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Abstract 

Background The non‑inferiority test is a reasonable approach to assessing a new treatment in a three‑arm trial. The 
three‑arm trial consists of a placebo, reference, and an experimental treatment. The non‑inferiority is often meas‑
ured by the mean differences between the experimental and the placebo groups relative to the mean differences 
between the reference and the placebo groups.

Methods To cope with possible estimation distortion due to the allowance of heteroskedasticity, we adjust 
the measurement of non‑inferiority by the incorporation of coefficient of variation (CV) of the experimental, the refer‑
ence and the placebo groups. In this research, we propose a generalized p‑value based method (GPV‑based method) 
to facilitate non‑inferiority tests for the means with unknown coefficient of variation in a three‑arm trial.

Results The simulation results show that the GPV‑based method can not only adequately control type I error rate 
at nominal level better but also provide power higher than those from Delta method and the empirical bootstrap 
method, which verifies the feasibility of our adjustment.

Conclusions We revise the measurement of non‑inferiority by deducting the CV of each kind of treatment 
from the average effect of trials. CVs are included in the non‑inferiority explicitly to help prevent possible esti‑
mating distortion if heteroskedasticity is allowed. Through the simulation study, the performance of GPV‑based 
method for facilitating non‑inferiority tests for the means with unknown CV in a three‑arm trial is better than those 
from empirical bootstrap method and Delta method for small, medium and large sample sizes. Hence, the GPV‑based 
method is recommended to be used to conduct the non‑inferiority test for the means with unknown CV in a three‑
arm trial. The GPV‑based method still performs well in non‑normality cases.

Keywords Heteroskedasticity, Coefficient of variation, Generalized p‑value, Non‑inferiority test, Searls’ estimator

Background
The goal of a non-inferiority test is to determine whether 
the experimental treatment is statistically not inferior to 
the active control in a clinical trial. The three-arm clini-
cal trial for non-inferiority test is validated by the rec-
ommendation from U.S. Food and Drug Administration 
(FDA). The three-arm trial, consisting of a placebo, ref-
erence, and an experimental treatment, shows the sub-
stantial superiority of the comparator over the placebo 
which is assessed prior to the comparison of reference 
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and new experiment treatment [1]. Pigeot et al. [2] for-
mulated the problem of non-inferiority test in three-
arm trial as a ratio, which is the mean in experimental 
groups to the mean in reference groups, while deducting 
the mean in placebo groups respectively. Under a given 
threshold α0 (say 0.8), if the alternative hypothesis holds 
true, then it implies that the efficacy of the experimen-
tal group relative to that of the placebo group is more 
than α0×100% of the efficacy of the reference compound 
relative to that of the placebo group. Under normality 
and homogeneous variance assumption, Pigeot et al. [2] 
developed a test statistic in t-distribution to construct 
the confidence interval for the hypothesis of ratio by 
Fieller’s method. Meanwhile, Hasler et al. [3] derived a 
t-distributed test statistic under the variance heterosce-
dasticity assumption and the confidence intervals based 
on Fieller’s method.

In the above literatures, the test statistic of a non-infe-
riority test in the three-arm trial is the sample mean dif-
ference between the experimental and placebo groups 
denominated by that between the reference and placebo 
groups in the three-arm trial. It’s well perceived that 
the sample mean is an unbiased estimator for popula-
tion mean. Casting aside the unbiasedness, Searls [4] 
proposed an estimator for mean that includes a known 
coefficient of variation (CV) in advance, which has a 
minimum mean square error. In Wu and Hsieh [5], 
through estimating the population mean of treatment 
effects in a three-arm rial by Searls’ estimator rather 
than traditional simple sample mean, they show that 
Searls’ estimator performs better, in terms of empiri-
cal size and empirical power. Thangjai et al. [6] derives 
the expectation and variance of Searls’ estimator (with 
unknown CV). Moreover, Thangjai et  al. [6] also con-
structed the confidence intervals for mean and differ-
ence of means of normal distributions with unknown 
coefficients of variation. In this study, we try to use the 
concept of Thangjai et al. [6] to propose the non-inferi-
ority test procedure in the three-arm trial in which the 
non-inferiority is measured as the mean difference with 
unknown coefficient of variation between the experi-
mental and the placebo groups relative to that between 
the reference and the placebo groups. Since the assump-
tion of heterogeneous variances complicates the dis-
tributions of estimators of the difference between the 
mean with unknown CV of the experimental and the 
placebo groups relative to that between the reference 
and the placebo groups, it is a challenge to measure 
the non-inferiorities of new treatments in the three-
arm clinical trial. Consequently, we propose the gen-
eralized p-value based method (hereafter GPV-based 
method) that is the statistical test procedure to assess 
the non-inferiority test in the three-arm trial under 

heterogeneous variances assumption with unknown 
coefficient of variation of treatments.

Typically, in the three-arm non-inferiority tests, variances 
of the effects of trials are assumed to be homogeneous. But 
if the variances are heterogeneous, the impacts of heter-
oskedasticity on the test results are evaluated less times. 
The heteroskedasticity is an issue frequently encountered 
in the field of econometrics, which results in the problem 
of biased variance estimates and hence distorts the results 
of hypothesis tests such as CHOW’s coefficient stability 
test, Student’s t-test, and Fisher’s F-test [7]. Though ear-
lier researches use the tests on variances to detect whether 
heteroskedasticity exists in the model, Li and Yao [8] and 
Tovohery et al. [7] use the coefficient of variation (CV) to 
detect such problem. Inspired by Searls [4], in this research, 
we explicitly incorporate CV into the mean of the observa-
tions of trials, that is, substituting the population mean by 
Searls’ estimator in measuring the non-inferiority, to miti-
gate the impacts of heteroskedasticity on the test results.

Tsui and Weerahandi [9] explicitly defined the gener-
alized test variables (GTVs), showing that the general-
ized p-value (GPV) is an exact probability in an extreme 
region accordingly. Based on their contribution, Tsui and 
Weerahandi [9] demonstrated that how small sample 
solution can be provided with GPVs to the cases where 
nuisance parameters emerge such that testing proce-
dures are difficult to be conducted. Since the proposal 
of the idea of GPVs, they are applied to several hypoth-
esis test subjects. For instance, Liao et al. [10, 11] applied 
the GPV to tolerance intervals; McNally et al. [12] con-
ducted individual and population bioequivalence tests 
by GPVs; Mathew and Webb [13] constructed the GPVs 
and GCIs for variance components; Gamage [14] applied 
GPVs to MANOVA; with the concept of GPVs, Li et al. 
[15] measured the difference in paired partial area under 
the receiver operating characteristic (ROC) curves to 
construct a non-inferiority test for diagnostic accuracy. 
Gamalo et al. [16] proposed a GPV approach to assess-
ing the non-inferiority in a three-arm trial, in which the 
hypothesis test taken into account is the same as those in 
Hasler et al. [3].

The article is organized as follows. The statistical prob-
lem of the non-inferiority hypothesis test with unknown 
CV in three-arm trial is formulated and the test pro-
cedures implemented in bootstrap method and Delta 
method are derived in the second part of the article. In 
addition, we propose the GPV-based test for the ratio 
of mean differences which explicitly incorporating the 
unknown CV to assess the non-inferiority in a three-
arm trial in the second part of the article. Furthermore, 
the empirical size and power of the proposed testing 
procedures are examined in simulation studies under a 
variety of scenarios. The proposed method is applied to 
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a numerical example in the literature. Conclusion and 
some remarks are drawn in finally.

Methods
Let the clinical observations of experimental treatment, 
reference, and placebo groups be respectively denoted as 
XE,i,XR,j and XP,k , which are mutually independent and 
normally distributed with expectations µE , µR and µP , and 
unknown variances σ 2

E,σ 2
R and σ 2

P , respectively. Since the 
variance in the reference group is the gold standard in the 
three-arm trial, to allow for a fair standard of non-inferi-
ority test, in this study, we assume that the variance of the 
experimental treatment group is equal to that of the refer-
ence group, but which is heterogeneous to that of the pla-
cebo group. Specifically, XE, i ∼ N

(
µE , σ

2
E

)
, i = 1, . . . , nE ; 

XR, j ∼ N
(
µR, σ

2
R

)
, j = 1, . . . , nR ; and XP,k ∼ N

(
µP , σ

2
P

)
,

k = 1, . . . , nP , where σ 2
E = σ 2

R , and nE,nR and nP can be 
unequal. Firstly, establishing the statistical testing problem

where θE =
nEµE

nE+
(
σ 2
E

/
µ2
E

) , θR =
nRµR

nR+
(
σ 2
R

/
µ2
R

) , θP =
nPµP

nP+
(
σ 2
P

/
µ2
P

) , 

where σ 2
E = σ 2

R and δ0 is a relevant non-inferiority thresh-
old. For ξ0 ∈ (0, 1) , we specify δ0 as a proportion of the 
difference between θE and θR by δ0 = (ξ0 − 1)(θR − θP) . 
Then rewriting the hypothesis based on the ratio of the 
differences in means with unknown CV yields

where ξ0 represents the effectiveness threshold between 
0 and 1. The value of θR − θP is necessarily greater than 0. 
Because the threshold value ξ0 is defined as a proportion 
of the difference θR − θP , it is important to select proper 
reference or positive control. In this way, the evaluation 
of the non-inferiority in the three-arm trial is specified as 
a ration of difference in population mean with unknown 
CV, as is discusses in the background of the text.

Empirical bootstrap method
The bootstrap method has become a widely used tech-
nique for statistical inference problem in which either the 
underlying distributional assumptions are not normal dis-
tribution, or the sample statistic is not feasible to derive its 
distribution under the null hypothesis (Efron and Tibshi-
rani [17]). Now that the variance of experimental treatment 
group is equal to that of reference group (which is hetero-
geneous to that of the placebo group), we use the residual 
method to construct the empirical bootstrap procedure 
to assess the non-inferiority of a new treatment in a three-
arm trial. The residual method is somewhat similar to the 
percentile method, except that it is based on the bootstrap 

H0 : θE − θR ≤ δ0 versus H1 : θE − θR > δ0

(1)H0 :
θE − θP

θR − θP
≤ ξ0 versusH1 :

θE − θP

θR − θP
> ξ0

distribution of residuals from the original estimate [18]. 
The empirical bootstrap procedure can be obtained as 
follows.

Step1: Suppose that xE = xE,1, . . . , xE,nE
,xR =

(
xR,1, . . . , xR,nR

)
 and xP =

(
xP,1, . . . , xP,nP

)
 

denote the clinical observations for experimental, refer-
ence and placebo groups, respectively. Generate a boot-
strap sample x∗b =

(
x
∗b
E , x∗bR , x∗bP

)
 with replacement 

from the original sample x = (xE , xR, xP) and draw 
samples with replacement from each group with sample 
sizes nE , nR and nP , respectively.
Step 2: Compute ξ̂∗b = θ̂∗bE −θ̂∗bP

θ̂∗bR −θ̂∗bP
 from data x∗b and 

e∗b = ξ̂∗b − ξ̂  is calculated for each bootstrap sample, 
where ξ̂ is the estimate from the original data.
Step 3: Repeat step1 and step2 process b = 1, · · · ,B 
times independently.
Step 4: Let e∗b(1−α)100% be the (1− α)100% quan-
tile of the bootstrap values of e∗b , and compute the 
L
ξ̂b

= ξ̂ − e∗b(1−α)100%.

Then, non-inferiority can be claimed if Lξ̂b > ξ0.

Delta method
Let ξ1 = θE − θP be the difference of population mean with 
unknown CV in experimental group and placebo group 
and let ξ2 = θR − θP be the difference of population mean 
with unknown CV in reference group and placebo group. 
Therefore, the expectations and variances of ξ̂1 and ξ̂2 can 
be obtained by Thangjai [6]. The Delta method is proposed 
in Dorfman [19]. Such method is the result of the applica-
tion of the concept of Taylor’s theorem (series expansion) 
to construct the normal distribution of the estimators in 
complex forms asymptotically. Accordingly, the threshold, 
ξ̂ = ξ̂1

ξ̂2
 is distributed asymptotically as.

where

When the null hypothesis holds, for the non-inferiority 
hypothesis test in terms of population mean with unknown 
CV as shown in (1), the rejection region constructed under 
Delta method is.

ξ̂ ∼
asymp

N
(
E(ξ̂ ) , Var(ξ̂ )

)
,

E(ξ̂ ) = E

(
ξ̂1

ξ̂2

)
≈ µξ1

µξ2

,

Var(ξ̂ ) = Var

(
ξ̂1

ξ̂2

)
≈

(
µξ1

µξ2

)2
(
Var(ξ̂1)

µ2
ξ1

+ Var(ξ̂2)

µ2
ξ2

− 2
Cov(ξ̂1, ξ̂2)

µξ1µξ2

)
.
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where zα denotes the upper α critical point of the stand-
ard normal distribution.

The GPV‑based method
Suppose X to be the random variable whose PDF is 
f (X; ζ ) , where ζ = (ξ , η) . The ξ is parameter of interest 
such that ξ = θE−θP

θR−θP
 and η denotes a vector of nuisance 

parameters. Let x be the observed value of the random var-
iable X . The statistic T = T (X; x, ζ ) is said to be a general-
ized test variable if the following three properties hold.

Property A: Fixing x and let ζ = (ξ0, η) , the distribu-
tion of T (X; x, ζ ) is independent of nuisance param-
eters η.
Property B: The observation of T (X; x, ζ ) , 
tobs = T (x; x, ζ ) , does not dependent on unknown 
parameters.
Property C: For given x and η , P(T (X; x, ζ ) ≥ t) is 
either stochastically increasing or decreasing in ξ for 
any given t.

Without loss of generality, considering the following 
hypothesis: to test H0 : ξ ≤ ξ0 versus H1 : ξ > ξ0 , where 
ξ0 is a specified value. If T  is stochastically increasing in ξ , 
then the generalized p-value can be defined as.

where tobs = T (x; x, ξ0, η).
For the test with a significance level α , if p < α , then we 

have confidence to reject H0 . The generalized test variable 
T  is often computed by using Monte-Carlo algorithm, due 
to the complexity of the exact distribution.

In the following, we use the concept of generalized piv-
otal quantity (GPQ) by Weerahandi [20] to develop the 
required generalized test variables (GTVs) to assessment 
non-inferiority of a new treatment in a three-arm trial 
measured as a ratio of difference in mean with CV of each 
treatment. For developing the GTV for hypothesis test in 
(1), we first define GPQs for µE, µR, µP,σ 2

E, σ 2
R, σ 2

P, θE, θR and 
θP as

CDelta method =
{
ξ̂ − zα

√
Var(ξ̂ ) > ξ0

}
,

p = sup
ξ≤ξ0

P(T (X; x, ξ , η) ≥ tobs) = P(T (X; x, ξ0, η) ≥ tobs) = P(T ≥ tobs|ξ0),

(2)RµE = xE − ZE

√
(nE − 1)s2pooled

nEUE

(3)RµR = xR − ZR

√
(nR − 1)s2pooled

nRUR

Note that ZE ∼ N (0, 1) , ZR ∼ N (0, 1) , ZP ∼ N (0, 1) , 
UE ∼ χ2(nE − 1) , UR ∼ χ2(nR − 1) , UP ∼ χ2(nP − 1) , 
xE , xR and xP be the observed values of XE , XR and XP , 

s2E , s2R and s2P be the observed values of S2E , S2R and S2P . In 
addition, we use pooled estimator S2pooled to estimate both 
σ 2
E and σ 2

R . The pooled estimator is defined as 
S2pooled =

(
(nE − 1)S2E + (nR − 1)S2R

)/
(nE + nR − 2) , and 

the s2pooled be the observed value of S2pooled . Moreover, ZE , 
ZR , ZP , UE , UR and UP are mutually independent.

The GPQ of ξ = θE−θP
θR−θP

 can thus be defined as

Hence, we can construct a GTV for ξ given by

Given the observed data, the observed value of Rξ 
is equal to ξ and Rξ has the distribution that is free 
of parameters. Hence, the distribution of Tξ does not 
depend on nuisance parameters for any given value of 
ξ = ξ0 , and that the observation of Tξ is equal to zero. 
Consequently, Property A and Property B are satisfied. 

(4)RµP = xP − ZP

√
(nP − 1)s2P

nPUP

(5)Rσ 2
E
=

(nE − 1)s2pooled

UE

(6)Rσ 2
R
=

(nR − 1)s2pooled

UR

(7)Rσ 2
P
= (nP − 1)s2P

UP

(8)RθE = nERµE

nE + Rσ 2
E

/
µ2
E

(9)RθR = nRRµR

nR + Rσ 2
R

/
µ2
R

(10)RθP = nPRµP

nP + Rσ 2
P

/
µ2
P

(11)Rξ = R θE−θP
θR−θP

= RθE − RθP

RθR − RθP

(12)Tξ = T (XE ,XR,XP; xE , xR, xP , ξ) = Rξ − ξ
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Furthermore, the distribution function of Tξ can be 
expressed as

Since the distribution function of Tξ is stochasti-
cally increasing in ξ , Property C is also satisfied. By 
definition, Tξ is a GTV of ξ . To test the hypothesis 
H0 : ξ ≤ ξ0 versus H1 : ξ > ξ0 , the following Monte-
Carlo algorithms are provided to derive the required GPV.

Step 1: Choose Monte-Carlo samples large enough, 
e.g., H = 1000010000 . For each h , 1 ≤ h ≤ H , gen-
erate three pairs of random outcomes from mutually 
independent chi-square distributions, UE , UR and UP 
(with nE − 1 , nR − 1 and nP − 1 degrees of freedom) 
respectively, and standard normal variables ZE , ZR 
and ZP.
Step 2: Use (2)- (10) to calculate RµE

 , RµR , RµP , Rσ 2
E
 , 

Rσ 2
R
 , Rσ 2

P
 , RθE , RθR and RθP.

Step 3: Calculate Rξ ,h from (11).
Step 4: Finally, Tξ ,h can be calculated from (12), 
given ξ0.

Since Tξ is stochastically increasing in ξ and the 
observed value of Tξ is equal to zero, the GPV is thus esti-
mated by p =

∑H
h=1 I

(
Tξ ,h ≤ 0

)/
H . Under significance 

level α , the null hypothesis H0 : θE−θP
θR−θP

≤ ξ0 in (1) is 
rejected whenever p < α.

Results
To evaluate the efficacy of the proposed method, three 
sets of simulation studies are conducted. First, the 
empirical sizes from GPV-based method are compared 
with those from the Delta method and empirical boot-
strap method in various finite sample sizes. Second, we 
evaluate the empirical power among the three tests and 
compare the performance of the proposed GPV-based 
method with that of other two tests. Third, we show 
that GPV-based method can be well applied to non-
normality cases.

Simulation study I: type I error rate
We conducted a simulation study of the type I error rates 
under GPV-based, Delta and empirical bootstrap meth-
ods. The non-inferiority limit is chosen as ξ0= 0.8 . We 
consider the following three cases of �=µR − µP : (i) 
� = 9 ; (ii) � = 15 and (iii) � = 20 . We consider the allo-
cations of 3:2:1 of the total sample size n for experimen-
tal, reference and placebo group, so the total sample sizes 
will choose as follows: n = 60, 90,120,480 and 900, respec-
tively. For cases (i)-(iii), the population mean of placebo 
group ( µP ) is set to be 16.5. The population mean of 

(13)P
(
Tξ ≤ t

)
= P

(
Rξ ≤ t + ξ

)

experimental group is µE = ξ0 ×�+ µP under all sce-
narios. For case (i)-(iii), we consider setting τR = σ 2

R

/
σ 2
E 

to be 1 and τP = σ 2
P

/
σ 2
E to be 0.5, 1.0 and 2.0, respec-

tively. In this way, we keep variances of experimental 
and reference treatments homogeneous, while allowing 
heteroskedasticity for placebo group. In this simulation 
study, the standard deviation of placebo group ( σP ) is set 
to be 7.5, and the standard deviation of reference group 
( σR ), as well as the standard deviation of experimen-
tal group ( σE ), are both equal to σp

/√
τp . In addition, 

given any pair of (µi, σi) , i = E,R,P , θi and hence θE − θP , 
θR − θP can be derived.

Under each parameter specification, the simulation 
data are independently generated 10,000 times. The 
empirical size and power are computed by the pro-
portion of the 10,000 simulated p-values that are less 
than 5% (significance level). Given the above nominal 
significance level and simulation random samples, if 
a testing procedure can adequately control the size at 
the 5% nominal level, then the empirical sizes should 
fall into (0.0457, 0.0543). In this simulation study, for 
each sample, 5000 GPQs are constructed, and 1000 
bootstrap samples are drawn. We display the simula-
tion results in Table 1.

Table 1 presents the results of the type I error rates sim-
ulation based on the ratio of population mean differences 
with unknown coefficients of variation for assessing non-
inferiority of a new treatment in a three-arm trial in the 
presence of heteroscedasticity with non-inferiority limit 
of 0.8 under normal assumption. The simulation results 
lead us to the following conclusions.

(1) In Table 1, the range of the type I error rates of the 
GPV-based method is given by (0.0475,0.0518). 
This range is within (0.0457, 0.0543), and most of 
the type I error rates of the GPV-based method are 
quite close to nominal value of 0.05. Therefore, the 
test procedure of the GPV-based method can main-
tain type I error rate close to the nominal level of 
5% adequately.

(2) In addition, from Table  1, the range of the type I 
error rates from Delta method is (0.0001,0.0058). 
The ranges of the type I error rates of the Delta 
method are all outside the range of (0.0457, 
0.0543), and all of which are far less than nominal 
value of 0.05. One may observe that Delta method 
is quite conservative. However, in some extreme 
cases (not shown in Table  1), such as τp = 0.01 , 
and n = 96, 000 , Delta method controls type I 
error rate much better, and the difference in power 
between GPV-based and Delta methods shrinks. 
Apparently, the extreme cases are infeasible for 
practical clinical application.
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(3) On the other hand, the range of the type I error 
rates from the empirical bootstrap method is 
(0.0001,0.0477). There are only 5 out of 45 (11.1%) 
empirical sizes from the empirical bootstrap method 
fall within (0.0457, 0.0543). As a result, the test pro-
cedure by the empirical bootstrap method is quite 
conservative, except when µR − µP = 20 , n ≥ 480 , 
τR = 1 and τP = 2 . As the mean difference between 
reference and placebo groups gets larger, the boot-
strap method controls type I error rate better.

Taken as a whole, the GPV-based method performs 
extremely well in most cases, and it clearly controls the 
sufficient the type I error rates better, especially in the 
small sample cases.

Simulation study II: empirical power
To study the empirical power of the GPV-based method, 
we consider a simulation in the case of µE − µP = 9 and 
µE − µP = 20 ; τR = 1 and τP = 2 ; sample size = 60,120 
and 480. We allocate total sample for experimental, 
reference and placebo group by nE : nR : nP = 3: 2: 1. The 
non-inferiority limit is also chosen as ξ0 = 0.8 , and the 
significance level is set to be 0.05 as well. For each com-
bination of parameter specification, 10,000 random sam-
ples are generated. For each random sample, 5000 GPQs 
are constructed, and 1000 samples are drawn for boot-
strap method. The results of the empirical power curves 
are provided in Fig. 1.

Figure  1 provides the power of the simulation by 
GPV-based method, the Delta method, and the empiri-
cal bootstrap method. In Fig.  1, when the mean differ-
ence of reference and placebo groups is 9, the GPV-based 
method is uniformly more powerful than the Delta 
method and the empirical bootstrap method. Figure  1 
shows the power curves as a function of ξ = θE−θP

θR−θP
 for 

total sample sizes 60,120 and 480, respectively. The 
power increases with the increasing values of ξ and with 
the increasing total sample sizes. However, when the 
mean difference of reference and placebo groups is 20, 
the empirical power curves of the GPV-based method 
and the empirical bootstrap method quite overlap when 
ξ is larger than 0.9. Therefore, when the mean difference 
of reference and placebo groups is equal to 9, the perfor-
mance of empirical power by using GPV-based method is 
better than those of the Delta method and the empirical 
bootstrap method. On the other hand, the performance 
of the empirical bootstrap method is as good as that of 
GPV-based method when the mean difference of refer-
ence and placebo groups is equal to 20 and sample size 
exceeds 60. In sum, the GPV-based method performs rel-
atively better when the mean difference of reference and 
placebo groups and the sample size are small.

Table 1 The type I error rates for testing non‑inferiority with 
non‑inferiority limit = 0.8 in τR = 1 , µR − µP = 9, 15 and 20, 
respectively

n The total sample sizes, GP The GPV-based method, DM The Delta method and 
EB The empirical bootstrap method

µR − µP τP n GP DM EB

9 0.5 60 0.0497 0.0001 0.0001

90 0.0503 0.0001 0.0003

120 0.0506 0.0002 0.0009

480 0.0511 0.0016 0.0082

900 0.0518 0.0038 0.0264

1.0 60 0.0486 0.0001 0.0015

90 0.0493 0.0002 0.0018

120 0.0498 0.0002 0.0045

480 0.0501 0.0003 0.0318

900 0.0506 0.0004 0.0436

2.0 60 0.0488 0.0001 0.0091

90 0.0499 0.0001 0.0127

120 0.0504 0.0002 0.0264

480 0.0506 0.0002 0.0382

900 0.0511 0.0003 0.0436

15 0.5 60 0.0475 0.0008 0.0018

90 0.0481 0.0009 0.0055

120 0.0482 0.0019 0.0091

480 0.0499 0.0036 0.0273

900 0.0502 0.0043 0.0364

1.0 60 0.0493 0.0004 0.0155

90 0.0501 0.0004 0.0191

120 0.0505 0.0007 0.0218

480 0.0508 0.0007 0.0423

900 0.0514 0.0015 0.0445

2.0 60 0.0500 0.0001 0.0327

90 0.0503 0.0002 0.0364

120 0.0504 0.0002 0.0373

480 0.0507 0.0003 0.0455

900 0.0512 0.0004 0.0473

20 0.5 60 0.0495 0.0021 0.0073

90 0.0503 0.0025 0.0127

120 0.0511 0.0032 0.0164

480 0.0514 0.0047 0.0355

900 0.0516 0.0058 0.0464

1.0 60 0.0487 0.0006 0.0264

90 0.0493 0.0010 0.0291

120 0.0504 0.0010 0.0303

480 0.0510 0.0012 0.0455

900 0.0513 0.0015 0.0467

2.0 60 0.0486 0.0001 0.0418

90 0.0490 0.0001 0.0436

120 0.0502 0.0002 0.0445

480 0.0509 0.0003 0.0464

900 0.0515 0.0005 0.0477
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Simulation study III: non‑normality cases
In this section, we consider two non-normal distributions, 
i.e.,log-normal and gamma distributions to study the 
robustness of the GPQ-based method. When the proba-
bility distribution of the population is assumed to be log-
normal distribution, let Xi , i = E, R, P be mutually 
independent with means ln(µi)− 1

2
ln

(
σ 2
i

µ2
i

+ 1

)
 and 

unknown variances ln
(

σ 2
i

µ2
i

+ 1

)
 , respectively. When Xi 

belongs to the gamma distribution, denote Xi by 

gamma

(
γi1 = µ2

i

σ 2
i

, γi2 = σ 2
i
µi

)
, i = E, R, P , where γi1 

and γi2 represent the shape and scale parameters, respec-
tively. The same simulation parameters such as µR − µPτR
,τP,n are the same as those in Simulation study I and II. 
The simulation results of the type I error rates are dis-
played in Tables  2 and 3, and the simulation results of 
empirical powers are presented in Table 4.

From Tables 2 and 3, when data follow log-normal or 
gamma distribution, the performance of GPV-based 
method can more appropriately maintain the type I error 
rate near the nominal level of 0.05 than the Delta method 
and the empirical bootstrap method do. In addition, the 
type I error rate of the Delta method is quiet conserva-
tive as well. Furthermore, under µR − µP = 20 , τR = 1 , 
τP = 2 and the total sample size is greater than 900, the 
type I error rate derived from the empirical bootstrap 

method approaches the claimed significance level of the 
non-inferiority test. Moreover, in Table  4, regardless of 
the sample size and distributions, the empirical power 
performance of GPV-based method is more powerful 
than that of the Delta method and the empirical boot-
strap method, especially under the µR − µP = 9 , τR = 1 , 
τP = 2 and the total sample size is less than 120.

Numerical example: evaluation of the mutagenicity
We adopt the mutagenicity data set in Hauschke et  al. 
[21], which are published by Adler and Kliesch [22] from 
a micronucleus assay on hydroquinone implementing 
a positive control of 25  mg/kg cyclophosphamide. The 
results for male mice at 24 h sampling time are given in 
Table 5.

Through comparing the difference between a 
dose group and a vehicle control with the difference 
between the positive control and the vehicle control, 
the non-inferiority test can also be adopted to verify 
the safety in toxicological experiments. Therefore, 
the above mutagenicity data can be evaluated by such 
non-inferiority test. Hothorn and Hauschke [23] used 
the concept of the acceptable maximal safe dose by 
identifying the highest dose that is non-inferior to the 
vehicle control, and as a result all other levels of dose 
below the highest one are also non-inferior. Under the 
assumption of normality and homogeneous variance, 

Fig.1 The power functions of GPV‑based method (GP), Delta (Delta method) and Empirical bootstrap method (EB). Panel (A) represents the power 
functions when µR − µP = 9 and n = 60 ; Panel (B) represents the power functions when µR − µP = 9 and n = 120 ; Panel (C) represents 
the power functions when µR − µP = 9 and n = 480;Panel (D) represents the power functions when µR − µP = 20 and n = 60 ; Panel (E) 
represents the power functions when µR − µP = 20 and n = 120 ; Panel (F) represents the power functions when µR − µP = 20 and n = 480 . The 
significance level of the non‑inferiority test is set to be 0.05
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Table 2 Under Log‑normal distribution, the type I error rates for testing non‑inferiority with non‑inferiority limit = 0.8 in τR = 1 , 
µR − µP = 9, 15 and 20, respectively

n The total sample sizes, GP The GPV-based method, DM The Delta method, and EB the empirical bootstrap method

Distribution µR − µP τP n Method

GP DM EB

Log‑Normal 9 0.5 60 0.0462 0.0002 0.0003

90 0.0477 0.0002 0.0009

120 0.0482 0.0003 0.0027

480 0.0493 0.0027 0.0136

900 0.0504 0.0036 0.0245

1.0 60 0.0477 0.0006 0.0018

90 0.0478 0.0008 0.0064

120 0.0491 0.0010 0.0073

480 0.0493 0.0012 0.0327

900 0.0498 0.0015 0.0418

2.0 60 0.0477 0.0001 0.0145

90 0.0493 0.0002 0.0164

120 0.0500 0.0005 0.0191

480 0.0505 0.0008 0.0418

900 0.0509 0.0011 0.0427

15 0.5 60 0.0458 0.0020 0.0027

90 0.0475 0.0023 0.0082

120 0.0478 0.0029 0.0145

480 0.0485 0.0047 0.0373

900 0.0491 0.0054 0.0382

1.0 60 0.0465 0.0013 0.0182

90 0.0478 0.0016 0.0300

120 0.0491 0.0019 0.0418

480 0.0497 0.0020 0.0473

900 0.0500 0.0023 0.0489

2.0 60 0.0484 0.0002 0.0291

90 0.0492 0.0003 0.0355

120 0.0499 0.0005 0.0400

480 0.0501 0.0012 0.0428

900 0.0505 0.0015 0.0437

20 0.5 60 0.0457 0.0038 0.0118

90 0.0461 0.0046 0.0182

120 0.0479 0.0055 0.0264

480 0.0486 0.0059 0.0436

900 0.0495 0.0065 0.0482

1.0 60 0.0485 0.0011 0.0300

90 0.0493 0.0023 0.0345

120 0.0495 0.0026 0.0355

480 0.0496 0.0030 0.0464

900 0.0502 0.0040 0.0479

2.0 60 0.0491 0.0003 0.0155

90 0.0495 0.0007 0.0173

120 0.0496 0.0010 0.0191

480 0.0500 0.0013 0.0432

900 0.0503 0.0015 0.0473
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Table 3 Under Gamma distribution, the type I error rates for testing non‑inferiority with non‑inferiority limit = 0.8 in τR = 1 , µR − µP = 
9, 15 and 20, respectively

n The total sample sizes, GP The GPV-based method, DM The Delta method and EB The empirical bootstrap method

Distribution µR − µP τP n Method

GP DM EB

Gamma 9 0.5 60 0.0489 0.0001 0.0001

90 0.0497 0.0001 0.0009

120 0.0500 0.0001 0.0036

480 0.0506 0.0013 0.0236

900 0.0509 0.0028 0.0373

1.0 60 0.0493 0.0001 0.0009

90 0.0501 0.0002 0.0027

120 0.0506 0.0002 0.0045

480 0.0512 0.0003 0.0209

900 0.0516 0.0003 0.0273

2.0 60 0.0486 0.0001 0.0109

90 0.0495 0.0001 0.0136

120 0.0499 0.0001 0.0191

480 0.0505 0.0002 0.0424

900 0.0509 0.0002 0.0451

15 0.5 60 0.0483 0.0008 0.0027

90 0.0499 0.0009 0.0036

120 0.0496 0.0019 0.0082

480 0.0510 0.0030 0.0300

900 0.0513 0.0048 0.0364

1.0 60 0.0485 0.0005 0.0145

90 0.0499 0.0006 0.0173

120 0.0502 0.0006 0.0273

480 0.0509 0.0008 0.0409

900 0.0514 0.0009 0.0418

2.0 60 0.0495 0.0001 0.0282

90 0.0496 0.0001 0.0318

120 0.0506 0.0001 0.0427

480 0.0511 0.0002 0.0433

900 0.0516 0.0003 0.0472

20 0.5 60 0.0482 0.0027 0.0073

90 0.0500 0.0036 0.0164

120 0.0505 0.0034 0.0191

480 0.0508 0.0042 0.0305

900 0.0509 0.0056 0.0436

1.0 60 0.0487 0.0004 0.0200

90 0.0500 0.0009 0.0227

120 0.0501 0.0010 0.0400

480 0.0508 0.0011 0.0418

900 0.0515 0.0015 0.0482

2.0 60 0.0484 0.0001 0.0318

90 0.0486 0.0002 0.0409

120 0.0500 0.0004 0.0415

480 0.0509 0.0006 0.0435

900 0.0515 0.0011 0.0484
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Hauschke et  al. [21] built confidence intervals for the 
ratio of the difference between the dose groups and 
the vehicle control to the difference between a posi-
tive control and the vehicle control, in which the safety 
threshold is set to be 0.5. Hence, the hypothesis of the 
corresponding non-inferiority test can be character-
ized as follows.

where the dose group is taken as the experimental group, 
the vehicle control taken as the placebo group and the 

(14)H0 :
θE − θP

θR − θP
≥ 0.5 versusH0 :

θE − θP

θR − θP
< 0.5

Table 4 Under non‑normal distribution, the empirical powers of testing non‑inferiority with non‑inferiority limit = 0.8 in τR= 1,τP = 2

n The total sample sizes, GP The GPV-based method, DM The Delta method and EB The empirical bootstrap method

n Distribution Method Empirical Power

µR − µP = 9 µR − µP = 15 µR − µP = 20

ξ = 1.0 ξ = 1.2 ξ = 1.4 ξ = 1.0 ξ = 1.2 ξ = 1.4 ξ = 1.0 ξ = 1.2 ξ = 1.4

60 Log‑Normal GP 0.3079 0.7160 0.8848 0.6654 0.9851 0.9989 0.8611 1.0000 1.0000

DM 0.0152 0.0909 0.2677 0.0865 0.4726 0.8104 0.2192 0.7912 0.9597

EB 0.1191 0.3382 0.5064 0.5418 0.9236 0.9418 0.8355 0.9945 0.9982

Gamma GP 0.3094 0.7365 0.9272 0.6693 0.9923 1.0000 0.8633 1.0000 1.0000

DM 0.0028 0.0293 0.1402 0.0381 0.4006 0.8595 0.1407 0.8306 0.9954

EB 0.0709 0.2855 0.5027 0.5600 0.9609 0.9891 0.8473 1.0000 1.0000

90 Log‑Normal GP 0.4379 0.8865 0.9702 0.8122 0.9998 0.9999 0.9557 1.0000 1.0000

DM 0.0193 0.1580 0.4436 0.1358 0.6888 0.9431 0.3426 0.9290 0.9933

EB 0.2055 0.5691 0.7400 0.7500 0.9873 0.9891 0.9527 1.0000 1.0000

Gamma GP 0.399 0.9124 0.9938 0.8187 1.0000 1.0000 0.9570 1.0000 1.0000

DM 0.0049 0.0692 0.3275 0.0683 0.6989 0.9909 0.2578 0.9823 1.0000

EB 0.1836 0.5627 0.7852 0.7491 1.0000 1.0000 0.9536 1.0000 1.0000

120 Log‑Normal GP 0.5436 0.9553 0.9905 0.9015 1.0000 1.0000 0.9871 1.0000 1.0000

DM 0.0227 0.2394 0.5978 0.1973 0.8442 0.9850 0.4811 0.9832 0.9997

EB 0.3073 0.7709 0.8609 0.8891 0.9982 1.0000 0.9836 1.0000 1.0000

Gamma GP 0.5501 0.9717 0.9912 0.9030 1.0000 1.0000 0.9880 1.0000 1.0000

DM 0.0069 0.1382 0.5777 0.1279 0.9057 1.0000 0.4276 0.9990 1.0000

EB 0.3082 0.8109 0.9173 0.8818 1.0000 1.0000 0.9818 1.0000 1.0000

480 Log‑Normal GP 0.9716 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DM 0.2765 0.9837 1.0000 0.9365 1.0000 1.0000 0.9993 1.0000 1.0000

EB 0.9709 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Gamma GP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DM 0.2349 0.9957 1.0000 0.9607 1.0000 1.0000 0.9999 1.0000 1.0000

EB 0.9709 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

900 Log‑Normal GP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DM 0.7449 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

EB 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Gamma GP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DM 0.7498 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EB 0.9982 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5 Summary statistics for the number of micronuclei 
per animal and 2000 scored cells for the vehicle control, four 
doses of hydroquinone and the positive control of 25 mg/kg 
cyclophosphamide

Treatment group Mean Standard 
deviation

Sample size

Vehicle control 2.57 1.27 7

30 mg/kg 3.80 1.10 5

50 mg/kg 6.20 1.48 5

75 mg/kg 14.0 3.94 5

100 mg/kg 20.0 4.06 5

Positive control 25.0 8.91 4
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positive control taken as the reference group. The upper 
95% confidence limits for θE−θP

θR−θP
 calculated from GPV-

based method, the Delta method, and the empirical boot-
strap method are presented Table 6.

From Table 6, one can see that safety is attainable for 
the two lower doses, therefore the maximal safe dose is 
50 mg/kg. The two higher levels of dose, 75 and 100 mg/
kg, reveal an unacceptable increase. Cases where the 
variance heterogeneity is taken into account in the GPV-
based method, the Delta method, and the empirical boot-
strap method, the results do not change.

Conclusions and discussions
We propose the GPV-based method to conduct the 
non-inferiority test by the difference of means with 
unknown coefficient of variations between the experi-
mental and the placebo groups relative to that between 
the reference and the placebo groups under the normal-
ity assumption. The main contribution of this research 
is that we revise the measurement of non-inferiority by 
considering the coefficient of variation (CV) of each 
kind of treatment from the average effect of trials. This 
is slightly different from the traditional non-inferiority 
test that is difference of means between the experimen-
tal and the placebo groups relative to that between the 
reference and the placebo groups. Besides, through the 
heuristic statistical testing procedure for non-inferior-
ity test, we incorporate unknown heterogeneous vari-
ance among the three arms. Hence, CVs are included in 
the non-inferiority hypothesis testing explicitly to help 
prevent possible estimating distortion if heteroskedas-
ticity is allowed.

Empirical results from simulation studies show that 
the GPV-based method can not only adequately con-
trol the type I error rates at the nominal level but 
also provide power higher than those from the Delta 
method and the empirical bootstrap method. The per-
formances of empirical type I error rates and empiri-
cal power of GPV-based method are better than those 
from the Delta method and the empirical bootstrap 

method. Therefore, the GPV-based method is suitable 
to conduct the non-inferiority test for the means with 
unknown coefficient of variation in a three-arm trial. 
The R program for the proposed GPV-based method is 
available as Supplementary materials 1 and 2.

To further explore the properties of these compara-
ble methods, estimations are conducted for non-infe-
riority limit under parameter settings as in simulation 
studies. The non-inferiority limit is chosen as 0.8. For 
each specified parameter combination, the data are 
generated 10,000 times independently. The bias, mean 
square error (MSE) and coverage probability (CP) 
simulation results of the three methods are shown in 
Table 7.

From Table  7, the biases from the GPV method are 
not much different to those from Delta method, but 
most of which are smaller than the empirical boot-
strap method. Furthermore, when the mean differ-
ence of the reference and placebo groups is equal to 9 
and sample size is less than 120, one can see that the 
GPQ from GPV-based method has smaller MSE than 
estimators from the Delta method and the empirical 
bootstrap method do. On the other hand, the GPV-
based method generally provides sufficient coverage 
probabilities around the confidence level of 0.95. The 
GPV-based method approach results in fairly bet-
ter coverage probability than the other two methods 
do, regardless of the sample size. Moreover, when the 
mean difference of reference and placebo groups is 
large than 20, under the ratio of variance of the refer-
ence group to the experimental group is 1 and the ratio 
of variance of the placebo group to the experimental 
group is 2, the performances of coverage probabilities 
of the empirical bootstrap method are as good as that 
of the GPV-based method. Additionally, the coverage 
probabilities presented by the Delta method are quite 
conservative as well.

Under the normality assumption, the required per-
centiles of GPQ for θE−θP

θR−θP
 (our measurement of non-

inferiority) cannot be obtained in closed form but may 
be estimated using Monte-Carlo algorithm. In addition, 
if the data belongs to non-normal data, we recommend 
that the power transformation of Box and Cox [24] be 
performed.

In Wu and Hsieh [5], when conducting non-inferiority 
test in a three-arm trial, they estimate the sample mean 
by Searls’ estimator (mean with CV) rather than the tra-
ditional one (pure sample mean), showing that testing 
results are better, in terms of empirical sizes and empiri-
cal powers. While in our research, different from the 
traditional three-arm trial, we conduct the non-inferior-
ity test for the means with unknown CVs, and we show 
that the explicit inclusion of CVs in the measurement 

Table 6 Upper 95% confidence limits for θE−θP
θR−θP

 , based on the 
positive control of 25 mg/kg cyclophosphamide

Treatment 
group

P‑value Upper confidence limit

GPV‑based 
method

Delta method Empirical 
bootstrap 
method

30 mg/kg 0.0018 0.28 0.13 0.08

50 mg/kg 0.0044 0.41 0.29 0.23

75 mg/kg 0.2474 0.97 0.74 0.74

100 mg/kg 0.8566 1.39 1.06 1.13
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Table 7 Under τR − τP = 9, 15, and 20, estimate the Bias, MSE and CP of non‑inferiority limit by the GPV‑based, the Delta, and the 
empirical bootstrap methods

n The total sample sizes, GP The GPV-based method, DM The Delta method and EB The empirical bootstrap method, MSE Mean square error, CP coverage probability

µR − µP τP n Point Estimation Property Interval Estimation Property

Bias MSE CP

GP DM EB GP DM EB GP DM EB

9 0.5 60 0.0340 0.0865 0.2170 0.1114 5.7267 53.2988 0.9503 0.9999 0.9999

90 0.0246 0.0407 0.1125 0.0815 1.1064 8.8637 0.9497 0.9999 0.9997

120 0.0221 0.0295 0.0847 0.0595 0.0712 3.2183 0.9494 0.9998 0.9991

480 0.0080 0.0080 0.0130 0.0123 0.0123 0.0276 0.9489 0.9984 0.9918

900 0.0015 0.0015 0.0057 0.0063 0.0063 0.0133 0.9482 0.9962 0.9736

1.0 60 0.0186 0.0240 0.0133 0.0590 0.5243 15.3224 0.9514 0.9999 0.9985

90 0.0139 0.0152 0.0400 0.0393 0.0467 1.7485 0.9507 0.9998 0.9982

120 0.0135 0.0141 0.0266 0.0283 0.0295 0.2401 0.9502 0.9998 0.9955

480 0.0027 0.0028 0.0022 0.0061 0.0061 0.0129 0.9499 0.9997 0.9682

900 0.0011 0.0011 0.0013 0.0033 0.0033 0.0067 0.9494 0.9996 0.9564

2.0 60 0.0098 0.0097 0.0260 0.0300 0.0446 2.4935 0.9512 0.9999 0.9909

90 0.0067 0.0058 0.0051 0.0196 0.0206 0.1298 0.9501 0.9999 0.9873

120 0.0058 0.0053 0.0024 0.0143 0.0145 0.0421 0.9496 0.9998 0.9736

480 0.0012 0.0011 0.0008 0.0033 0.0033 0.0068 0.9494 0.9998 0.9618

900 0.0011 0.0011 0.0004 0.0018 0.0018 0.0035 0.9489 0.9997 0.9564

15 0.5 60 0.0226 0.0231 0.0465 0.0400 0.0431 0.2712 0.9525 0.9992 0.9982

90 0.0151 0.0157 0.0306 0.0255 0.0257 0.0691 0.9519 0.9991 0.9945

120 0.0113 0.0117 0.0177 0.0189 0.0189 0.0897 0.9518 0.9981 0.9909

480 0.0017 0.0017 0.0034 0.0044 0.0044 0.0087 0.9501 0.9964 0.9727

900 0.0005 0.0005 0.0025 0.0023 0.0023 0.0045 0.9498 0.9957 0.9636

1.0 60 0.0124 0.0113 0.0201 0.0192 0.0195 0.0799 0.9507 0.9996 0.9845

90 0.0078 0.0073 0.0130 0.0126 0.0126 0.0277 0.9499 0.9996 0.9809

120 0.0045 0.0042 0.0087 0.0093 0.0094 0.0195 0.9495 0.9993 0.9782

480 0.0011 0.0011 0.0012 0.0022 0.0022 0.0044 0.9492 0.9993 0.9577

900 0.0008 0.0008 0.0013 0.0012 0.0012 0.0023 0.9486 0.9985 0.9555

2.0 60 0.0053 0.0041 0.0094 0.0095 0.0095 0.0224 0.9500 0.9999 0.9673

90 0.0031 0.0028 0.0026 0.0064 0.0064 0.0133 0.9497 0.9998 0.9636

120 0.0014 0.0009 0.0013 0.0048 0.0048 0.0102 0.9496 0.9998 0.9627

480 0.0003 0.0003 0.0009 0.0012 0.0012 0.0023 0.9493 0.9997 0.9545

900 0.0002 0.0002 0.0007 0.0006 0.0006 0.0013 0.9488 0.9996 0.9527

20 0.5 60 0.0145 0.0135 0.0251 0.0221 0.0223 0.0514 0.9505 0.9979 0.9927

90 0.0074 0.0070 0.0144 0.0139 0.0139 0.0291 0.9497 0.9975 0.9873

120 0.0044 0.0041 0.0092 0.0099 0.0099 0.0212 0.9489 0.9968 0.9836

480 0.0010 0.0010 0.0034 0.0024 0.0024 0.0050 0.9486 0.9953 0.9645

900 0.0006 0.0006 0.0013 0.0012 0.0012 0.0026 0.9484 0.9942 0.9536

1.0 60 0.0072 0.0063 0.0106 0.0101 0.0101 0.0221 0.9513 0.9994 0.9736

90 0.0042 0.0038 0.0068 0.0066 0.0066 0.0141 0.9507 0.9990 0.9709

120 0.0036 0.0034 0.0044 0.0050 0.0050 0.0104 0.9496 0.9990 0.9697

480 0.0001 0.0001 0.0006 0.0012 0.0012 0.0024 0.9490 0.9988 0.9545

900 0.0002 0.0002 0.0002 0.0007 0.0007 0.0013 0.9487 0.9985 0.9509

2.0 60 0.0039 0.0031 0.0019 0.0053 0.0053 0.0112 0.9514 0.9999 0.9582

90 0.0030 0.0026 0.0014 0.0035 0.0035 0.0072 0.9510 0.9999 0.9564

120 0.0019 0.0017 0.0012 0.0026 0.0026 0.0054 0.9498 0.9998 0.9555

480 0.0002 0.0001 0.0005 0.0006 0.0006 0.0013 0.9491 0.9997 0.9536

900 0.0002 0.0002 0.0003 0.0003 0.0003 0.0007 0.9485 0.9995 0.9523
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of non-inferiority can still control the type I error at 
the nominal level. In sum, when conducting non-inferi-
ority test, CVs are highly recommended to be included, 
whether through the estimation of average effects of tri-
als or through the specification of non-inferiority.
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