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Abstract 

Background  Measuring the performance of models that predict individualized treatment effect is challenging 
because the outcomes of two alternative treatments are inherently unobservable in one patient. The C-for-benefit 
was proposed to measure discriminative ability. However, measures of calibration and overall performance are still 
lacking. We aimed to propose metrics of calibration and overall performance for models predicting treatment effect 
in randomized clinical trials (RCTs).

Methods  Similar to the previously proposed C-for-benefit, we defined observed pairwise treatment effect as the dif-
ference between outcomes in pairs of matched patients with different treatment assignment. We match each 
untreated patient with the nearest treated patient based on the Mahalanobis distance between patient characteris-
tics. Then, we define the Eavg-for-benefit, E50-for-benefit, and E90-for-benefit as the average, median, and 90th quantile 
of the absolute distance between the predicted pairwise treatment effects and local-regression-smoothed observed 
pairwise treatment effects. Furthermore, we define the cross-entropy-for-benefit and Brier-for-benefit as the logarith-
mic and average squared distance between predicted and observed pairwise treatment effects. In a simulation study, 
the metric values of deliberately “perturbed models” were compared to those of the data-generating model, i.e., “opti-
mal model”. To illustrate these performance metrics, different modeling approaches for predicting treatment effect are 
applied to the data of the Diabetes Prevention Program: 1) a risk modelling approach with restricted cubic splines; 2) 
an effect modelling approach including penalized treatment interactions; and 3) the causal forest.

Results  As desired, performance metric values of “perturbed models” were consistently worse than those of the “opti-
mal model” (Eavg-for-benefit ≥ 0.043 versus 0.002, E50-for-benefit ≥ 0.032 versus 0.001, E90-for-benefit ≥ 0.084 ver-
sus 0.004, cross-entropy-for-benefit ≥ 0.765 versus 0.750, Brier-for-benefit ≥ 0.220 versus 0.218). Calibration, discrimina-
tive ability, and overall performance of three different models were similar in the case study. The proposed metrics 
were implemented in a publicly available R-package “HTEPredictionMetrics”.

Conclusion  The proposed metrics are useful to assess the calibration and overall performance of models predicting 
treatment effect in RCTs.
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Introduction
Clinicians and patients generally select the treatment 
that is expected to be beneficial on average for the 
patient population. However, the average treatment 
effect (ATE) for a population does not accurately reflect 
the effect of treatment for each patient individually 
[1–3]. Various models have been proposed for predict-
ing individualized treatment effects in a randomized 
clinical trial (RCT) [4–6]. These models aim to predict 
the difference between the outcomes of two alternative 
treatments for each patient.

Usually, only one of the outcomes can be observed 
for a given patient, the counterfactual outcome remains 
unobserved. This phenomenon–known as the funda-
mental problem of causal inference–complicates the 
assessment of a model’s ability to predict treatment 
effect [7]. As a result, the performance of models that 
predict treatment effect cannot be quantified with con-
ventional metrics evaluating risk predictions [8]. To 
resolve this issue, observed pairwise treatment effect 
can be defined as the difference between outcomes in 
pairs of matched patients. Recently, the C-for-benefit 
has been proposed for quantifying to what extent the 
models can discriminate between patients who ben-
efit and those who do not [9]. However, measures of 
calibration–the agreement between predicted and 
observed treatment effect in groups of patients–and 
measures of overall performance–the discrepancy 
between predicted and observed treatment effect 
across individual patients–are still lacking.

For models predicting outcome risk and not treatment 
effect, several metrics are available to assess calibration 
(i.e., E-statistic), and overall performance (i.e., cross-
entropy and Brier score) [10–12]. However, these metrics 
may poorly reflect a model’s ability to predict treatment 
effect. For example, in a simulation scenario with a rela-
tively small simulated data sample, the risk predictions of 
a model with all possible treatment interactions are rea-
sonably well calibrated (Fig.  1A), while the correspond-
ing treatment effect predictions are poorly calibrated 
(Fig.  1B) [13]. Apart from such graphical assessment of 
calibration in groups of patients with similar predicted 
treatment effects, no metrics are available that quantify 
the calibration or the overall performance of treatment 
effect predictions [14].  Therefore, we aimed to extend 
these performance metrics for calibration and overall 
performance for risk prediction models that are designed 
to predict treatment effect in RCTs.

Methods
Definition of treatment effect
With the potential outcomes framework, we can define 
the (conditional average) treatment effect τ (x) for a 
patient with baseline characteristics X as the expected 
difference between Yi(0) , i.e., the outcome that would 
have been observed under the treatment value W = 0 , 
and Yi(1) , i.e., the outcome that would have been 
observed under W = 1 , conditional on the patient char-
acteristics X , i.e. [15],

Fig. 1  An illustration of risk and benefit calibration figures with performance metrics of simulated data. We sampled (n = 3,600) from a simulated 
trial super population (100,000) with 12 binary risk predictors with 6 true treatment interactions [13]. Panel A depicts observed outcome 
versus predicted outcome by local regression (blue line, displayed between 0 and 0.5) and quantiles of predicted outcome (black dots), 
with the E-statistics, cross-entropy, Brier score, and C-index. Panel B depicts the calibration for benefit in groups with 95% confidence intervals, 
with the C-for-benefit. Panel C depicts observed versus predicted pairwise treatment effect by local regression (blue line, displayed between -0.2 
and 0.3) and quantiles of predicted pairwise treatment effect (black dots), with the newly proposed metrics
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Here, the event associated with the outcome was 
assumed to be unfavorable. Thus, treatment benefit, i.e., 
a positive τ (x) , is expected when the outcome probabil-
ity under control treatment is higher than the outcome 
probability under active treatment. Alternatively, two 
active treatments can be administered instead of control 
and active treatment.

Metrics based on the matching principle
Using the matching principle, we defined observed 
pairwise treatment effect as the difference in outcomes 
between two similar patients with different treatment 
assignments (Table 1) [9]. Similarity was based on base-
line patient characteristics to create pairs of similar 
patients with different treatment assignments. Specifi-
cally, we matched each untreated patient with the near-
est treated patient based on the Mahalanobis distance 
between the patient characteristics without replacement 
[16]. We performed a sensitivity analysis to assess how 
sensitive the proposed metrics are to the choice of the 
matching procedure (Additional file  1). With a binary 
outcome (say, 0 for alive and 1 for dead), four outcome 
combinations are possible for a pair of patients. First, 
treatment benefit was indicated if the treated patient lives 
and the untreated patient dies. Second, treatment harm 
was indicated if the treated patient dies and the untreated 
patient lives. Lastly, no effect of treatment was indicated 
if both the treated and untreated patients live, or if both 
die. Thus, the observed pairwise treatment effect takes 
the values 1 (benefit), 0 (no effect), and -1 (harm). Con-
currently, predicted pairwise treatment effect is the dif-
ference between the predicted outcome probability of the 
untreated patient minus the predicted outcome probabil-
ity of the treated patient. We illustrate the calculation of 
the proposed metrics based on a small artificial sample 
(Table 1). All of the following metrics using this matching 
principle were added to Fig. 1C for illustration. The pro-
posed metrics were implemented in a publicly available 
R-package “HTEPredictionMetrics” [17].

Calibration
Calibration refers to the correspondence between the 
predicted and observed treatment effects. The calibra-
tion-in-the-large or mean calibration was defined as 
the average observed pairwise treatment effect minus 
the average predicted pairwise treatment effect [18]. If 
the algorithm overestimates treatment effect, the aver-
age predicted pairwise treatment effect is higher than 
the observed pairwise treatment effect, resulting in a 
negative calibration-in-the-large value. Conversely, the 

τ (x) = E[Yi(0)− Yi(1)|Xi = x] calibration-in-the-large will be positive if treatment effect 
is underestimated.

Calibration can also be assessed by a smoothed cali-
bration curve obtained by a local regression of observed 
pairwise treatment effect on predicted pairwise treat-
ment effect, with default values for the span and the 
degree of polynomials (Fig.  1C). Similar to the E-statis-
tic and the Integrated Calibration Index, we propose to 
measure calibration by the average absolute vertical dis-
tance between this smoothed calibration curve and the 
diagonal line of perfect calibration [10]. This quantity, 
which we named the Eavg-for-benefit, can be interpreted 
as the weighted difference between observed pairwise 
treatment effect and predicted pairwise treatment effect, 
with weights determined by the empirical density func-
tion of the predicted pairwise treatment effect. Similarly, 
we defined the E50-for-benefit and the E90-for-benefit as 
the median and 90th percentile of the absolute differences 
between the predicted pairwise treatment effect and the 
smoothed observed pairwise treatment effect (Table  1) 
[10]. Thus, the E-statistics indicate perfect calibration 
when zero.

Discrimination
Discrimination refers to a model’s ability to separate 
patients who benefit from treatment and those who do 
not. To measure discrimination, we used the previously 
proposed C-for-benefit, i.e., the probability that from 
two randomly chosen matched patient pairs with une-
qual observed pairwise treatment effect, the pair with 
greater observed pairwise treatment effect also has a 
larger predicted pairwise treatment effect [9]. The C-for-
benefit was calculated by the number of concordant pairs 
divided by the number of concordant and discordant 
pairs. Two patient pairs are concordant if the pair with 
the larger observed pairwise treatment effect also has a 
larger predicted pairwise treatment effect. Two patient 
pairs are discordant if the pair with larger observed bene-
fit has a smaller predicted pairwise treatment effect. Two 
patient pairs are uninformative if the pairs have the same 
observed pairwise treatment effect. The C-for-benefit is 
0.5 if the model cannot distinguish between patients any 
better than random treatment assignment, and 1 if the 
model can perfectly distinguish between patients who 
benefit from treatment and who do not.

Overall performance measures
We propose to measure overall performance, i.e., the 
accuracy of individualized treatment effect estimates, 
using the multi-class versions of the Brier score and 
cross-entropy because observed pairwise treatment effect 
can belong to one of three classes (benefit, no effect, 
harm) [11, 12]. We defined cross-entropy-for-benefit as 
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the logarithmic distance between predicted and observed 
pairwise treatment effect and Brier-for-benefit as 
the average squared distance between predicted and 
observed pairwise treatment effect (Additional file  2). 
Thus, the overall performance metrics indicate better 
optimal performance when closer to zero. The cross-
entropy-for-benefit and Brier-for-benefit measure overall 
model performance since these metrics are affected by 
calibration and discrimination simultaneously.

Data
To illustrate the proposed metrics, we used data from the 
Diabetes Prevention Program (DPP). The participants of 
DPP were at risk to develop diabetes, which is defined 
as a body mass index of 24 or higher and impaired glu-
cose metabolism [19]. The participants were randomized 
between 1996 and 2001 to receive 1) an intensive pro-
gram of lifestyle modification lessons, 2) 850 mg of met-
formin twice a day and standard lifestyle modification, 
or 3) placebo twice a day and standard lifestyle recom-
mendations. To predict the effect of the intervention on 
the outcome, i.e., the risk of developing diabetes, we used 
the patient characteristics sex, age, ethnicity, body mass 
index, smoking status, fasting blood sugar, triglycerides, 
hemoglobin, self-reported history of hypertension, fam-
ily history of diabetes, self-reported history of high blood 
glucose, and gestational diabetes mellitus (Additional 
file  3). We imputed missing values of patient character-
istics using Multivariate Imputations by Chained Equa-
tions [20].

Simulation study
We simulated the outcomes of the DPP using the patient 
characteristics to study if the proposed performance met-
rics were better for the model used for outcome genera-
tion (“optimal model”) than for deliberately “perturbed 
models”. The “optimal model” was a logistic regression 
model for the probability of the outcome (developing 
diabetes) pi based on the treatment (e.g., lifestyle inter-
vention) assignment indicator W  , standardized patient 
characteristics X , and their interaction:

The regression coefficients of this model were obtained 
through Ridge regression on the original data set (see 
Additional file 4 for the penalty factor).

Next, we created a super population by duplicating the 
matched patient pairs 300 times to obtain high precision 
to ensure that observed differences between metrics are 
“true” differences. The outcomes of the super popula-
tion Yi were simulated from a Bernoulli distribution with 

log
pi

1− pi
= Wi · βW + X · βX +Wi · X · βW ·X .

the outcome probabilities pi generated by the “optimal 
model”.

We then created three deliberate perturbations of the 
“optimal model”. The first “perturbed model” overesti-
mates ATE by multiplying the coefficient of the treatment 
assignment indicator (βW ) with 2 (Additional files 5 and 
6). Additionally, we perturbed a model that underesti-
mates ATE by multiplying the coefficient of the treatment 
assignment indicator (βW ) with 0.5. The second “per-
turbed model” overestimates risk heterogeneity by multi-
plying the coefficient of the patient characteristics (βX ) by 
2 (Additional files 5 and 6). The third “perturbed model” 
overestimates treatment effect heterogeneity by multiply-
ing the coefficient of the interaction between treatment 
assignment and the patient characteristics (βW ·X ) by 3 
(Additional files 5  and 6). We calculated the root mean 
squared error (RMSE) to indicate the level of perturba-
tion for each model.

Finally, we computed the performance metrics for the 
“optimal” and the three “perturbed models” in the super 
population. We also visualized the performance of each 
of the four models with treatment effect calibration plots.

Case study
The performance of three different modelling approaches 
to predict treatment effect for patients at risk of diabe-
tes in the DPP data set was compared using the proposed 
metrics.

The first approach (“risk model”) uses logis-
tic regression to explain the outcome probability 
pi = P(Yi = 1|Xi = x,Wi = w) based on the treatment 
indicator W  , the centered prognostic index PI , and their 
interaction:

where s(·) represents restricted cubic splines with two 
degrees of freedom, and PI was determined by regress-
ing the outcome variable on the patient characteristics 
X(PI = X

′
̂βX ).

The second approach (“effect model”) uses a penalized 
Ridge logistic regression to explain the outcome proba-
bility pi based on the unpenalized treatment indicator W  , 
penalized centered patient characteristics X , and their 
penalized interaction:

where the level of penalization was determined by the 
minimum squared error in 5-fold cross-validation [21] 
(Additional file 4).

The third approach is a causal forest, which is simi-
lar to a random forest but maximizes heterogeneity in 

log
pi

1− pi
= W · βW + s(PI) · βPI +W · s(PI) · βW ·PI ,

log
pi

1− pi
= W · βW + X · βX +W · X · βW ·X ,
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treatment effect rather than variation in the outcome 
[22]. Causal trees were built honestly by partitioning the 
data into two subsamples. One subsample was used to 
construct the trees, and another subsample to predict the 
treatment effect [22]. The parameters of the causal forest 
were tuned, of which we made the specifics available in 
Additional file 4.

To mimic external validation, the models were trained 
on 70 percent of the patient data. The remaining 30 per-
cent of the patient data, the test set, was used to calcu-
late performance metrics with confidence intervals using 
100 bootstrap samples of matched patient pairs [23]. We 
used the R packages MatchIt for matching patients, mice 
for single imputation, stats for local regression, rms for 
restricted cubic splines, glmnet for Ridge penalization, 
and grf for causal forest (R version 4.1.0) [20, 24–28].

Results
Patient data
Between 1996 and 2001, the DPP collected data on 3,081 
participants of which 1,024 received lifestyle interven-
tion, 1,027 received metformin, and 1,030 received pla-
cebo treatment (Additional file 3). The median age of the 
participants was 52 years (IQR: 42–57 years), 67% of the 
participants were female, and the median BMI value was 
33 (IQR: 29–37). The proportion of patients developing 
diabetes was 4.8%, 7.0%, and 9.5% among participants 
receiving lifestyle intervention, metformin, and placebo 
treatment, respectively (Additional file 3).

Simulation study
As expected, the treatment effect predictions of the 
“optimal model” were almost perfectly calibrated (cal-
ibration-in-the-large = 0.000, Eavg-for-benefit = 0.002, 
E50-for-benefit = 0.001, E90-for-benefit = 0.004, Fig.  2A). 
The “optimal model” was well able to discriminate (C-for-
benefit = 0.639, Fig.  2A) between patients with small 
treatment harm (ATE = -0.017 in the quantile of patients 
with smallest predicted pairwise treatment effect) and 
patients with substantial treatment benefit (ATE = 0.361 
in the quantile of patients with largest treatment effect).

The first “perturbed model” was designed to over-
estimate treatment effect of lifestyle intervention 
(RMSE = 0.095), which was expressed graphically by the 
corresponding calibration curve lying below the 45-degree 
line, and numerically by suboptimal calibration metrics 
(calibration-in-the-large = -0.077, Eavg-for-benefit = 0.078, 
E50-for-benefit = 0.069, E90-for-benefit = 0.116, Fig.  2B). 
The C-for-benefit expressed a slightly poorer ability to 
distinguish between patients with small and large treat-
ment effects than the “optimal model” (C-for-bene-
fit = 0.633 versus 0.639). The cross-entropy-for-benefit 
and Brier-for-benefit also expressed poorer overall per-
formance than the “optimal model” (cross-entropy-for-
benefit = 0.777 versus 0.750, Brier-for-benefit = 0.221 
versus 0.218, Fig. 2A and B). When underestimating treat-
ment effect of lifestyle intervention, the proposed metrics 
correctly identified that the performance of the data-
generating model was better than the perturbed model 
(Additional file 7).

The second “perturbed model” was designed to over-
estimate risk heterogeneity of patients receiving life-
style intervention (RMSE = 0.052), which was expressed 
graphically by the corresponding calibration curve lying 
above the diagonal for low predicted pairwise treatment 
effect (underestimation of low treatment effect) and 
below the diagonal for high predicted pairwise treat-
ment effect (overestimation of high treatment effect), 
and numerically by suboptimal calibration metrics (cal-
ibration-in-the-large = -0.003, Eavg-for-benefit = 0.067, 
E50-for-benefit = 0.043, E90-for-benefit = 0.174, Fig.  2C). 
The C-for-benefit expressed a slightly poorer ability to 
distinguish between patients with small and large treat-
ment effects than the “optimal model” (C-for-bene-
fit = 0.633 versus 0.639). The cross-entropy-for-benefit 
and Brier-for-benefit also expressed poorer overall per-
formance than the “optimal model” (cross-entropy-for-
benefit = 0.795 versus 0.750, Brier-for-benefit = 0.228 
versus 0.218, Fig. 2A and C).

The third “perturbed model” was designed to over-
estimate treatment effect heterogeneity of patients 
receiving lifestyle intervention (RMSE = 0.080), which 
was expressed graphically by the corresponding 

Fig. 2  Calibration plots of pairwise treatment effect of simulated data from patients receiving lifestyle intervention. This Figure depicts observed 
versus predicted pairwise treatment effect by smoothed calibration curves (blue line) and quantiles of predicted pairwise treatment effect (black 
dots) of simulated data from the lifestyle intervention versus placebo treatment. Observed pairwise treatment effect was obtained by matching 
patients based on patient characteristics. Smoothed calibration curves were obtained by local regression of the observed pairwise treatment effect 
of matched patient pairs on predicted pairwise treatment effect of matched patient pairs. For prediction of individualized treatment effect, we used 
a treatment effect modelling approach for the “optimal model” (panel A) and three “perturbed models” that overestimate average treatment effect 
(panel B), risk heterogeneity (panel C), and treatment effect heterogeneity (panel D). The average treatment effect is 13.0, 20.9, 13.0 (after 
a correction of βW with -0.195), and 13.0 (after a correction of 

βW
 with -0.19), respectively. Abbreviations: RMSE, root mean squared error; CitL, 

calibration-in-the-large; Eavg-B, Eavg-for-benefit; E50-B, E50-for-benefit; E90-B, E90-for-benefit; CE-B, cross-entropy-for-benefit; Brier-B, Brier-for-benefit; 
C-B, C-for-benefit

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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calibration curve lying more extremely above the 
diagonal for low predicted pairwise treatment 
effect (underestimation of low treatment effect) and 
more extremely below the diagonal for high pre-
dicted pairwise treatment effect (overestimation of 
high treatment effect), and numerically by subop-
timal calibration metrics (Eavg-for-benefit = 0.043, 
E50-for-benefit = 0.032, E90-for-benefit = 0.084, 
Fig. 2D). The C-for-benefit expressed a slightly poorer 
ability to distinguish between patients with small 
and large treatment effects than the “optimal model” 
(C-for-benefit = 0.628 versus 0.639, Fig.  2D). The 
cross-entropy-for-benefit and Brier-for-benefit also 
expressed poorer overall performance than the “opti-
mal model” (cross-entropy-for-benefit = 0.765 versus 
0.750, Brier-for-benefit = 0.220 versus 0.218, Fig.  2A 
and D).

The results from the simulations using the met-
formin treatment arm rather than the lifestyle inter-
vention arm were similar (Fig. 2; Additional file 8).

Case study
The differences in any of the performance measures 
between the risk model, the effect model, and the 
causal forest were not significantly different from zero 
in the 30 percent of patients who were in the test data-
set (n = 617; Additional file 3). Numerically, most cali-
bration metrics of the effect model were better than 
that of the risk model (calibration-in-the-large = 0.046 
versus 0.051; Eavg-for-benefit = 0.047 versus 0.052; 
E90-for-benefit = 0.108 versus 0.140, Fig.  3A and B). 
Consequently, the overall performance of the effect 
model was numerically better than that of the risk 
model (cross-entropy-for-benefit = 0.744 versus 0.747, 
Fig.  3A and B), despite the numerically poorer dis-
criminative ability of the effect model (C-for-bene-
fit = 0.660 versus 0.664, Fig. 3A and B).

Central calibration metrics of the causal for-
est were numerically poorer than those of the 
risk model (calibration-in-the-large = 0.052 ver-
sus 0.051; Eavg-for-benefit = 0.074 versus 0.052; 
E50-for-benefit = 0.068 versus 0.031, Fig.  3A and C), 
but the causal forest resulted in less extreme miscali-
bration than the risk model (E90-for-benefit = 0.101 
versus 0.140, Fig. 3A and C). Due to less extreme mis-
calibration and numerically better discriminative abil-
ity (C-for-benefit = 0.677 versus 0.664, Fig.  3A and C), 
the overall performance of the causal forest was numer-
ically better than that of the risk model (cross-entropy-
for-benefit = 0.738 versus 0.747, Fig. 3A and C). In the 

sensitivity analysis, the values and model preferences of 
the proposed metrics slightly changed when using dif-
ferent matching procedures (Additional file 1).

Discussion
We extended the E-statistics, cross-entropy, and Brier 
score to quantify the quality of treatment effect pre-
dictions in RCTs. As shown in the illustration in 
Fig.  1, the proposed metrics assessed performance 
of models predicting individualized treatment effect 
more effectively than conventional metrics developed 
to assess performance of models predicting risk. The 
simulation study showed that the proposed metrics 
correctly identified that the performance of the data-
generating model was consistently better than those 
of deliberately “perturbed models”. The case study 
illustrated the use of the proposed metrics in practice 
and showed that the calibration, discriminative ability, 
and overall performance of the three different mod-
els predicting treatment effect were not significantly 
different.

Similar to the previously proposed C-for-benefit, we 
defined observed pairwise treatment effect by the differ-
ence between outcomes in pairs of matched patients [9]. 
Matching patients based on predicted pairwise treatment 
effect would result in different patient pairs and conse-
quently different observed pairwise treatment effect for 
each prediction model [9]. Therefore, we chose to match 
patients based on the Mahalanobis distance between 
patient characteristics resulting in the same observed 
pairwise treatment effect for each prediction model to 
allow for model comparison. The predicted pairwise 
treatment effect when matching patients by patient char-
acteristics is more heterogeneous than the individual pre-
dicted treatment effect resulting from the model, which 
is more apparent in a smaller sample. We matched with-
out replacement since the treatment arms were similar in 
size, but matching with replacement is more appropri-
ate for samples with unbalanced treatment arms. Future 
research is needed to investigate the use of the proposed 
metrics for models predicting individualized treatment 
effect in observational data. The matching of patients 
may correct for (measured) confounders when estimat-
ing an average treatment effect in observational data, but 
simulations with confounders are required to understand 
if the performance metrics are useful for the comparison 
of treatment effect prediction models. Furthermore, we 
selected relevant patient characteristics based on clinical 
expertise and existing literature, but variable selection is 
more suitable in high-dimensionality data. The proposed 
metrics varied slightly when choosing different matching 
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procedures. However, the purpose of this study is not to 
determine an optimal matching strategy, but to propose 
metrics for evaluation of models predicting individu-
alized treatment effect. Further research should more 

extensively investigate the influence of different matching 
procedures on the proposed metrics.

The case study is merely an illustration of the use of 
the performance metrics and not a framework for model 

Fig. 3  Calibration plot of pairwise treatment effect of DPP data from patients receiving lifestyle intervention. This Figure depicts observed 
versus predicted pairwise treatment effect by smoothed calibration curves (blue line with 95% confidence interval displayed by grey shaded area) 
and quantiles of predicted pairwise treatment effect (black dots) of lifestyle intervention versus placebo treatment. Observed pairwise treatment 
effect was obtained by matching patients based on patient characteristics. Smoothed calibration curves were obtained by local regression 
of the observed pairwise treatment effect of matched patient pairs on predicted pairwise treatment effect of matched patient pairs. For prediction 
of individualized treatment effect, we used: a risk modelling approach (panel A), a treatment effect modelling approach (panel B), and a causal 
forest (panel C). Confidence intervals around metric values were obtained using 100 bootstrap samples. Abbreviations: CitL, calibration-in-the-large; 
Eavg-B, Eavg-for-benefit; E50-B, E50-for-benefit; E90-B, E90-for-benefit; CE-B, cross-entropy-for-benefit; Brier-B, Brier-for-benefit; C-B, C-for-benefit
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selection or internal validation. The use of internal vali-
dation techniques other than split sampling is recom-
mended for quantification of the performance of a model 
in similar settings, but that was outside the scope of this 
study [29]. The choice of the percentage of observations 
used for the training and test set was arbitrary. Further-
more, the proposed metrics in the training set will not be 
insightful when using models with penalization and hon-
est tree building, because they will indicate by definition 
miscalibration in the training set (Additional files 9 and 
10). Additionally, we did not calculate the proposed met-
rics in the training set (panel A; C; E in Additional files 
9  and 10), because these would be apparent values and 
need to be corrected for optimism since the model was 
developed in the same data.

The strength of our study is that we propose currently 
lacking performance metrics for models predicting treat-
ment effect. Their actual values can be used to compare 
models predicting treatment effect. Furthermore, in 
future research updating strategies can be considered if 
our proposed calibration metrics indicate miscalibration 
of treatment effect predictions.

A limitation of this study is the limited sample size 
of the case study. In the simulation study, we showed 
that the performance metrics were able to distinguish 
between models for an artificially enlarged data set. How-
ever, in the case study, the confidence intervals of the 
performance metrics were overlapping. This phenom-
enon is inherent to treatment effect estimation. To obtain 
reasonable power, treatment effect analyses require a 
much larger sample size compared to when estimating an 
overall ATE [30]. The case study suggested that there is a 
trade-off between calibration and discrimination: better 
calibrated models were worse at discriminating between 
patients with small and large treatment effects, but due to 
the small sample size no strict conclusions can be drawn. 
Secondly, the performance metrics were developed for 
binary outcomes, which could be extended to continuous 
outcomes in future research. Notwithstanding these limi-
tations, we conclude that the proposed metrics are useful 
to assess the calibration and overall performance of mod-
els predicting treatment effect in RCTs.

Conclusions
We showed that the proposed metrics are useful to assess 
and compare the calibration and overall performance of 
models designed to predict treatment effect in RCTs.
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Additional file 10. Calibration plot of pairwise treatment effect of training 
and test data of metformin intervention. This Figure depicts observed 
versus predicted pairwise treatment effect by smoothed calibration 
curves (blue line with 95% confidence interval displayed by grey shaded 
area) and quarters of predicted pairwise treatment effect (black dots) of 
metformin versus placebo treatment. Observed pairwise treatment effect 
was obtained by matching patients based on patient characteristics. 
Smoothed calibration curves were obtained by local regression of the 
observed pairwise treatment effect of matched patient pairs on predicted 
pairwise treatment effect of matched patient pairs. For prediction of treat-
ment effect, we used: a risk modelling approach (panel A; B), a treatment 
effect modelling approach (panel C; D), and a causal forest (panel E; F). The 
models are trained on 70 percent of the data (panel A; C; E) and evaluated 
on the other 30 percent of the data (B; D; F). Confidence intervals around 
the metric values were obtained using 100 bootstrap samples.
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