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Abstract 

Background In the causal analysis of observational studies, covariates should be carefully balanced to approximate 
a randomized experiment. Numerous covariate balancing methods have been proposed for this purpose. However, 
it is often unclear what type of randomized experiments the balancing approaches aim to approximate; and this may 
cause ambiguity and hamper the synthesis of balancing characteristics within randomized experiments.

Methods Randomized experiments based on rerandomization, known for significant improvement on covariate 
balance, have recently gained attention in the literature, but no attempt has been made to integrate this scheme 
into observational studies for improving covariate balance. Motivated by the above concerns, we propose quasi-
rerandomization, a novel reweighting method, where observational covariates are rerandomized to be the anchor for 
reweighting such that the balanced covariates obtained from rerandomization can be reconstructed by the weighted 
data.

Results Through extensive numerical studies, not only does our approach demonstrate similar covariate balance 
and comparable estimation precision of treatment effect to rerandomization in many situations, but it also exhibits 
advantages over other balancing techniques in inferring the treatment effect.

Conclusion Our quasi-rerandomization method can approximate the rerandomized experiments well in terms of 
improving the covariate balance and the precision of treatment effect estimation. Furthermore, our approach shows 
competitive performance compared with other weighting and matching methods. The codes for the numerical stud-
ies are available at https:// github. com/ BobZh angHT/ QReR.

Keywords Causal inference, Covariate balance, Observational data, Rerandomization, Treatment effect

Background
Randomized experiments are widely recognized as the 
gold standard for causal inference, due to the covari-
ate balance and objectivity in treatment assignment [1, 
2]. However, randomized experiments may be infeasible 
due to financial or ethical reasons, and it is often costly 
and takes a long time to conduct such experiments that 

may delay decision making. There is a tendency of using 
real-world evidence in observational studies with non-
randomized data to infer the causal treatment effect in 
practice.

To analyze observational data, Bind and Rubin  [3] 
recently advocated embedding the observational study 
in the context of a hypothetical randomized experiment, 
motivated by the ideas in [1, 4]. Specifically, they divided 
the analysis procedure into four major stages: (1) a con-
ceptual stage that formulates the causal questions with the 
related assumptions in terms of a hypothetical randomized 
experiment; (2) a design stage that reconstructs the hypo-
thetical randomized experiment on the observed data with-
out access to the outcome data; (3) a statistical analysis 
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stage that estimates the causal effect; and (4) a summary 
stage that summarizes the findings for the causal question.

In the cardinal design stage, many approaches have 
been proposed to approximate randomized experiments 
in terms of the covariate balance and thus reduce the 
estimation bias of treatment effect. One popular strategy 
uses a matching procedure, which generally assembles 
the units with similar propensity scores [5] between the 
treatment and control groups, including but not limited 
to the nearest-neighbor matching [6], optimal matching 
[7] and full matching [8]. One can refer to [9] for a sys-
tematic review of various matching approaches. Another 
scheme reweights observations to improve the covariate 
balance. One leading paradigm of reweighting is based 
on the inverse of propensity scores [10]. Imai and Rat-
kovic [11] leveraged the dual properties of propensity 
scores as a covariate balancing score to reweight samples. 
Hainmueller [12], Zubizarreta [13] and Chan et  al. [14] 
directly optimized the sample weights to attain a set of 
predefined balancing conditions.

Although the aforementioned methods can improve 
the covariate balance, they cannot formally specify which 
type of randomized experiment is approximated. Such 
ambiguity would conceptually diminish the credibility of 
the whole observational analysis, because the experiment 
reconstructed at the design stage may not agree with the 
one considered at the conceptual stage. Furthermore, it 
may technically hinder the existing balancing approaches 
from synthesizing the valuable characteristics of some 
randomized experiments. Particularly, the celebrated 
rerandomization (ReR) proposed by  Morgan and Rubin 
[15] has been widely recognized to outperform the clas-
sical complete randomization (CR) in terms of covariate 
balance [16]. It is thus highly preferable to make the bal-
anced data approximate the rerandomized experiment 
rather than the CR experiment.  Branson [17] proposed 
a test to diagnose the covariate balance of a matched 
dataset in contrast with rerandomzation, rather than 
directly balancing the observational data. Although the 
effectiveness of ReR has provoked further research for 
accommodating more complex experiments [18–20] 
and high-dimensional covariates [21–23], none of those 
extensions formally considered integrating rerandomiza-
tion into the observational data analysis.

To address the above concerns, it is worth noting that 
only covariates are required for randomization. There-
fore, we can also randomize the covariates in an obser-
vational study and then leverage the randomized data as 
the template to adjust the observational data. In this way, 
we bridge the observational study with the nominal ran-
domized experiment, where adjusted observational data 
can directly imitate the appealing balancing properties. 
Towards this goal, we propose a reweighting approach, 

called quasi-rerandomization (QReR), which learns a 
generative neural network to yield random weight vec-
tors such that the corresponding weighted datasets 
possess similar virtues of covariate balance to the rerand-
omized datasets.

Our approach has several advantages at the statistical 
analysis stage. First, our weight vectors can be conveni-
ently paired with any weighted estimator for estimating 
the treatment effect. Second, it is allowed to ensemble 
multiple diverse weight vectors for improving estimation 
precision. Empirically, we compare the proposed method 
with the original rerandomization and other balanc-
ing methods through extensive numerical experiments. 
Not only does QReR demonstrate similar covariate bal-
ance and estimation performance to rerandomization in 
many situations, but it also shows superiority in estimat-
ing treatment effect in comparison with other balancing 
approaches, especially under the setting with complex 
response surfaces.

The remainder of this paper is organized as follows. 
In ‘Methods’, we introduce the problem setup of causal 
inference in observational studies and review the funda-
mental concepts of rerandomization. In particular, the 
subsection ‘Quasi-Rerandomization’ introduces the pro-
posed QReR method in detail. In ‘Experiments and Dis-
cussion’, we conduct simulated experiments to compare 
our approach with rerandomization and other balancing 
algorithms as well as demonstrate the feasibility of our 
method with a real data example. We conclude with a 
discussion in ‘Conclusions’.

Methods
Treatment effect in observational studies
Suppose that the observational data consist of N units. 
Let T = (T1, . . . ,TN ) ∈ {0, 1}N denote the treatment 
allocation vector for all units, where Ti = 1 if the ith 
unit is assigned to the treatment group and Ti = 0 if it is 
assigned to the control group. We define N1 = N

i=1 Ti 
and N0 =

∑N
i=1(1− Ti) to be the corresponding 

sample sizes for treatment and control groups. Let 
X i = (Xi1, . . . ,Xid)

⊤ ∈ R
d be the observed covariates for 

the ith unit. Following the potential outcome framework 
[24], each unit is associated with two potential outcomes 
Yi(0) and Yi(1) but only one of them can be observed,

It is typically assumed that there is no interference of the 
treatment effect between units and no hidden versions 
of treatment, known as the stable unit treatment value 
assumption (SUTVA) [25]. Furthermore, we impose the 
strongly ignorable assumption [5], such that the treat-
ment assignment is independent of potential outcomes 

Y obs
i = Yi(Ti) = TiYi(1)+ (1− Ti)Yi(0).
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given the observed covariates and each unit has a chance 
to receive the treatment.

Given the samples {(X i,Y
obs
i ,Ti)}Ni=1 , we aim to esti-

mate the sample average treatment effect (SATE),

which is also the causal estimand in rerandomization. In 
addition, we consider the estimation of the population 
average treatment effect (PATE),

where the population refers to the set from which the 
finite observations are sampled. The estimand τPATE is 
commonly considered in various balancing algorithms [9, 
13, 14].

Rerandomization
Given a covariate matrix X = (X1, . . . ,XN )

⊤ ∈ R
N×d , 

we elaborate on how a rerandomized experiment can 
be carried out to generate a balanced allocation and 
conduct inference. We first randomly generate a vec-
tor denoted by T̃ = (T̃1, . . . , T̃N )

⊤ ∈ R
N  with the 

constraint

The covariate balance under the allocation T̃  is then eval-
uated by the Mahalanobis distance,

where the vector �(T̃ ) = X̄1 − X̄0 is the mean difference 
of covariates between the treatment and control groups 
with X̄1 =

∑N
i=1 T̃iX i/N1 and X̄0 =

∑N
i=1(1− T̃i)X i/N0 . 

The matrix cov
{
�(T̃ )

}
 refers to the covariance of �(T̃ ) 

regarding all random T̃  ’s under the constraint (1), and 
ĉov(X) is the sample covariance matrix with respect to X . 
We accept the allocation T̃  if the corresponding 
Mahalanobis distance is no larger than a prefixed thresh-
old a > 0 , i.e., D(X , T̃ ) ≤ a ; otherwise a new allocation T̃  
is generated.  Morgan and Rubin [15] showed that 
D(X , T̃ ) asymptotically follows a chi-squared distribution 
so that one can determine the threshold a by 
P(χ2

d ≤ a) = pa given a predefined acceptance probabil-
ity pa ∈ (0, 1] . A smaller pa used in rerandomization 
leads to more balanced covariates, and when pa = 1 , 
rerandomization reduces to the complete randomization.

τSATE = 1

N

N∑

i=1

{Yi(1)− Yi(0)},

τPATE = E(τSATE) = E{Y (1)− Y (0)},

(1)
N∑

i=1

T̃i = N1,

N∑

i=1

(1− T̃i) = N0.

(2)D(X , T̃ ) = �(T̃ )⊤
[
cov{�(T̃ )}

]−1
�(T̃ ) = N1N0

N
�(T̃ )⊤

{
ĉov(X)

}−1
�(T̃ ),

Connecting rerandomization and observational studies
For the observational data analysis, the covariates 
X i ’s should be carefully balanced to approximate a 
hypothetical randomized experiment without access 
to the outcome variables. This stage helps to reduce 
the underlying confounding effects in the observa-
tional data for estimating τSATE or τPATE . Particularly, 
most existing balancing techniques are proposed to 
essentially achieve some of the following empirical 
equations,

where W = (W1, . . . ,WN ) denotes the vector of sam-
ple weights, and f refers to an vector-valued func-
tion of X i’s. Heuristically, the first equation directly 
ensures the covariate balance between treat-
ment and control groups, which is typically lever-
aged by propensity-score-based approaches. The 
propensity score π(X i, η) = P(Ti = 1|X i) can be 
estimated for each sample with unknown param-
eter η . It can be shown that the propensity scores sat-
isfy Wi = Ti/π(X i, η)+ (1− Ti)/{1− π(X i, η)} and 

f (X i) = ∂π(X i, η)/∂η with respect to (3) [11]. Equa-
tions (4) and (5) quantify the fact that randomized 
covariates in treatment and control groups have simi-
lar characteristics to the pooled covariates, which also 
imply the covariate balance in Eq. (3). Some balancing 
techniques hereby treat Wi ’s as unknown parameters 
for optimization, and modify (4) and (5) as either hard 
equality constraints [12, 14] or soft constraints, namely 
| 1N

∑N
i=1 f (X i)−

∑N
i=1WiTif (X i)| ≤ δ with a thresh-

old δ > 0 [13]. The function f (·) is typically specified 
as the covariate moment, such as f (X i) = X i , in those 
constraints.

However, the aforementioned approaches do not 
clarify what type of randomized experiment (e.g., 
complete randomization, rerandomization, or con-
strained randomization) they intend to approximate, 

(3)
N∑

i=1

WiTif (X i) =
N∑

i=1

Wi(1− Ti)f (X i),

(4)
1

N

N∑

i=1

f (X i) =
N∑

i=1

WiTif (X i),

(5)
1

N

N∑

i=1

f (X i) =
N∑

i=1

Wi(1− Ti)f (X i).
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which not only leads to conceptual uncertainty, but can 
also prevent integrating the properties of randomized 
experiments into balancing the covariates. One salient 
potential of such integration is to directly and objec-
tively calibrate the covariate balance based on properly 
randomized covariates without assuming a parametric 
propensity score model for (3) or completely depending 
on implicit balancing constraints in (4) and (5). Finally, 
one may also exploit the superior balance of some ran-
domized experiments, such as rerandomization rather 
than complete randomization, to enhance efficiency 
and inference in observational studies.

We hence propose the quasi-rerandomization (QReR), a 
reweighting method, to bridge rerandomization and obser-
vational studies. We first conduct rerandomization over the 
covariates and generate multiple acceptable allocation vec-
tors, because rerandomization does not require the avail-
ability of responses. We then compute a balancing metric 
based on (2) for all acceptable assignments. Those metric 
values imply how the covariates would be balanced under 
the rerandomized experiment, and thus can be adopted as 
the anchor to guide further balance adjustment based on 
(3), (4) and (5) for the observational data.

Quasi‑rerandomization
In quasi-rerandomization, we first generate a large number 
of acceptable rerandomized allocations. A transformation 
function is then fitted via a neural network, which gener-
ates weight vectors from Dirichlet noises such that the 
weighted covariates have comparable balance properties to 
the rerandomized covariates.

Specifically, the sample weights satisfy W⊤T = 1 and 
W⊤(1N − T ) = 1 , where 1N ∈ R

N is a vector of length N 
with all entries of 1, and T = (T1, . . . ,TN ) is the observed 
treatment allocation vector. Without loss of generality, we 
assume that T = (1⊤N1

, 0⊤N0
)⊤ , and the weight vector can 

thus be rewritten as W = (W⊤
1 ,W

⊤
0 )

⊤ , where W 1 and W 0 
respectively denote the sub-vectors in W  for the treatment 
and control units with W⊤

1 1N1 = 1 and W⊤
0 1N0 = 1 . We 

assume that W 1 and W 0 are drawn from Dirichlet distribu-
tions Dir(1N1) and Dir(1N0) , respectively. We aim to learn 
a transformation function W̃ = G(W |X , θ) with parame-
ter θ such that the weighted covariate mean difference with 
respect to W̃ ,

has a similar distribution to �(T̃ ) . Intuitively, we treat 
the rerandomized covariate mean difference �(T̃ ) as 

�(W̃ ) =
N∑

i=1

W̃iTiX i −
N∑

i=1

W̃i(1− Ti)X i,

the template to adjust the weighted counterpart �(W̃ ) , 
where �(W̃ ) corresponds to (3) with f (X i) = X i . As 
a result, the reweighted observational data imitate the 
balance characteristics as in the rerandomized data. We 
specify G(W |X , θ) as a multi-layer neural network. The 
neural network has two hidden layers with each layer 
containing 512 neurons, where the number of neurons 
is selected based on the empirical observation that this 
value is sufficient in most cases. We adopt the ReLU 
activation function [26] for both hidden layers. We also 
apply the dropout scheme [27] with a dropout rate of 
0.5 after each hidden layer, which is a common choice 
as suggested by [28]. The output layer applies two sepa-
rate softmax functions to yield the unified weight vector 
W̃ = (W̃

⊤
1 , W̃

⊤
0 )

⊤.
The rationale for approximating the distribution of the 

covariate mean difference �(T̃ ) from rerandomization is 
given as follows. First, the vector �(T̃ ) itself is a balance 
measure, and thus the approximation can ensure the fun-
damental balancing property of our weighted data. Sec-
ond, the distribution-based approximation can further 
incorporate the characteristics of covariate balance from 
rerandomization into the weighted data. In rerandomi-
zation, the covariate balance of all acceptable allocations 
is determined by the distribution of Mahalanobis dis-
tance, which is fully governed by �(T̃ ) because the sam-
ple covariance matrix ĉov(X) is fixed for the observed 
covariates as illustrated by (2). Moreover, the distribu-
tion of �(T̃ ) contains more abundant high-dimensional 
information among covariates for the balancing property 
in contrast to that of Mahalanobis distance. Finally, the 
distribution-based approximation can also provide ran-
domness and diversity for our generated weight vectors, 
which offers more options for making inference at the 
statistical analysis stage, such as using some ensembling 
techniques to estimate the treatment effects. Specifically, 
one may follow the idea of bagging [29] by separately 
applying a weighted treatment effect estimator (e.g., the 
weighted mean difference of response and the doubly 
robust estimator [30]) to each weight vector and then 
aggregating all estimators by taking the mean or median.

Motivated by [31], we adopt the maximum mean dis-
crepancy (MMD) proposed by [32, 33] as the loss func-
tion to minimize the distribution deviation between 
�(W̃ ) and �(T̃ ) . Let {δ(T̃ (b)

)}Bb=1 and {δ(W̃ (b)
)}Bb=1 be 

the samples for loss calculation, where {T̃ (b)}Bb=1 are ini-
tially obtained from rerandomization, and {W̃ (b)}Bb=1 with 
W̃

(b) = G(W (b)|X , θ) are obtained through transforma-
tion from the initial Dirichlet weights {W (b)}Bb=1 . Based on 
those samples, the MMD loss is defined as
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where φ(x) is the feature mapping vector, and 
K (x, y) = φ(x)⊤φ(y) is the corresponding kernel func-
tion with respect to any feature vectors x, y.

If φ is the identity mapping, the MMD loss reduces to 
the Euclidean norm of the difference between sample 
means of {δ(T̃ (b)

)}Bb=1 and {δ(W̃ (b)
)}Bb=1 , i.e., the devia-

tion between the first moments. Using the kernel trick, 
one can implicitly map the sample vectors to a high-
dimensional and nonlinear feature space, and the loss 
would correspond to the difference between higher-order 
moments of two samples. Gretton et al. [32, 33] showed 
that when the feature space is a universal reproduced ker-
nel Hilbert space, the MMD loss asymptotically equals 
zero if and only if the distributions of �(T̃ ) and �(W̃ ) are 
the same. We choose the common radial basis function 
(RBF) kernel K (x1, x2) = exp(−γ �x1 − x2�22) with band-
width γ , whose feature space consists of moments of all 
orders.

We incorporate two additional regularization terms to 
the MMD loss to further improve the balancing and infer-
ence properties for the generated weights. It is easy to 
derive the relationships concerning any allocation vector 
T  between the fixed sample mean X̄ =

∑N
i=1 X i/N  and 

the sample means of treatment and control groups, X̄1 
and X̄0,

Thus, the balance measure δ(T ) can be represented by 
the mean difference X̄ − X̄1 or X̄ − X̄0 . Moreover, X̄1 
and X̄0 are close to the fixed X̄ under the rerandomiza-
tion due to δ(T̃ ) ≈ 0 when T = T̃  , i.e., X̄ ≈ X̄1 ≈ X̄0 . 
The first regularizer aims to retain the above characteris-
tics of rerandomization for QReR,

(6)

LMMD(�) =

‖‖‖‖‖‖
1

B

B∑
b=1

𝜙

{
�(�W

(b)
)

}
−

1

B

B∑
b=1

𝜙

{
�(�T

(b)
)

}‖‖‖‖‖‖2
=

[
1

B2

B∑
i=1

B∑
j=1

𝜙

{
�(�W

(i)
)

}⊤

𝜙

{
�(�W

(j)
)

}

+
1

B2

B∑
i=1

B∑
j=1

𝜙

{
�(�T

(i)
)

}⊤

𝜙

{
�(�T

(j)
)

}

−
2

B2

B∑
i=1

B∑
j=1

𝜙

{
�(�W

(i)
)

}⊤

𝜙

{
�(�T

(j)
)

}]1∕2

=

[
1

B2

B∑
i=1

B∑
j=1

K
{
�(�W

(i)
), �(�W

(j)
)

}

+
1

B2

B∑
i=1

B∑
j=1

K
{
�(�T

(i)
), �(�T

(j)
)

}

−
2

B2

B∑
i=1

B∑
j=1

K
{
�(�W

(i)
), �(�T

(j)
)

}]1∕2

,

δ(T ) = N

N0

(
X̄1 − X̄

)
= − N

N1

(
X̄0 − X̄

)
.

This regularizer essentially ensures the Eqs. in (4) and 
(5) for constraining the imbalance among covariates. To 
avoid extreme values among the weights, we introduce 
another regularization term,

Modified from the objective function of the stable balanc-
ing weights [13], this regularizer can control the variation 
of the transformed weights within each treatment group 
and help to avoid extreme weights, which can further 
improve inference, such as reducing the variance of the 
weighted point estimator. The uniform weights 1N1/N1 
and 1N0/N0 are widely used as the base weights [12–14]. 
Based on (7) and (8), we estimate the parameter θ of the 
network model by solving the optimization problem,

where �1 and �2 are the positive regularization 
parameters.

Network training
The network training can be divided into three main steps: 
network initialization, loss computation with parameter θ 
updating, and early stopping of the training, as detailed in 
Algorithm 1. Accordingly, three distinct sets of weight vec-
tors and acceptable ReR allocations are generated in advance 
for implementing those steps. We generate Binit weight vec-
tors {W (b)}Binitb=1 for network initialization, Bloss acceptable 
allocations {T̃ (b)}Blossb=1 for loss computation as well as param-
eter updating, and Bstop weight vectors {W (b)}Bstopb=1  together 
with allocations {T̃ (b)}Bstopb=1  for early stopping.

(7)R1(�) =
1

B

B�
b=1

⎛
⎜⎜⎝

������

N�
j=1

�W
(b)

j
TjX j − X̄

������

2

2

+

������

N�
j=1

�W
(b)

j
(1 − Tj)X j − X̄

������

2

2

⎞
⎟⎟⎠
.

(8)

R2(�) =
1

B

B∑
b=1

(‖‖‖‖W̃
(b)

1
− 1N1

∕N1

‖‖‖‖
2

2

+
‖‖‖‖W̃

(b)

0
− 1N0

∕N0

‖‖‖‖
2

2

)
.

(9)min
θ

{LMMD(θ)+ �1R1(θ)+ �2R2(θ)},

Algorithm 1 Network Training Algorithm.
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In the network initialization for the parameter θ , we 
minimize the mean squared error between the logarith-
mic weights {log(W (b))}Binitb=1 and {log(W̃ (b)

)}Binitb=1 with 
W̃

(b) = G(W (b)|X , θ),

where the logarithmic transformation helps to amplify 
the difference between vectors. The intuition is that the 
initial network should be close to the identity mapping, 
i.e., W ≈ G(W |X , θ) . Our initialization can be viewed 

as a special type of unsupervised pre-training [28, 34], 
which acts as a regularizer to improve the robustness of 
the network [35].

After initializing the network, we calculate the loss 
and optimize the network parameter θ using the stochas-
tic gradient descent. Different from the typical network 
training with a prefixed dataset, our training data, δ(T̃ ) 
and δ(W̃ ) , can be generated infinitely from rerandomi-
zation and Dirichlet distributions; that is, we can gener-
ate a new batch of T̃

(b) ’s and W (b) ’s for every iteration. 
However, it could be computationally expensive to gen-
erate new T̃

(b) ’s in each iteration if the acceptance prob-
ability pa for rerandomization is small. We thus generate 
a large number of feasible allocations {T̃ (b)}Blossb=1 prior to 
the network training, and then sample a small subset 
{T̃ (b)}Bb=1 from {T̃ (b)}Blossb=1 with replacement. A new batch 
of weight vectors {W̃ (b)}Bb=1 are jointly generated for the 
loss calculation.

Given a bandwidth γ  and the regularization coeffi-
cients �1 and �2 , we minimize the loss function (9) to 
update θ based on {δ(T̃ (b)

)}Bb=1 and {δ(W̃ (b)
)}Bb=1 for 

each training iteration. The regularization parameters 
�1 and �2 are kept as constants throughout the training, 
while the bandwidth parameter γ ∈ (0,∞) should be 
properly chosen to maximize the MMD loss LMMD(θ) 
[31, 36]. Instead of fixing the value of γ  [31] or con-
ducting a heuristic line search for γ  [36], we adopt a 
data-driven strategy to adaptively update the value 
of γ  along with the network training through the sto-
chastic gradient descent. Given the updated network 
parameter θ , we update γ  to maximize the MMD loss 
(6) based on the same batch of weight vectors and ReR 
allocations.

We also introduce a metric based on the Mahalanobis 
distance to early stop the training once the metric cannot 

(10)min
θ

1

Binit

Binit∑

b=1

∥∥∥∥log(W (b))− log(W̃
(b)

)

∥∥∥∥
2

2

,

be improved for more iterations. We define a weighted 
Mahalanobis distance D(X , W̃ ) for the vector W̃  by plug-
ging the corresponding weighted mean and covariance 
estimators into (2),

where

with

It is easy to check that ĉov
W̃
(X) = ĉov(X) and 

D(X , W̃ ) = D(X , T̃ ) when the weights are all equal 
within the treatment and the control groups, i.e., 
W̃ 1 = 1N1/N1 and W̃ 0 = 1N0/N0 . Motivated by the test 
proposed in [17], where the distribution of Mahalanobis 
distance incorporates the characteristics of covariate bal-
ance for randomized experiments, we specify the stop-
ping metric as the Kolmogorov–Smirnov statistic with 
respect to the empirical distributions of Mahalanobis 
distances {D(X , W̃

(b)
)}Bstopb=1  and {D(X , T̃

(b)
)}Bstopb=1  based 

on {W (b)}Bstopb=1  and {T̃ (b)}Bstopb=1  respectively. Heuristically, 
a smaller value of the stopping metric indicates that the 
weighted data obtained from our model is more likely to 
resemble the rerandomized experiment.

Estimation for weighted data
After the network training, one can conduct statistical 
analysis using a set of transformed weights {W̃ (m)}Mm=1 
generated from the trained network, where M denotes 
the number of weight vectors used for estimation. For 
the sample average treatment effect τSATE , we adopt the 
mean difference estimator,

Given {τ̂ (W̃ (m)
,Y obs)}Mm=1 , we consider the following 

point estimator for τSATE,

Such an estimation strategy leverages multiple weight vec-
tors, and is equivalent to a weighted mean difference esti-
mator based on the average weight vector 

∑M
m=1 W̃

(m)
/M . 

(11)
D(X , W̃ ) = N1N0

N
�(W̃ )⊤

{
ĉov

W̃
(X)

}−1
�(W̃ ),

�cov�W (X) =
1

1 −
∑N

i=1
�W ∗2

i

N�
i=1

�W
∗

i
(X i − X̄�W

)(X i − X̄�W
)⊤ ,

X̄
W̃

=
N∑

i=1

W̃ ∗
i X i and W̃∗

i = {N1Ti +N0(1− Ti)}W̃i/N, i = 1, . . . , N.

(12)

τ̂ (W̃ ,Y obs) =
N∑

i=1

W̃iTiY
obs
i −

N∑

i=1

W̃i(1− Ti)Y
obs
i .

(13)𝜏M =
1

M

M∑
m=1

𝜏(�W
(m)

,Y
obs) = 𝜏

(
1

M

M∑
m=1

�W
(m)

,Y
obs

)
.
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When using one vector with M = 1 , the estimator mimics 
the estimation in rerandomization, where only one accept-
able allocation would be used to collect the responses and 
estimate τSATE.

For a single weight vector W̃  , we can pass it to any 
point estimator designed for τPATE that supports weighted 
inputs, and the confidence interval can be constructed 
accordingly based on the robust sampling variance of 
the weighted point estimator [12, 37]. Particularly, we 
consider the simplest estimator using a weighted linear 
model to regress responses on the allocation indicators. 
Through some linear algebras, it is easy to check that such 
a point estimator for τPATE exactly has the same form of 
the weighted mean difference in (12), and we can simul-
taneously obtain its sampling variance based on the lin-
ear model. Therefore, we similarly consider the ensembled 
estimator τ̂M based on the average weight vector, where 
the aggregated vector empirically leads to smaller bias and 
root mean squared error than a random single vector.

Experiments and discussion
Experimental settings
The simulated settings are modified from those in [17, 
38], which are designed to mimic the real cases. We fix 
the sample size for the treatment group as N1 = 250 and 
set the sample size of the control group as N0 = r × N1 
with the ratio r ∈ {1, 2} . The treatment indicator vector is 
kept as T = (1⊤N1

, 0⊤N0
)⊤ for a given ratio r. The 8-dimen-

sional covariate vector X i = (Xi1, . . . ,Xi8)
⊤ is simulated as 

follows,

where we consider three different combinations of µ and 
�,

Scenario 1: µ = (0.2, 0.2, 0.5, 0.5)⊤ and � = I4;
Scenario 2: µ =

√
1.5× (0.2, 0.2, 0.5, 0.5)⊤ and 

� = 2I4;
Scenario 3: µ =

√
1.5× (0.2, 0.2, 0.5, 0.5)⊤ and 

� = 1.5I4 + 0.5141
⊤
4 .

Scenarios 1 and 2 represent the cases where the continu-
ous covariates respectively have homogeneous and heter-
ogeneous variances between the treatment and control 
groups. Scenario 3 considers the situation where there 
exist correlations among the Gaussian covariates in the 
treatment group. Let (µT − µC)/

√
(σ 2

T + σ 2
C)/2 and 

(pT − pC)/
√

{pT (1− pT )+ pC(1− pC)}/2 be the true 
standardized mean difference for the Gaussian and 

(Xi1,… ,Xi4)|Ti ∼ N
(
Ti�,Ti� + (1 − Ti)I4

)
,

Xi5,Xi6|Ti ∼ Bernoulli(0.1 + 0.068Ti),

Xi7,Xi8|Ti ∼ Bernoulli(0.4 + 0.242Ti), i = 1,… ,N ,

Bernoulli covariates respectively, where µ and σ 2 corre-
spond to the true mean and variance for a Gaussian vari-
able, and p is the probability of taking a value of 1 for a 
Bernoulli variable. In all three scenarios, we keep the true 
standardized mean difference as 0.2 or 0.5 for each covar-
iate, which represents a meaningful covariate imbalance 
due to its value larger than 0.1 [39, 40].

After obtaining the covariate matrix 
X = (X1, . . . ,XN )

⊤ , we generate the response Yi for 
each subject (X i,Ti) from the following model with 
τSATE = τPATE = τ,

where we consider three different forms for the response 
surface function g(X i),

Therefore, we can obtain three responses for the ith sam-
ple under different degrees of nonlinearity. The three 
types of responses represent the complex response sur-
faces in real situations, and partial inclusion of covari-
ates in the response functions mimics the fact that not all 
covariates have an influence on the outcome in practice 
[38]. The first function gL(X i) represents a linear surface, 
whereas the other two functions gI(X i) and gP(X i) incre-
mentally consider the nonlinear interactions and higher-
order polynomial features. The additive treatment effect 
is fixed as τ = 1 in all situations.

Through the above procedure, we can obtain a data-
set including a covariate matrix, a treatment indicator 
vector, and three response vectors corresponding to 
three response surface functions for a given ratio r and 
a covariate scenario. We further standardize all covari-
ates to have a unit variance and a zero mean. Follow-
ing the setting in [41–43], we let the dataset with ratio 
r = 2 include the dataset with r = 1 under the same 
covariate scenario to correlate different datasets, which 
can increase the precision of comparisons and save the 
number of randomly generated datasets. We replicate 
200 datasets for all combinations of the ratio r and 
covariate scenario to evaluate different methods.

We first compare the proposed QReR with the origi-
nal rerandomization (ReR) in terms of the covariate bal-
ance and estimation for τSATE , which reveals how well 
QReR approximates ReR. For the covariate balance, we 
consider the similarity between the distributions of the 
unweighted and weighted covariate mean differences, 
i.e., δ(T̃ ) and δ(W̃ ) . We report the average Kolmogorov–
Smirnov (KS) statistics and the corresponding average 
p-values of the mean differences across each covariate, 

Yi = g(X i)+ τTi + εi, εi ∼ N (0, 1),

gL(X i) =3.5Xi1 + 4.5Xi3 + 1.5Xi5 + 2.5Xi7, (Linear)

gI(X i) =gL(X i) + 2.5sign(Xi1)
√�Xi1� + 2.5Xi3Xi7, (Interaction)

gP(X i) =gI(X i) + 5.5X2
i3
− 4.5Xi1X

3
i3
. (Polynomial)
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which are based on 1000 weight vectors and accept-
able treatment allocations generated by QReR and ReR, 
respectively.

For the estimation of treatment effect, QReR uses both 
the observed covariates and responses for inference, 
whereas we perform ReR on the observed covariates 
and regenerate an acceptable allocation vector and cor-
responding responses. Regarding the metrics of assess-
ment, the empirical bias and root mean square error 
(RMSE) are used to evaluate the precision of the esti-
mator, where the mean difference between treated and 
control responses is chosen as the estimator for ReR as 
in [15]. Moreover, we report the Monte Carlo standard 
errors (MCSEs) for the above performance measure-
ments of simulations (average KS statistics, average 
p-values, bias and RMSE) [44, 45], which evaluate the 
overall adequacy of simulations with finite repetitions 
under different random-number seeds.

We consider three different levels of acceptance proba-
bility for ReR and QReR, i.e., pa = 0.1, 0.5, 1 . For the other 
hyper-parameters of QReR in Algorithm  1, we set the 
iteration numbers as (Ninit,Ntrain,Nstop) = (500, 5000, 15) 
for network initialization, training and early-stop-
ping, and the batch sizes for training are specified as 
(B,Binit,Bstop,Bloss) = (512, 1000, 1000, 10000) . We use 
the Adam optimizer [46] with default parameters to 
conduct the stochastic gradient descent algorithm. The 
regularization coefficients �1 and �2 are both fixed as 1. 
During the inference, the QReR estimator τ̂M is calcu-
lated based on M = 1000 weight vectors, denoted by 
QReRM . In addition, we compute the estimator using a 
single weight vector ( M = 1 ) denoted by QReRS to com-
pare with ReR and show the advantage of ensembling 
multiple weight vectors.

We further study the performance of QReR on infer-
ring τPATE in comparison with several popular balancing 
approaches. We consider the propensity score matching 
(PSM) provided by the R package Matching [47], opti-
mal full matching (FM) in the MatchIt package [48, 49], 
inverse probability weighting (IPW) using the propen-
sity score (Eq. 7 in [50]), entropy balancing (EBAL) pro-
posed by [12], stable balancing weights (SBW) in [13] and 
empirical balancing calibration weighting (EBCW) based 
on the package ATE [14], where EBAL, SBW and EBCW 
are non-parametric reweighting algorithms. We use the 
R package WeightIt [37] to conduct SBW as well as 
EBAL, and the tolerance parameter of SBW is specified 
as 0.01. The propensity scores are estimated using the 
logistic regression in the relevant benchmarks, includ-
ing PSM, FM and IPW. No further covariate adjust-
ment is applied when estimating τPATE after matching 
or reweighting. For QReR, we keep the same settings of 
hyper-parameters in the τSATE estimation except that we 

only approximate the most stringent ReR with pa = 0.1 . 
Similar to [11–14], we focus on the bias and RMSE in the 
estimation of τPATE when evaluating different methods.

Simulation results
Table  1 shows that QReR can approximate ReR well in 
terms of covariate balance. First, the average MCSEs have 
small values for both the average KS statistics and p-val-
ues, which implies that replications of 200 are adequate. 
For different combinations of r and scenarios, the average 
KS statistics are all small with the corresponding aver-
age p-values larger than 0.1, indicating that the weighted 
mean differences of QReR for each covariate share simi-
lar distributions to the counterparts in ReR. Furthermore, 
the KS statistics are larger for smaller pa (more strin-
gent), which implies that it is more difficult for QReR to 
reconstruct ReR when the criterion of covariate balance 
is more stringent. It may result from the fact that the dis-
tribution of δ(T ) is more concentrated around zero for 
small pa and thus is more difficult to approximate. For a 
more intuitive illustration, we draw the boxplots to visu-
alize the covariate mean differences of a representative 
case for ReR and QReR with pa = 0.1 in Fig.  1, where 
covariates are generated under Scenario 1 with r = 2 . We 
observe that the paired boxplots of QReR and ReR gen-
erally exhibit similar shapes especially for the continu-
ous covariates and a large value of pa . The medians in the 
paired boxplots are close, indicating that QReR and ReR 
have similar covariate balance, whereas other quantile 
points further show that the covariate mean difference of 
QReR displays a similar variation to that of ReR.

Table 1 The average Kolmogorov–Smirnov (KS) statistics 
and average p-values of covariate mean differences across all 
covariates between 1000 weighted and balanced datasets 
generated respectively by quasi-rerandomization and 
rerandomization. The average Monte Carlo standard errors 
(MCSEs) are 0.001 and 0.005 for the average KS statistics and the 
average p-values, respectively

Scenario pa r = 1 r = 2

KS p‑value KS p‑value

1 0.1 0.083 0.124 0.081 0.129

0.5 0.073 0.150 0.071 0.148

1 0.068 0.161 0.067 0.157

2 0.1 0.084 0.133 0.080 0.133

0.5 0.075 0.135 0.071 0.160

1 0.069 0.151 0.066 0.160

3 0.1 0.084 0.127 0.082 0.124

0.5 0.074 0.144 0.072 0.142

1 0.068 0.154 0.067 0.157
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Tables  2 and 3 show the estimation performance of 
QReR in comparison with ReR. We first observe that 
the average MCSEs have relatively larger values for the 
NonLinear (Polynomial) model, because it is more diffi-
cult to balance covariates and thus leads to larger vari-
ations under the complex surface function. For QReR, 
we simultaneously consider two estimators QReRM and 
QReRS based on (13). When the outcome is generated 
from Linear or Nonlinear (Interaction) models, QReR 
yields comparable bias and RMSE to ReR. However, we 
observe much larger bias and RMSE under QReR for the 
response surface of Nonlinear (Polynomial) and covari-
ates from Scenarios 2 and 3. The results under Nonlin-
ear (Interaction) indicate that QReR for the observational 
data can demonstrate similar performance to rerand-
omized experiments even in the presence of unobserved 
nonlinear covariates. This could be explained by the 
MMD loss being capable of incorporating some nonlin-
ear information of covariates by taking various orders of 
moments for �(T̃ ) into account. In contrast, ReR inher-
ently improves the covariate balance of any unobserved 
covariates due to the nature of randomization. Addition-
ally, we find that QReR mimics ReR by delivering smaller 
RMSEs using a smaller acceptance probability pa under 
various situations, which results from smaller values of 
δ(T̃ ) ’s entries in (6) due to more balanced covariates in 
ReR. The RMSEs of QReR and ReR are also smaller for 
r = 2 in contrast to r = 1 , because more observations are 
provided. Concerning QReRM and QReRS , we find that 
the simpler estimator QReRS demonstrates more similar 
values of bias and RMSE to ReR, which stems from the 
similar covariate balance between QReR and ReR. The 
similarity also reflects that the single weight vector from 
QReR can approximate the inference properties of the 
acceptable allocation in ReR. The estimator QReRM gen-
erally has smaller RMSE because it ensembles multiple 
QReRS ’s via taking the average, which shows the advan-
tage of generating diverse weight vectors.

The point estimator for τSATE has the same form of 
τPATE so that we only compare QReRM with other balanc-
ing algorithms in terms of bias and RMSE as shown by 
Table 4. In most cases, our approach has RMSE and bias 
as small as other non-parametric weighting approaches 
including SBW, EBAL and EBCW, and outperforms 
the parametric weighting method IPW as well as other 
matching methods such as PSM and FM. In addition, we 
find that SBW, EBAL and EBCW perform better than 
QReRM and the propensity score methods in terms of 
bias under Linear and Nonlinear (Interaction) models. 
Furthermore, QReRM demonstrates an evident advantage 
when the response is generated from a highly nonlinear 
response surface with heterogeneous covariate distri-
butions. It shows that despite being inferior to ReR, our 

Fig. 1 An illustrative example for the (weighted) mean differences 
of all covariates between quasi-rerandomization (QReR) and 
rerandomization (ReR) with pa = 0.1, 0.5, 1 . The boxplots are based on 
1000 acceptable ReR allocations T̃  and transformed weights W̃ under 
a simulated dataset from Scenario 1 with r = N0/N1 = 2
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method performs better in the presence of nonlinear 
covariates relative to other balancing approaches. More-
over, unlike those benchmarks that rely on the balanced 
covariates without clear hypothetical randomized experi-
ments, our estimator is pillared by the weight vectors 
that directly approximate the rerandomized experiment. 
Therefore, our method can incorporate rerandomization 
to balance covariates and simultaneously yield precise 
estimation of the treatment effect.

Real application
We demonstrate the application of our proposed QReR 
on semi-synthetic data [51, 52], which consist of real and 
imbalanced covariates with allocations and simulated 
responses. The covariates were collected from the Infant 

Health and Development Program (IHDP), which targeted 
the low-birth-weight and premature infants. There were 19 
binary covariates and 6 continuous covariates for each par-
ticipant. High-quality childcare and professional home vis-
its were provided for the treatment group, and the infants’ 
cognitive test score was the outcome of interest. There 
were 747 observations with 139 and 608 units for the 
treatment and control groups, respectively. Given the real 
covariates and allocations,  Hill [51] simulated responses 
from various response surface functions to obtain the true 
treatment effect and thus evaluate different methods.

Shalit et  al.  [52] publicly provided 100 such datasets1 
with different average treatment effects, each of which 

Table 2 The bias and RMSE for τSATE under quasi-rerandomization (QReR) and rerandomization (ReR) under different combinations of 
the acceptance probability pa , covariate scenarios and response surfaces when r = N0/N1 = 1 . The average Monte Carlo standard errors 
(MCSEs) of bias are 0.03, 0.04 and 0.31 and those of RMSE are 0.02, 0.03 and 0.31 for Linear, NonLinear (Interaction) and NonLinear 
(Polynomial) models, respectively

QReRS : using a single random weight vector generated by our model to conduct inference; QReRM : using the average weight vector based on M = 1000 random 
weights

Response pa Method Scenario 1 Scenario 2 Scenario 3

Bias RMSE Bias RMSE Bias RMSE

Linear 0.1 QReRS -0.002 0.35 0.005 0.44 0.020 0.42

QReRM -0.022 0.12 -0.032 0.12 -0.028 0.12

ReR 0.004 0.31 0.001 0.39 0.003 0.41

0.5 QReRS -0.053 0.47 -0.059 0.60 -0.067 0.66

QReRM -0.037 0.12 -0.059 0.13 -0.058 0.13

ReR 0.029 0.45 0.038 0.53 -0.001 0.56

1 QReRS -0.035 0.60 -0.017 0.67 -0.062 0.76

QReRM -0.054 0.12 -0.064 0.14 -0.060 0.14

ReR -0.023 0.57 -0.038 0.68 0.072 0.72

NonLinear 0.1 QReRS -0.017 0.49 -0.060 0.64 -0.071 0.62

(Interaction) QReRM -0.033 0.19 -0.123 0.24 -0.132 0.25

ReR 0.014 0.46 0.011 0.54 0.032 0.62

0.5 QReRS -0.079 0.65 -0.162 0.83 -0.199 0.93

QReRM -0.055 0.19 -0.148 0.25 -0.165 0.27

ReR 0.041 0.63 0.053 0.74 -0.020 0.76

1 QReRS -0.061 0.84 -0.095 0.94 -0.166 1.10

QReRM -0.075 0.20 -0.148 0.25 -0.152 0.27

ReR -0.037 0.80 -0.058 0.95 0.090 1.02

NonLinear 0.1 QReRS 0.078 2.31 5.001 7.46 -5.931 7.69

(Polynomial) QReRM 0.025 2.04 4.869 7.02 -6.118 7.58

ReR 0.030 2.03 -0.571 5.75 0.368 5.77

0.5 QReRS -0.051 2.54 4.958 7.75 -6.869 8.77

QReRM -0.063 2.12 4.861 7.23 -6.551 7.98

ReR -0.007 1.94 -0.289 5.60 0.119 6.16

1 QReRS -0.051 2.65 4.774 7.54 -7.008 8.77

QReRM -0.071 2.15 4.703 7.05 -7.229 8.61

ReR -0.048 2.07 -0.029 6.03 -0.020 6.48

1 The datasets can be downloaded from https:// www. fredjo. com by merging 
two subsets IHDP-100 (train) and IHDP-100 (test).

https://www.fredjo.com
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includes the potential outcomes {(Yi(0),Yi(1))}747i=1 with 
their expectations {(E{Yi(1)|Xi},E{Yi(0)|Xi})}747i=1 , the 
treatment indicator vector T ∈ R

747 with 
∑N

i=1 Ti = 139 
and the same covariate matrix X ∈ R

747×25 using all 25 
covariates. Moreover, these 100 datasets have heteroge-
neous individual treatment effects, i.e., both Yi(1)− Yi(0) 
and its expectation E{Yi(1)|Xi} − E{Yi(0)|Xi} have 
different values for i = 1, . . . ,N  . We further stand-
ardize all covariates to have zero means and unit vari-
ances. Based on the potential outcomes, we can easily 
obtain the finite sample average treatment effect τSATE 
for each dataset, so that QReR can be similarly com-
pared with ReR in terms of the bias and RMSE. We 
set the true population average treatment effect 
τPATE =

∑N
i=1 [E{Yi(1)|Xi} − E{Yi(0)|Xi}]/N  following 

[52], and calculate the corresponding bias and RMSE for 

QReR and other balancing techniques. We use the same 
parameter settings in the simulations for various balanc-
ing approaches in analysis of IHDP datasets.

In Fig.  2, we present the covariate mean differences 
between QReR and ReR for continuous ( X1, . . . ,X6 ) and 
binary ( X7, . . . ,X25 ) covariates under different values 
of pa . It shows that δ(W̃ ) of QReR generally has similar 
distributions to δ(T̃ ) of ReR on the 25 covariates, par-
ticularly for the continuous ones, and thus QReR well 
reconstructs ReR in terms of the covariate mean differ-
ences. Furthermore, we observe that QReR can better 
approximate ReR when pa increases, which is consist-
ent with the findings from the simulations.

From the results in Table  5, we find that QReR also 
yields comparable bias and RMSE to ReR, and QReRM 
performs better than QReRS under the heterogeneous 

Table 3 The bias and RMSE for τSATE under quasi-rerandomization (QReR) and rerandomization (ReR) under different combinations of 
the acceptance probability pa , covariate scenarios and response surfaces when r = N0/N1 = 2 . The average Monte Carlo standard errors 
(MCSEs) of bias are 0.02, 0.03 and 0.26 and those of RMSE are 0.02, 0.02 and 0.30 for Linear, NonLinear (Interaction) and NonLinear 
(Polynomial) models, respectively

Response pa Method Scenario 1 Scenario 2 Scenario 3

Bias RMSE Bias RMSE Bias RMSE

Linear 0.1 QReRS -0.032 0.31 -0.051 0.36 0.011 0.35

QReRM -0.017 0.10 -0.018 0.10 -0.013 0.10

ReR -0.001 0.27 0.019 0.29 0.031 0.32

0.5 QReRS -0.018 0.40 -0.016 0.49 -0.069 0.51

QReRM -0.034 0.11 -0.029 0.10 -0.036 0.11

ReR 0.026 0.37 0.044 0.42 -0.020 0.44

1 QReRS -0.031 0.49 -0.053 0.55 0.012 0.53

QReRM -0.037 0.10 -0.044 0.11 -0.047 0.11

ReR -0.022 0.48 -0.015 0.55 -0.067 0.57

NonLinear 0.1 QReRS -0.102 0.44 -0.207 0.56 -0.121 0.51

(Interaction) QReRM -0.081 0.18 -0.143 0.23 -0.146 0.25

ReR 0.004 0.40 0.030 0.43 0.042 0.46

0.5 QReRS -0.089 0.57 -0.122 0.69 -0.201 0.76

QReRM -0.097 0.19 -0.149 0.24 -0.167 0.26

ReR 0.038 0.52 0.056 0.59 -0.030 0.61

1 QReRS -0.086 0.70 -0.167 0.80 -0.086 0.74

QReRM -0.092 0.19 -0.157 0.25 -0.174 0.27

ReR -0.018 0.65 -0.009 0.74 -0.085 0.79

NonLinear 0.1 QReRS -0.281 1.76 4.671 7.17 -4.674 6.52

(Polynomial) QReRM -0.267 1.63 4.819 6.82 -4.817 6.25

ReR 0.100 1.70 0.094 4.28 -0.323 4.60

0.5 QReRS -0.298 1.93 5.055 7.28 -5.632 7.32

QReRM -0.308 1.71 4.840 6.91 -5.519 6.88

ReR 0.114 1.67 0.238 4.24 -0.382 5.06

1 QReRS -0.294 1.97 4.872 7.31 -5.437 7.32

QReRM -0.310 1.74 4.859 7.04 -5.925 7.32

ReR 0.030 1.74 0.325 4.31 0.012 4.91
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Table 4 The bias and RMSE for τPATE under quasi-rerandomization (QReR) and other balancing methods under different combinations 
of the covariate scenarios, response surfaces and ratios ( r = N0/N1 ). The average Monte Carlo standard errors (MCSEs) of bias are 
0.02, 0.03 and 0.40 and those of RMSE are 0.02, 0.02 and 0.77 for Linear, NonLinear (Interaction) and NonLinear (Polynomial) models, 
respectively

IPW: inverse probability weighting using propensity scores; PSM: propensity score matching; FM: optimal full matching; EBAL: entropy balancing; SBW: stable 
balancing weights; EBCW: empirical balancing calibration weighting; and QReRM : quasi-rerandomization using average weight vector with acceptance probability 
pa = 0.1

r Response Method Scenario 1 Scenario 2 Scenario 3

Bias RMSE Bias RMSE Bias RMSE

1 Linear IPW 0.040 0.42 0.217 0.55 0.179 0.50

PSM 0.162 0.42 0.247 0.57 0.365 0.67

FM 0.156 0.40 0.280 0.57 0.378 0.66

EBAL -0.002 0.11 -0.003 0.11 -0.005 0.11

SBW -0.003 0.10 -0.004 0.11 -0.005 0.11

EBCW -0.002 0.11 -0.003 0.11 -0.004 0.11

QReRM -0.022 0.12 -0.031 0.12 -0.029 0.12

Nonlinear IPW 0.077 0.58 0.290 0.72 0.245 0.64

(Interaction) PSM 0.245 0.61 0.241 0.81 0.423 0.95

FM 0.235 0.59 0.292 0.80 0.440 0.93

EBAL 0.012 0.19 -0.029 0.22 -0.041 0.21

SBW 0.011 0.19 -0.042 0.22 -0.056 0.22

EBCW 0.012 0.19 -0.029 0.22 -0.040 0.21

QReRM -0.033 0.19 -0.123 0.24 -0.133 0.26

Nonlinear IPW 0.247 3.56 5.333 11.91 -10.193 14.00

(Polynomial) PSM 0.097 3.54 5.217 9.40 -8.803 10.90

FM 0.124 3.53 5.134 9.29 -8.872 11.00

EBAL 0.092 2.72 4.925 8.51 -8.850 10.62

SBW 0.119 2.55 5.419 8.54 -7.836 9.52

EBCW 0.092 2.72 4.925 8.51 -8.850 10.62

QReRM 0.025 2.04 4.875 7.01 -6.112 7.56

2 Linear IPW 0.024 0.35 -0.565 0.96 -1.154 1.42

PSM 0.085 0.41 -0.032 0.49 -0.311 0.58

FM 0.088 0.40 -0.035 0.48 -0.302 0.56

EBAL 0.002 0.09 0.002 0.09 0.001 0.09

SBW 0.001 0.09 0.001 0.09 0.000 0.09

EBCW 0.002 0.09 0.002 0.09 0.001 0.09

QReRM -0.017 0.10 -0.017 0.10 -0.013 0.10

Nonlinear IPW 0.049 0.46 -0.766 1.23 -1.611 1.91

(Interaction) PSM 0.130 0.56 -0.174 0.68 -0.603 0.91

FM 0.132 0.54 -0.179 0.67 -0.595 0.88

EBAL 0.006 0.17 -0.023 0.20 -0.032 0.20

SBW -0.052 0.17 -0.104 0.22 -0.121 0.23

EBCW 0.006 0.17 -0.023 0.20 -0.032 0.20

QReRM -0.080 0.18 -0.142 0.23 -0.145 0.25

Nonlinear IPW 0.060 3.22 4.734 14.91 -12.453 18.48

(Polynomial) PSM -0.105 2.72 5.280 9.50 -8.156 10.14

FM -0.064 2.66 5.230 9.45 -8.279 10.20

EBAL -0.056 2.20 5.098 8.74 -8.151 10.08

SBW -0.069 2.09 5.678 8.83 -6.955 8.77

EBCW -0.056 2.20 5.098 8.74 -8.152 10.08

QReRM -0.261 1.63 4.810 6.81 -4.825 6.26
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Fig. 2 The (weighted) mean differences of all covariates between quasi-rerandomization (QReR) and rerandomization (ReR) with pa = 0.1, 0.5, 1 on 
the covariates of IHDP datasets. The boxplots are based on 1000 acceptable ReR allocations T̃  and transformed weights W̃ . The first six covariates are 
continuous, whereas the last nineteen covariates are binary
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treatment effects, which strengthens the tendency 
of using multiple weight vectors. Table  6 shows that 
QReRM achieves the smallest bias in contrast with other 
benchmarks. Its RMSE is much smaller than the match-
ing approaches, but slightly worse than SBW, EBAL 
and EBCW due to a trade-off on the bias. This hence 
shows that our proposed approach is still advantageous 
in estimating τPATE under the context of real covariates 
and heterogeneous individual treatment effects, and 
thus can be adopted broadly in the real applications.

Conclusions
We propose a novel balancing technique, named quasi-
rerandomization, for observational studies, which incor-
porates the covariate balance from rerandomization 
into the observational data via reweighting. The weights 
obtained from our method can be conveniently com-
bined with weighted point estimators to perform the sub-
sequent inference for both finite-sample and population 
treatment effects. We empirically show that our method 

can well approximate the rerandomized experiments in 
terms of improving the covariate balance and the preci-
sion of treatment effect estimation. Furthermore, our 
approach demonstrates competitive performance com-
pared with other weighting and matching methods. 
Possible extensions may modify our algorithm to approx-
imate other types of randomized experiments, such as 
block randomization. One may also explore whether the 
Bayesian framework can be leveraged to generate the 
weights that can reconstruct rerandomization in terms of 
covariate balance. The codes and datasets for the simula-
tions and real application can be found at https:// github. 
com/ BobZh angHT/ QReR.
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