatively 
low correlations among the pairs of features, with 97.7% 
of pairs having small spearman correlations < 0.30. How-
ever, 44 pairs of features (0.36%) had spearman correla-
tions with magnitudes > 0.70.

Given the relatively high bar of conditional importance, 
combined with the important considerations for interre-
lated measures discussed above, we recommend group-
ing similar features together and testing the conditional 
importance of the “domain". This approach can enhance 
the interpretation of findings, amplify VIMP effect sizes, 
and reduce the competition between individual inter-
related variables. When determining which features 
should be grouped together, we recommend considering 
one’s scientific questions of interest, which features tap 
into a similar underlying scientific constructs (regard-
less of their correlation), and which features may be 
highly related (linearly or non-linearly) with one another. 
Knockoff VIMPs do not have a bias towards larger groups 
of variables, per se. However, if larger groups contain 
more informative features, we expect the “importance” of 
that group to be higher because it is more predictive.

Guided by our question of interest, we grouped the 
157 features into seven domains based on conceptual, 
physiological, or methodological similarity (Level 1). We 
refined these broad domains to create 26 sub-domains of 
established and emerging stroke risk factors (“Level 2”). 
Finally, we developed a list of 78 features (or small groups 
of highly related features) that allowed for a fine-grained 
examination of specific measures of interest (“Level 3”). 
Table  1 provides details of the features in the Level 1, 
Level 2, and Level 3 domains.

Random forest modeling details
We first identified optimal random forest tuning param-
eters for predicting stroke using SHHS data. For this pur-
pose, we used tenfold cross-validation, ensuring an equal 
proportion of stroke outcomes in each fold. We trained 
each random forest (500 trees) as a regression model 
using the ranger function and package in R [30], with 
outcomes of stroke assigned a 1 and no stroke assigned 
a 0. Within each cross-validation fold, we examined all 
permutations of the “mtry” (number of features available 
for splitting) and “min.node.size” (minimum node size) 
parameters to find the values that minimized the root 
mean squared error (RMSE) of the predictions across the 
cross-validations. Specifically, we evaluated mtry = m*x 
for m = 157 predictors and min.node.size = Ny for 

N = 4,512, with x and y each between 0.1 and 1 in steps 
of 0.1. For our data, x = 0.1 and y = 0.7 were optimal. With 
these parameters, we also used tenfold cross-validation 
with Youden’s J index to identify a probability threshold 
for classifying a prediction as having stroke = 1. The mean 
(standard deviation) optimal cut-off was 0.033 (0.015). 
The mean (SD) accuracy, sensitivity, and specificity of the 
model based on tenfold cross-validation with the optimal 
parameters were 0.716 (0.012), 0.769 (0.111), and 0.714 
(0.013).

VIMP computing details

OOB VIMPs  We fit a random forest model for cat-
egorical stroke using the ranger R function and package 
[30] and optimal mtry and min.node.size parameters 
as derived above. We used the “importance = permuta-
tion” option to extract OOB VIMPs for each of the 157 
features.

Knockoff VIMPs  We first generated a knockoff vari-
able for each feature using the create.second_order func-
tion in the knockoff package in R to generate multivari-
ate Gaussian knockoff variables [26]. We held out 20% 
of the sample for testing and retained 80% for training. 
Using the training data, we grew a random forest with 
the optimal parameters identified above. For each set 
of features indicated Table  1, we replaced each variable 
with its corresponding knockoff and then grew another 
knockoff random forest with the training data. Using the 
testing data, we evaluated the sensitivity and specificity 
of the forests grown using the true versus knockoff vari-
ables using the optimal 0.03 threshold, and computed 
knockoff VIMPs for sensitivity (VIMPSens) and specificity 
(VIMPSpec). Because our own demonstration is explora-
tory and meant for hypothesis generation, we did not uti-
lize formal statistical inference.

R Version 4.4.2 was used for all analyses.

Results
Use of VIMPs in literature
Of the 50 recent publications we reviewed, 43 applied a 
random forest as the primary analysis, while the remain-
der cited the random forest manuscript but did not apply 
the methodology. In 11 of the 43 analyses, authors used 
data that were clearly publicly available; in ten cases, data 
availability could not be determined; and in 22 cases, the 
data were not publicly available (i.e., did not include a 
URL for data access). In 23 of the 43 manuscripts (53%), 
authors used random forest VIMPs. Of these 23, eight 
(35%) failed to mention the type of VIMP used or how 



Page 7 of 12Wallace et al. BMC Medical Research Methodology          (2023) 23:144 	

it was calculated, 13 (57%) relied at least in part on OOB 
VIMP measures (though many included an assortment 
of additional models and measures alongside), one (4%) 
used split depth, and one (4%) used Boruta importance 

[23]. Split depth quantifies the number of times a given 
feature was split on at each depth in the forest, and thus 
is a similarly problematic measure of feature impor-
tance for similar reasons as OOB VIMPs, while Boruta 

Table 1  Features included in the random forest. Level 1 domains are in bold. Level 2 domains are indented below Level 1 domains. 
Level 3 features are italicized, with brackets indicating the number of features if > 1

Number 
of 
Features

Demographic Characteristics 10
  Age 1

  Sex 1

  Race 3

  Other Demographic (Education, Marital Status [4]) 5

Measured Medical Risk Factors 28
  Anthropometry (Body Mass Index, Height, Hip, Neck, Waist, Weight) 6

  Electrocardiogram 15

  Blood Pressure (Systolic, Diastolic) 2

  Lung Function (Forced Expiratory Volume, Forced Vital Capacity) 2

  Lipids (HDL, Triglycerides, Total Cholesterol) 3

Polysomnography 15
  Continuity (Efficiency, Sleep–Wake Shifts, Wake after Sleep Onset) 3

  Duration (Sleep Duration, Time in Bed) 2

  REM Sleep (Percent REM, REM Latency) 2

  Sleep Disordered Breathing (Apnea–Hypopnea Index, Avg SaO2, Min SaO2, T90) 4

  Sleep Staging (3/4–1/2 shifts, % Stage 1, % Stage 2, % Stage 3–4) 4

Health Behaviors 4
  Smoking (Smoking Status [2], Pack-Years of Smoking) 3

  Alcohol Use 1

Self-Report Sleep 30
  Sleep Apnea Symptoms and Diagnoses (Ever Snored, Sleep Apnea Diagnoses [2], Stop
Breathing)

4

  Sleep Health and Disturbances (Sleep Continuity, Sleepiness [3], Duration [2], Timing [4],
Insomnia [6], Sleep Disturbances [10])

26

Self-Reported Medical Risk Factors 27
  Cardiovascular Disease (Angina, Coronary Angioplasty, Coronary Artery Bypass Graft, Heart
Failure, Hypertension, Myocardial Infarction, Pacemaker, Other Heart Surgery)

8

  Diabetes 1

  SF-36 Emotional (Mental Component Total; Mental Health, Role Limitations, Social Functioning
Subscales)

4

  SF-36 Physical (Physical Component Total; Body Pain, General Health, Physical Functioning,
Role Limitations, Vitality Subscales)

6

  Pulmonary Measures (Asthma [2], Chronic Bronchitis, Chronic Obstructive Pulmonary Disorder,
Coughing, Emphysema, Oxygen Therapy, Phlegm)

8

Medication Use 43
  Cardiovascular Medications (Ace Inhibitors [2], Alpha-Blockers, Anti-Arrhythmics [4],
Anticoagulants, Beta-Blockers, Calcium Channel Blockers [3], Digitalis, Diuretics [4],
Nitrates, Nitroglycerine, Phosphodiosterase Inhibitors, Sympathomimetics, Vasodilators [4],
Anti-hypertensive Medication)

26

  Cholesterol Medications 2

  Diabetes Medications 2

  Other Medications (Aspirin [2], Estrogen/Progesterone [3], Gastrointestinal, Non-Steroidal Anti-
Inflammatory Drugs, Psychiatric [3], Pulmonary [2], Thyroid)

13
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Importance is considered a rigorous modern VIMP 
approach. Thus, 22 of the 23 manuscripts that incorpo-
rated random forest VIMPs utilized an approach known 
to have serious statistical flaws. Only one used a rigorous 
approach (Boruta Importance) that improves the quality 
of interpretation.

Only two of the 50 random forest manuscripts cited 
any work referencing shortcomings of OOB VIMPs, and 
two additional works alluded to these kinds of issues 
without reference. Among these four works that made 
some mention of potential VIMP-related issues, one 
attempted to address them directly, two proceeded with 
OOB VIMPs nonetheless, and one turned to another 
modeling method entirely. Among the 23 papers employ-
ing VIMPs, four attempted to provide statistical inference 
(confidence intervals and/or hypothesis tests). However, 
the inference was either applied to an OOB VIMP or the 
outputs were forced into a classical testing framework 
(e.g., t-tests) in such a way that it is not clear whether 
such tests remain statistically valid or even necessarily 
useful.

SHHS demonstration
Figure  2 displays the top 20 OOB VIMPs. Among 
these, Forced Vital Capacity (FVC) and Forced Expira-
tory Volume (FEV) (two objective measures of lung 

function) had the highest VIMPs. Following these were 
age, height, and history of coronary angioplasty. Other 
features in the top 20 – with much smaller OOB VIMPs 
relative to the top five – were: role limitations due to 
physical limitations (SF-36 subscale), PSG sleep effi-
ciency, PSG wake after sleep onset, and the SF-36 Phys-
ical Component scale.

The knockoff VIMPs for Level 1 – Level 3 domains are 
shown in Fig. 3, which is restricted to domains for which 
both VIMPSens and VIMPSpec are above zero to enhance 
interpretability. Full results for all domains in Table 1 are 
shown in the Supplement. Overall, the domains gener-
ally had a larger contribution to sensitivity (i.e., helped 
to correctly identify participants with incident stroke) 
than specificity (i.e., helped to correctly identify par-
ticipants without incident stroke). Among the broadest 
Level 1 domains, the 44 medication and 30 measured 
medical risk factors had the largest contributions to sen-
sitivity (VIMPSens = 0.056, VIMPSens = 0.040, respectively) 
but smaller contributions to specificity relative to other 
features (VIMPSpec = 0.004, VIMPSpec = 0.003, respec-
tively). The 28 self-report medical risk factors and 15 
PSG features had the largest contributions to specificity 
(VIMPSpec = 0.013 and 0.012, respectively) but smaller 
contributions to sensitivity relative to other features 
(VIMPSens = 0.024 and 0.008, respectively).

Fig. 2  Out of bag (OOB) VIMP results
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Among the more detailed Level 2 and Level 3 
domains, age, diastolic blood pressure, and pack years 
of smoking had the largest contributions to specific-
ity (VIMPSpec = 0.013, 0.013, 0.012 respectively), with 
roughly similar effect sizes as the Level 1 domains of 
self-report medical risk factors and PSG. Diastolic blood 
pressure also had a relatively strong contribution to sen-
sitivity (VIMPSens = 0.032), and thus stands out as one 
of the strongest contributors to incident stroke over-
all. Self-reported sleep disturbances also stood out as 
having relatively large contributions to both specificity 
(VIMPSpec = 0.011) and sensitivity VIMPSens = 0.024).

Regarding PSG features – a primary construct of inter-
est – domains of sleep continuity (efficiency and wake 
after sleep onset) and sleep duration (duration and time 
in bed) stood out for their contributions to sensitiv-
ity (VIMPSens = 0.024, 0.016 respectively) and specificity 
(VIMPSpec = 0.006, 0.007 respectively). REM sleep (per-
cent REM sleep, REM latency) also stood out for its con-
tribution to specificity (VIMPSpec = 0.003).

Considering that the overall average model sensitiv-
ity from tenfold cross validation was 0.769, the largest 

knockoff VIMPs of 0.03 – 0.06 (medications, measured 
medical risk factors) translate to roughly a 4–7% contri-
bution to the model sensitivity. Other features, including 
the PSG features of particular interest in this application, 
altered the model by roughly 0.01–0.02 at most, trans-
lating to a 2–3% contribution. While some of these con-
tributions are somewhat small, they are conditional on 
complex combinations of over 100 other features in the 
model. Thus, it is still noteworthy that these predictors 
stand out among the larger set of features.

Discussion
We provide a review of the limitations surrounding OOB 
VIMPs in random forests. As an alternative, we pro-
vide recommendations for good practice using knockoff 
VIMPs, which facilitate a direct and interpretable esti-
mate of the value of a feature within a ML model. How-
ever, in the context of high-dimensional data, findings 
using knockoff VIMPs for individual variables can still 
be challenging to interpret. In such situations we encour-
age thoughtful consideration of the question of interest, 
careful variable selection, and examination of meaningful 

Fig. 3  Knockoff VIMP results, showing features (or groups of features) for which the VIMPs based on both sensitivity and specificity are greater than 
zero
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groups of features. For interpretability in classification 
models, we further encourage computing VIMPs based 
on sensitivity and specificity instead of relying on accu-
racy alone.

Our literature review highlights the need for improved 
VIMP methods in applied medical research, as we found 
that OOB VIMPs are commonly misused and misinter-
preted. The literature review findings also raised seri-
ous concerns about replicability. Among the 43 papers 
that performed analyses with random forests, it would 
be difficult to identify any two that took the same spe-
cific approach in the analysis. In practice, this suggests 
that two sets of researchers could be given identical 
datasets and models (e.g., random forests) and yet reach 
very different conclusions about the role of the features 
in the models. Further complicating matters is the fact 
that authors often fail to report what kind of importance 
metrics are being used and/or how they are calculated. 
Finally, even if one wanted to attempt to replicate the 
results, the data were often not publicly available.

Using data from the publicly available Sleep Heart 
Health Study (SHHS), we examined the contribution 
of PSG derived features for predicting stroke in a ran-
dom forest relative to other established and emerging 
risk factors. Comparing the findings of OOB VIMPs 
versus knockoff VIMPs serves to highlight important 
methodological take-home messages. Notably, although 
there were some consistent features identified across 
approaches (e.g., age), the overall take-home messages 
from the two approaches are different. In addition to age, 
the OOB VIMPs suggested that lung function and height 
are major risk factors for stroke. This finding is novel, 
but hard to explain physiologically. On the other hand, 
the knockoff VIMPs confirmed many variables of known 
importance and indicated some novel ones that are plau-
sible (the PSG variables). Although a result that is more 
intuitive does not necessarily imply that it is more cor-
rect, the differing findings – combined with the known 
biases of OOB VIMPs – suggests that implementing 
modern knockoff VIMP approaches could meaningfully 
improve the rigor and reproducibility of random forest 
VIMP findings.

Another important take-home message is highlighted 
by observing that the top two OOB VIMPs (FEV and 
FVC) had the second highest pairwise correlation among 
all pairs of features in the dataset (r = 0.94); however, nei-
ther feature stood out among the knockoff VIMPs. Bias 
towards correlated measures is a key limitation of OOB 
VIMPs. We also note that OOB VIMPs for a classifica-
tion model implicitly consider a 0.50 probability thresh-
old for stroke prediction, which may not be optimal for 
an imbalanced outcome such as stroke. In our cross-
validation we identified a 0.033 prediction threshold as 

optimal. Similarly, considering only accuracy in the OOB 
VIMP is also likely to be misleading. We demonstrated 
knockoff VIMPs based on more meaningful sensitivity 
and specificity metrics. Finally, as noted previously, the 
OOB VIMPs have limited interpretability because they 
never actually consider the model without each of the 
listed variables. Thus, they cannot provide information 
about what would have happened if these variables had 
not been included in the model.

Strengths of our work include our comprehensive lit-
erature review highlighting the extensive use of OOB 
VIMPs in applied medical research, explanation and 
recommendation of unbiased and interpretable knock-
off VIMP approaches, demonstration of innovative ana-
lytic strategies using knockoff VIMPs, and illustration of 
the notably different findings that may be observed with 
OOB versus knockoff VIMPs through incident stroke 
prediction in the SHHS data.

However, these strengths should be considered in the 
context of some limitations. First, although SHHS had a 
large sample size, the incidence of stroke was low, which 
could add to model instability. Whenever cross-valida-
tion and resampling is used, we expect findings to dif-
fer slightly across iterations. Second, we did not seek to 
understand the directions of the effects, which inherently 
dampens clinical interpretability of our findings. Third, 
our findings should be considered inherently associative 
and non-causal. They are conditional on the other vari-
ables included in the model and the use of the random 
forest (e.g., versus a linear model). The inclusion of other 
types of features, or use of a different model, could pro-
duce different findings. Last, a non-trivial barrier to wide-
spread use of knockoff VIMPs is computational cost. For 
the SHHS sample, it required an average of 52 min to cal-
culate a knockoff VIMP for a single variable or domain. 
With a total of 111 knockoff VIMPs (7 Level 1; 26 Level 
2; 78 Level 3), this would require 4  days of continuous 
processing on a single CPU. To enhance efficiency, we 
parallelized these tests through the use of servers within 
the University’s Center for Research Computing, which 
allowed us to compute over 100 VIMPs simultaneously.

These limitations speak to future directions of our 
work. It will be important to examine the direction of 
associations of the novel PSG predictors of stroke. Some 
approaches to do this within the random forest frame-
work already exist, including plotting marginal effects 
over the range of the outcome [6]. Methodological 
efforts should also be made to quantify potential sources 
of instability from VIMPs and examine the potential 
impact of missing data imputation on knockoff VIMPs. 
In our application, there was relatively a small percent-
age of missing data (median [Q1, Q3] = 0.2% [0%, 6.5%]). 
However, it is possible that VIMPs of features with larger 
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percentages of missing data may be impacted. Finally, 
to facilitate the uptake of knockoff VIMP approaches in 
applied research, it will be essential to develop ways to 
improve the computational efficiency of knockoff VIMPs, 
thereby making them a more viable option in comparison 
to OOB VIMPs, which require dramatically less compu-
tational time.
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