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Abstract 

Background Machine learning (ML) methods to build prediction models starting from electrocardiogram (ECG) 
signals are an emerging research field. The aim of the present study is to investigate the performances of two ML 
approaches based on ECGs for the prediction of new-onset atrial fibrillation (AF), in terms of discrimination, calibration 
and sample size dependence.

Methods We trained two models to predict new-onset AF: a convolutional neural network (CNN), that takes as input 
the raw ECG signals, and an eXtreme Gradient Boosting model (XGB), that uses the signal’s extracted features. 
A penalized logistic regression model (LR) was used as a benchmark. Discrimination was evaluated with the area 
under the ROC curve, while calibration with the integrated calibration index. We investigated the depend-
ence of models’ performances on the sample size and on class imbalance corrections introduced with random 
under-sampling.

Results CNN’s discrimination was the most affected by the sample size, outperforming XGB and LR 
only around n = 10.000 observations. Calibration showed only a small dependence on the sample size for all the mod-
els considered.

Balancing the training set with random undersampling did not improve discrimination in any of the models. Instead, 
the main effect of imbalance corrections was to worsen the models’ calibration (for CNN, integrated calibration index 
from 0.014 [0.01, 0.018] to 0.17 [0.16, 0.19]).

The sample size emerged as a fundamental point for developing the CNN model, especially in terms of discrimina-
tion (AUC = 0.75 [0.73, 0.77] when n = 10.000, AUC = 0.80 [0.79, 0.81] when n = 150.000). The effect of the sample size 
on the other two models was weaker. Imbalance corrections led to poorly calibrated models, for all the approaches 
considered, reducing the clinical utility of the models.

Conclusions Our results suggest that the choice of approach in the analysis of ECG should be based on the amount 
of data available, preferring more standard models for small datasets. Moreover, imbalance correction methods 
should be avoided when developing clinical prediction models, where calibration is crucial.
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Background
In the last few years, there has been a growing interest 
in the potential diagnostic value provided by electrocar-
diogram (ECG) signals. ECG waveform is one of the most 
extensively studied physiological signals to evaluate the 
condition of the heart, in which several waves as P, R, and 
T, are key to determining the type of rhythm. The inter-
pretation of ECGs is complex and requires inspection 
by highly trained clinicians. However, numerous studies 
have shown that computer-aided methods based on ECG 
data represent a promising tool for the analysis and iden-
tification of cardiovascular diseases [1].

One example is the prediction of atrial fibrillation (AF), 
the most common supraventricular arrhythmia in the 
general population. AF is a relevant risk factor for stroke, 
however, it is often asymptomatic and not recognized. 
Thus, the identification of patients at high risk of future 
development of AF represents a major challenge. The 
way AF detection and prediction are evolving with the 
availability of new predictive tools is well described in a 
review carried out by Siontis et al. [2]. The development 
of tools to predict AF from routine and low-cost exams 
such as ECG would be an important step toward the 
active targeting of patients at risk, a task for which clini-
cal risk scores and electronic health record-based tools 
have shown limited power [3].

The 12-lead ECG is a rapid, cost-effective cardiologi-
cal exam that is routinely performed at different levels 
of point-of-care, from hospitals to clinics and ambula-
tory centres, generating a massive number of digital 
traces. As for other types of Big Data in the healthcare 
context, a major role in their analysis may be played 
by Artificial Intelligence (AI) systems, which can be 
easily fed with hundreds of thousands of observa-
tions. Two main approaches can be distinguished for 
the development of diagnostic models based on ECG. 
One approach involves the analysis of ECG features. 
Automated ECG interpretation is not a new concept, 
and algorithms that provide ECG interpretations have 
been around for a long time (in many cases code is pro-
prietary and not disclosed). Such computer programs 
usually work in separate stages, including signal pre-
processing, beat identification, correction, computation 
of average beats, and identification of fiducial points 
from which ECG measurements are extracted. Such 
measurements rely on knowledge-driven markers (like 
QRS, ST-segment elevation, T-wave changes) reflect-
ing the clinical knowledge of heart activity, and can be 
then used to define criteria and rules for a diagnostic 

evaluation by physicians. In addition to human evalu-
ation, in the last years ECG features, which can vary in 
number and type depending on the program employed, 
have been used to feed ML methods for tabular data to 
derive a diagnostic model [4–7].

The second approach consists in developing end-
to-end prediction models that do not require feature 
extraction. This strategy involves the direct analysis 
of the digital ECG waveform to obtain the probabil-
ity of a specific class in the classification of interest 
and deep learning (DL) based neural networks have 
demonstrated to be able to achieve good results. 
Despite DL models being black boxes and requiring 
the application of explainability techniques to inves-
tigate their prediction mechanism, this AI method 
for ECG analysis is being increasingly explored for 
its ability to detect subtle and non-linear interrelated 
variations along the signal [8]. The most common DL 
architectures used for analyzing ECGs are convolu-
tional neural networks (CNN), a specialized kind of 
neural network for pattern recognition in time series 
and image data [9]. These networks can be thought of 
as having two sequential components: in the first lay-
ers, a set of convolutional filters allows us to extract 
patterns and key features from the signal, while in the 
second part, these extracted features are combined 
and used to make a prediction. Notice that the specific 
weights of the filters to be applied and the relative fea-
tures extracted are automatically learnt by the network 
in the training process. It has been recently shown that 
the performance of a CNN in classifying arrhythmia 
from ECG can exceed that of cardiologists with aver-
age experience [10, 11]. Besides this classification task, 
CNNs have already shown good performances in pre-
dicting the new onset of AF (see Raghunath et al. [12] 
for AF prediction within 1year, and Attia e al. [13] for 
the identification of electrocardiographic signature of 
AF immediately prior to diagnosis). All these works 
reported quite good values of discrimination accuracy, 
but no information was available about the calibration 
of the estimated probabilities.

We stress that the diagnostic/classification task is 
quite different from the prediction task in epidemio-
logical studies: classification is best used to identify 
the presence of an outcome/condition in the context 
of case–control studies. On the contrary, in the con-
text of cohort studies when subjects are selected as ini-
tially free from the outcome and are then followed in 
time until they will (or will not) develop the outcome, 
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usually observed in a minority of subjects, modelling 
tendencies (i.e., probabilities) is key [14]. The com-
mon approach of balancing events/non-events cases 
before applying ML/DL algorithms, based on the per-
ception that this procedure can improve performance, 
seems not advisable in the prediction context [15]. The 
consequence of balancing could be that the algorithm 
trained to “predict” a 1/2 incidence of events will not 
be applicable to a population with a 1/1000 incidence. 
Subsequent calibration procedures are then needed in 
order to correct this issue [16]. Since the low incidence 
of new-onset AF in our population, the possible impact 
of balancing was an issue that we wanted to explore in 
the context of AF prediction.

The main goal of the present research was the devel-
opment of a predictive model for a binary outcome 
based only on ECG information by comparing different 
methods: an ML algorithm on signal features and a DL 
approach on raw signals. Penalized logistic regression 
was used as a benchmark method. In this framework, AF 
represents a case study and this research does not claim 
to propose a prediction tool suitable for the clinical prac-
tice. Instead, our effort is aimed to extensively analyze the 
performance of the two approaches in terms of discrimi-
nation and calibration taking into account varying sam-
ple sizes and degrees of balance between the events and 
the censored cases. In particular, our research was based 
on different hypotheses: a) DL models based on the raw 
ECG signals could potentially outperform algorithms 
working on ECG features when the training set is large; 
b) the use of under-sampling to handle class imbalance 
does not improve discriminative performance and could 
instead produce miscalibrated predictions.

Methods
Data
We included all subjects aged > 30  years with at least 
one standard 10-s, 12-lead ECG acquired at the Cardio-
vascular Department of Azienda Sanitaria Universitaria 
Giuliano Isontina (ASUGI) in Trieste, between February 
2, 2007, and December 31, 2020. ECGs were recorded at 
a frequency of 1 kHz using the Mortara™ devices ELI230 
and ELI250, and then resampled at 500  Hz for compu-
tational reasons. By linking the ECG exams with the 
Electronic Health Records of the Regional Epidemiologi-
cal Repository of Friuli Venezia Giulia region (Italy), we 
could integrate them with all the cardiological clinical 
evaluations from the cardiological e-chart C@RDIONET 
[17]. In this way, we could identify a cohort of patients 
without AF history for the prediction of the new onset of 
AF.

For patients without any AF event in the observation 
period, we extracted all available ECG exams, while for 

patients that developed AF, we used all ECGs recorded 
before the first AF event within a temporal window of 
5  years. Note that censored cases, i.e., subjects that did 
not develop AF, had a minimum follow-up of 5  years 
required by design. Each ECG was associated with a set 
of morphological features, automatically extracted by the 
Mortara devices at the ECG recording. We had access 
to these features through the cardiological e-chart C@
RDIONET.

The AF event was defined linking information from 
4 different sources: reports from emergency access or 
cardiological visits, discharge codes in case of hospitali-
zations and ECG reports. For each patient, the first AF 
diagnosis (or atrial flutter) found in one of these data 
sources was taken as the first AF event. We excluded 
all patients with an AF event before 2007 or with paced 
rhythms (i.e., implanted with a pacemaker, PM, with 
an Implantable Cardiac Defibrillator, ICD, or treated 
with the Cardiac Resynchronization Therapy, CRT, see 
the flow chart reported in Fig. S1 of the supplementary 
materials). Subjects with an AF diagnosis at the first 
ECG exam or with the AF-event date missing were not 
included in the analysis.

The unit of observation was the ECG signal. Each ECG 
was labelled 1 if the corresponding patient will develop 
AF within 5 years, and 0 otherwise.

Models’ development
The two approaches under study were a deep convolu-
tional neural network (CNN) and an XGBoost model 
(XGB). XGB is a gradient tree-boosting algorithm that 
recently has gained great popularity due to its excellent 
performance in a wide range of problems [18]. A penal-
ized logistic regression model (LR) was used as a bench-
mark. For all models, the task considered was to predict 
the probability that a patient will develop AF within five 
years.

The CNN takes as input the resampled ECG signal, 
which is a 12 × 5000 matrix (i.e., 12 leads by 10-s dura-
tion sampled at 500Hz). The architecture of the CNN is 
the one used by Scagnetto et  al. [19] for AF prediction, 
which was originally proposed by Goodfellow et al. [20] 
for a similar purpose, i.e., to classify single lead ECG 
waveforms as either Normal Sinus Rhythm, AF, or Other 
Rhythm. The network is composed of 13 blocks, each 
of which comprises a 1D convolution along the time 
domain, batch normalization, ReLU activation func-
tion and dropout. Notice that, in the computation of 
convolutions, all channels are used simultaneously, thus 
cross-lead correlations are automatically leveraged by the 
model. In blocks 1,6 and 11 there is also a max-pooling 
layer between ReLU activation and dropout. After the 
convolutional blocks, there are a global average pooling 
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layer and a soft-max layer, in order to obtain normalized 
probabilities. All the architecture’s hyperparameters are 
reported in the appendix (Fig. S2). To train the model we 
used the cross-entropy loss function and AdamW opti-
mizer [21], with a learning rate of  10–3.

The XGB and LR models take as input the wave mor-
phology’s features extracted from the ECG signal by the 
Mortara devices. These features include the onset and 
offset of P and T waves and of the QRS complex, the PR 
and corrected QT intervals, P, T, QRS axis and the car-
diac frequency.

To tune the XGB’s parameters, we performed a rand-
omized search over parameters, as described hereafter. 
For each hyperparameter that we decided to tune, we 
specified a uniform distribution over the possible param-
eter values range. Then, we generated a candidate setting 
of parameters by sampling the pre-specified distributions 
and we evaluated its performance with a fivefold cross-
validation. These steps are repeated  105 times. Finally, the 
best-performing parameters setting (in terms of AUC) 
was kept. In this process, we included a set of ECGs 
(approximately 50.000) solely used for hyper-parameter 
tuning and not in training/test phases.

In the LR model, we applied an L2 regularization term 
to reduce overfitting. Therefore, the only parameter 
of the model is the strength of the regularization term, 
which we tuned with the same procedure followed for 
XGB hyperparameters tuning.

The CNN was implemented with PyTorch framework 
[22] version 1.12.0, while for XGB and LR models we 
used Scikit-learn 1.0.2 implementations [23]. Python’s 
version used was 3.10.5. All the code used for this study 
can be found in the GitHub repository https:// github. 
com/ giova baj/ ecg- cnn- xgb- lr.

Models’ evaluation
To assess the ability of the models to discriminate 
between patients developing/not developing AF, we used 
the Area Under the Receiver Operating Characteristic 
Curve (AUC), which is a robust metric of model perfor-
mance for binary classification, even in the case of imbal-
anced datasets. Higher AUC values correspond to better 
performances, with perfect discrimination represented 
by an AUC value of 1 and an AUC of 0.5 equivalent to a 
random guess.

To evaluate the models’ calibration, we computed the 
Integrated Calibration Index (ICI) [24]. Similarly to Cox’s 
method [25], the ICI is based upon a graphical assess-
ment of calibration, in which the observed binary out-
come is regressed on the predicted probability of the 
outcome, using a locally weighted least squares regres-
sion smoother (i.e., the Loess algorithm). Then, a graphi-
cal comparison between the smoothed regression line 

(known as the calibration curve) and the diagonal line 
with unit slope (that denotes perfect calibration) can be 
used to assess calibration. However, it is not always easy 
to interpret graphical calibration curves, mainly because 
the curve is plotted over the entire range of predicted 
probabilities and the empirical distribution of these 
probabilities is frequently not uniform. Thus, a numeri-
cal summary of calibration curves is easier to interpret. 
Specifically, ICI is computed as the weighted average of 
the absolute difference between the calibration curve and 
the diagonal line of perfect calibration, where the weights 
are given by the density function of the predicted prob-
abilities. For a perfectly calibrated model, ICI takes the 
value of 0, and in general the higher the ICI, the less the 
model is calibrated. We note that we decided not to use 
Cox’s intercept and slope because they could be equal to 
their ideal values of 0 and 1, respectively, while deviations 
of the calibration curve can still occur around the line of 
identity [24].

To evaluate the variability of the performance of the 
trained models, we performed a tenfold cross-valida-
tion. In the case of the CNN, 8 sets were used to train 
the model, 1 to evaluate the model during training and 
apply early stopping, and the last one to test the model 
performances on unseen data. Regarding the XGB and 
LR models, data were split into training and test sets 
with a 9:1 ratio. In the process of splitting data into folds, 
in the case of patients with multiple ECGs, we ensured 
that each patient was present only in one between train-
ing, validation and test sets. This is because intra-patient 
ECGs show a higher degree of correlation with respect 
to inter-patient ECGs. Thus, without taking into account 
this detail, the models’ performances would be over-
estimated. We also made sure that the fraction of posi-
tive samples in each fold was as similar as possible to the 
overall fraction.

Experimental setting for varying sample sizes/balance
To investigate the dependence of models’ performances 
on the sample size, we trained the three considered mod-
els with increasingly bigger subsets of the dataset. The 
sizes considered are 1000, 2000, 5000, 10.000, 20.000, 
50.000, 100.000 and 150.000 ECGs. The remaining 57.521 
ECGs were used to tune hyperparameters for all models.

Another aspect we investigated was imbalance cor-
rections, again for increasingly bigger sample sizes. We 
repeated the training process described above, but this 
time balancing the two classes in the training set by ran-
dom undersampling (RUS), which consists of eliminating 
a random set of negative ECGs in order to equalize the 
number of ECGs in each class [26].

To study the effect of class imbalance corrections on 
models’ performances, we considered a fixed sample size 

https://github.com/giovabaj/ecg-cnn-xgb-lr
https://github.com/giovabaj/ecg-cnn-xgb-lr
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(100.000 ECGs), and we trained the three models with 
different balancing levels of the training set. The levels 
considered are 12.5% (corresponding to the original posi-
tive fraction), 25%, 37.5% and 50% (perfectly balanced 
training set). We stress that the test sets used to evalu-
ate the models have always the original positive fraction 
(12.5%). As before, the method used to balance the train-
ing set was RUS, and to estimate the models’ variability 
we performed a tenfold cross-validation with the same 
approach described above. Notice that we decided to use 
a sample size of 100.000 ECGs since we observed that 
none of the three models showed a substantial improve-
ment with a training size larger than this.

Results
The final dataset includes 207.521 ECGs, associated to 
92.465 subjects. The number of events (i.e. new onset 
of AF) is 25.857, corresponding to 12.5% of cases. See 
Table 1 for a descriptive snapshot of the population. Note 
that the statistical unit of the study cohort is the ECG 
signal.

Compared with censored subjects, patients developing 
AF were older and more frequently male. These results 
are not surprising since increasing age is a prominent AF 
risk factor and the prevalence of AF is lower in women 
vs. men in most of the real-life study cohorts [27, 28]. 
Note that we did not include demographic characteris-
tics in the analysis since the objective was to investigate 
the specific ECG contribution to the prediction. No other 

remarkable clinical differences are observed in the ECG 
features.

Models’ evaluation results
In Table  2 we report AUC and ICI values (and corre-
sponding 95% Confidence Intervals, CI) for the three 
models trained with the biggest sample size considered 
(150.000 ECGs) and with the original event ratio (no 
imbalance corrections). We can see that from a discrimi-
nation point of view, the CNN model is the best-perform-
ing model, with an AUC of 0.799. XGB model is the one 
with intermediate performance (AUC of 0.74), while LR 
shows the worst performance (AUC of 0.68). As for the 
calibration, it can be noticed that there are no substantial 
differences in the performance of the three models; XGB 
is the best-performing model with an ICI of 0.008, while 
the other two models show higher ICI values. In terms of 
95% CI, the lower bound of CNN and LR corresponds to 
the upper bound of XGB.

Results for varying sample sizes/balance
In Fig. 1, we show the dependence of AUC on the sam-
ple size for the three proposed models, both in the imbal-
anced (Fig.  1A) and perfectly balanced (Fig.  1B) cases. 
We can notice that the model that is most affected by the 
sample size is the CNN: for small samples the discrimi-
native performances are very low (lower than 0.70), but 
above 10.000 samples the DL model significantly out-
performs XGB and LR, reaching an AUC of 0.80 in the 
imbalanced case. On the other hand, XGB and LR’s dis-
crimination does not change significantly increasing the 
sample size, while the most visible effect is the greater 
variability for small sample sizes, as obviously expected. 
For these two models the maximum AUC values, 
obtained with the biggest sample size, are respectively 
0.74 and 0.68. Another aspect to note is that balancing 
the training set with RUS to an event ratio of 0.5 (same 
number of AF cases and censored samples) does not 
improve discrimination in any of the models considered, 
also not for small samples sizes.

In Fig.  1 it is also reported the ICI as a function of 
the sample size. Figure 1C represents the case where no 
imbalance corrections were introduced, and we can see 
that increasing the sample size has the effect of reducing 
the ICI (i.e., it improves calibration), for all three models 

Table 1 Descriptive features of the dataset. For all the 
numerical variables median and  (1st,  3rd quartile) are reported. 
We compared “Censored” and “Event” populations with Mann–
Whitney and Chi-squared tests, respectively for continuous 
variables and gender. All comparisons were significant 
(p-value < 0.001)

Censored Event Overall

Age (years) 65 (52, 75) 74 (67, 80) 67 (54, 76)

Gender (Male, %) 49 58 50

P axis (degrees) 58 (43, 69) 60 (42, 73) 58 (43, 69)

P onset (msec) 290 (269, 307) 274 (246, 295) 288 (266, 306)

P offset (msec) 407 (388, 422) 391 (361, 413) 406 (385, 422)

PR interval (msec) 163 (148, 182) 176 (157, 199) 164 (149, 184)

QRS axis (degrees) 37 (1, 64) 16 (-22, 53) 35 (-2, 63)

QRS onset (msec) 453 (449, 458) 451 (445, 457) 453 (449, 458)

QRS offset (msec) 550 (543, 558) 551 (545, 563) 550 (543, 558)

QT interval corrected 
(msec)

408 (395, 424) 420 (404, 439) 409 (396, 426)

T axis (degrees) 54 (36, 68) 59 (34, 78) 55 (36, 69)

T offset (msec) 841 (820, 863) 853 (829, 878) 842 (821, 865)

Heart rate (beats/min) 71 (62, 80) 69 (61, 78) 70 (62, 80)

Table 2 Performances in discrimination and calibration of the 
three models

CNN XGB LR

AUC 0.799 (0.794, 0.805) 0.738 (0.732, 0.744) 0.683 (0.678, 0.688)

ICI 0.014 (0.01, 0.018) 0.008 (0.006, 0.01) 0.014 (0.013, 0.015)
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under study. In this setting, ICI values range from 0.06 
for smaller sample sizes, to approximately 0.01 for the 
biggest sample size considered. When RUS is applied to 
balance the training set (Fig. 1D), ICI takes higher values, 
indicating that models are worse calibrated. The effect 
is very strong for XGB and LR (ICI values between 0.30 
and 0.35 for all the sample sizes considered) and slightly 
weaker for the CNN model (ICI values between 0.1 and 
0.2), but still evident, especially if compared with the 
imbalanced case.

As regards the effects of imbalance corrections using 
different event ratios and fixed size of 100.000 ECGs, 
we found that XGB’s and LR’s discrimination capabili-
ties show very little dependence on the balancing level 
introduced. This is evident in Fig.  2A, where AUCs are 
reported for the three models as a function of the event 
fraction in the training set. Indeed, it can be noticed 
that XGB and LR models show nearly constant AUC 

values, respectively of 0.74 and 0.68. As regards the CNN 
model, also in this case RUS does not allow us to get bet-
ter discriminative performances, rather AUC slightly 
decreases as we increase the level of imbalance correc-
tions, approximately from 0.795 to 0.777. Moving to cali-
bration (Fig. 2B), the effect of balancing the training set 
was very clear: increasing the ratio of positive samples 
with RUS leads to higher values of the ICI, i.e. to less cali-
brated models. The effect is very strong for XGB and LR, 
where ICI values grow linearly from 0.01 to 0.3, and a lit-
tle weaker for the deep learning model (ICI values from 
0.01 to 0.15), but still evident.

Discussion
In this study, we investigated the use of ECG signals for 
the development of a predictive model for new-onset 
AF. This is a critical medical task since the high preva-
lence of AF particularly in the elderly population and the 

Fig. 1 A AUC values for the varying sample sizes (original event fraction in the training set). Error bars represent the 95% CI around the mean. 
B AUC values for the varying sample sizes (perfectly balanced training set). C ICI values for the varying sample sizes (original event fraction 
in the training set). D ICI values for the varying sample sizes (perfectly balanced training set)
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importance of an early diagnosis of AF for prompt pre-
scription of effective treatments to prevent stroke and 
systemic thromboembolism.

Two approaches were considered: first, a ML model 
based on the set of ECG features extracted from the 
ECG and accessible to clinicians; second, the analysis of 
the digital ECG traces using deep learning techniques, 
in a setting of end-to-end analysis. In addition, a logistic 
regression model based on ECG features was estimated 
to provide a benchmark for the comparison of results.

As for the analysis of ECG features, for large sample 
sizes, the XGB algorithm produced a model that out-
performed the benchmark in terms of discrimination 
ability. In particular, the XGB and LR models appeared 
almost equivalent when the number of observations was 
lower than 10.000, but for larger sample sizes XGB dem-
onstrated a clear increase in the level of discrimination, 
resulting however constant in further enlargements of the 
dataset. In contrast, the CNN model showed a discrimi-
native performance highly dependent on the sample size: 
to reach a satisfactory result, the DL model required at 
least 10.000 observations, but for every further increase 
of the size we observed a correspondent improvement 
in discrimination. In terms of calibration, no major dif-
ferences were detected across models when the original 
fraction of cases was used. In general, we observed bet-
ter-calibrated predictions for increasing sample size. Our 
results may suggest that the choice of approach in the 
analysis of ECG should take into account the amount of 
data available for the training, preferring more standard 
models for small datasets, and indicate the well-known 
ability of DL methods to leverage massive datasets.

The second part of our analysis was focused on the 
effect of undersampling on models’ calibration. This 
aspect of the study was stimulated by a recently pub-
lished work by van den Goorbergh et  al. [15] where 
authors examined the effect of imbalance correction on 
the performance of standard and penalized (ridge) LR 
models in terms of discrimination, calibration, and clas-
sification. When developing prediction models for a 
binary outcome with high-class imbalance, undersam-
pling is a standard technique for mitigating the differ-
ence in class frequencies in the training phase, with the 
aim of improving the model’s performance. We analyzed 
the results of models obtained with different levels of 
balancing ratios and failed to detect an improvement in 
discrimination, leading to even worse results in the case 
of CNN. Besides, imbalance correction caused miscali-
brated predictions. Our results are in line with the find-
ings of van den Goorbergh et al. and extend their note of 
caution in using methods for class imbalance correction 
in the case for XGB and CNN models. We observe that 
in our study the CNN resulted more robust compared to 
XGB and LR to the calibration worsening caused by the 
imbalance correction, a counter-intuitive finding with 
respect to what observed by Gou et al. [29].

Concerning the relative performance of our CNN 
approach with respect to the recent literature that inves-
tigated the new onset of AF, Attia et  al. considered a 
set of 649.931 12-lead ECGs of patients ≥ 18  years and 
applies CNN to identify the electrocardiographic signa-
ture of future AF developed within one month from ECG 
examination (8.4% of the cohort). They obtained a very 
accurate model (AUC 0.90 [0.90–0.91]), but the sample 

Fig. 2 A AUC values for the varying event fraction, obtained by balancing the training set with RUS. Error bars represent the 95% CI 
around the mean. B ICI values for the varying event fraction, obtained by balancing the training set with RUS



Page 8 of 10Baj et al. BMC Medical Research Methodology          (2023) 23:169 

size and the time-frame prediction period are clearly very 
different from ours. Another relevant study was carried 
out by Ragunath et  al. [12], in which authors analyzed 
1.6 M 12-lead ECGs from patients aged 18 years or older 
in order to identify individuals at risk of developing AF 
within 1 year. Training a CNN using only ECG traces as 
input, they were able to predict the new onset of AF with 
an AUC of 0.83 (95% CI, 0.83—0.84). Although the sam-
ple size and observational period are different from ours 
also in this case, the performance is comparable with 
our findings (Table  2). No measures of calibration were 
reported in those works.

Our study has some limitations. First, we could not 
validate our findings in an external validation cohort that 
represents one of the most critical steps in the develop-
ment of machine learning models in medicine, a context 
where internal validation is not considered sufficiently 
conservative [30]. Second, for AF subjects we only con-
sidered ECG exams no further than 5  years before the 
date of AF diagnosis. We set such constraints because 
based on clinical knowledge, AF individuals are unlikely 
to show predictive signs of the condition earlier than 
5  years. The methodological choice is also in line with 
previous clinical scores and predictive models that are 
usually evaluated at a time horizon of 5 years of follow-up 
[3]. Third, in order to simplify the prediction task, we did 
not take into account the time-to-event in disease onset. 
A very recent research carried out by Khurshid et al. [31] 
has highlighted the potential of CNN for the prediction 
of the time-to-incident AF and obtained very accurate 
predictions (5-years AUC 0.823 [95% CI, (0.790—0.856]). 
One of the advantages of the time-to-event data is the 
possibility to evaluate the accuracy of the model for any 
time frame from the baseline.

Another possible limitation was the choice of the 
method to correct the class imbalance, as RUS is a very 
naïve approach. The main obstacle here was to deal with 
entire signals. For example, a commonly used method 
that has shown good results in various applications is the 
synthetic minority oversampling technique (SMOTE) 
[32]. SMOTE is an oversampling approach that cre-
ates new, synthetic samples interpolating the original 
minority class samples. This method and its variations 
were developed for tabular data, but an extension in the 
case of signals is not straightforward. Some methods 
to generate synthetic ECG signals were recently pro-
posed [33–36], but it was out of the scope of this work. 
Finally, the fact that only standard ECG features were 
used for the XGB approach is a clear limitation, consid-
ering that several ECG-engineered features were shown 
to be highly predictive for AF detection [4] and AF risk 
prediction [37, 38]. We expect that including this kind of 
feature engineered from the ECG signal could improve 

XBG performances. However, we want to highlight that 
we limited on purpose to the features automatically 
extracted by electrocardiographs since we wanted to con-
sider a setting as simple as possible, where only the ECG 
exam is required so that the prediction process can be 
easily automated without the need for feature engineer-
ing by experts.

Future developments of the present study will include 
the integration of standard tabular information (sex, age, 
clinical information) as predictors in addition to ECG 
traces. According to the findings of recent studies [37, 39], 
new tools are emerging to combine deep representations 
of data obtained from convolutional neural networks (in 
substitution to human feature engineering) with elec-
tronic health records tabular information. In our opinion, 
such methodologies intended to integrate heterogene-
ous data sources could have great potential, in particular 
if extended to time-to-event data analysis, since employ-
ing deep learning models represents the most promising 
and feasible approach to operate in ultrahigh dimensional 
settings, as the case of ECG waveforms. Another future 
development of this work is the application of explaina-
bility techniques to investigate the prediction mechanism 
of our models. Indeed, clinical interpretability is a funda-
mental step in order to build predictive tools for clinical 
usage, which is one of our main goals for the future.

Conclusions
The deep learning model under study showed a discrimi-
native performance highly dependent on the sample size, 
outperforming the two approaches considered based on 
the signal’s extracted features only above a certain sam-
ple size threshold. This result suggests that the choice of 
approach in the analysis of ECG should be based on the 
amount of data available, preferring more standard mod-
els for small datasets.

Imbalance corrections with a random undersampling 
approach did not lead to better discrimination performance, 
rather to an evident drop in models’ calibration. This find-
ing indicates that imbalance correction methods should be 
avoided when developing clinical prediction models.
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