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Abstract 

Background The Targeted Learning roadmap provides a systematic guide for generating and evaluating real-world 
evidence (RWE). From a regulatory perspective, RWE arises from diverse sources such as randomized controlled trials 
that make use of real-world data, observational studies, and other study designs. This paper illustrates a principled 
approach to assessing the validity and interpretability of RWE.

Methods We applied the roadmap to a published observational study of the dose–response association 
between ritodrine hydrochloride and pulmonary edema among women pregnant with twins in Japan. The goal 
was to identify barriers to causal effect estimation beyond unmeasured confounding reported by the study’s authors, 
and to explore potential options for overcoming the barriers that robustify results.

Results Following the roadmap raised issues that led us to formulate alternative causal questions that produced 
more reliable, interpretable RWE. The process revealed a lack of information in the available data to identify a causal 
dose–response curve. However, under explicit assumptions the effect of treatment with any amount of ritodrine 
versus none, albeit a less ambitious parameter, can be estimated from data.

Conclusions Before RWE can be used in support of clinical and regulatory decision-making, its quality and reliability 
must be systematically evaluated. The TL roadmap prescribes how to carry out a thorough, transparent, and realistic 
assessment of RWE. We recommend this approach be a routine part of any decision-making process.
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Background
From a regulatory perspective, real-world evidence (RWE) 
arises from diverse sources, including randomized con-
trolled trials (RCT) that involves analysis of real-world data 
(RWD), observational studies, and other study designs [1]. 
RWE can provide insight into treatments, outcomes, and 

populations beyond those that can be studied in traditional 
RCTs. Researchers studying causal inference have established 
a strong theoretical foundation for understanding when and 
how causal effects can be estimated from RWD and developed 
sophisticated tools for doing so [2–4]. Strategies for increasing 
acceptance of RWE by improving its quality and promoting 
transparency have appeared in the literature [5–8]. The adage 
"trust, but verify" reminds us that before RWE can be used in 
support of clinical and regulatory decision-making, its qual-
ity and reliability must be systematically evaluated, from study 
design and conduct through analysis and interpretation.

Originally introduced as a guide for statistical learn-
ing from data, the Targeted Learning (TL) roadmap 
is also invaluable for developing a statistical analysis 
plan and establishing the validity and interpretability of 
findings from a RWD study (Fig.  1) [9–12]. This paper 
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demonstrates how to methodically step through the 
roadmap to expose weaknesses in causal claims. The 
roadmap provides a systematic way to evaluate the qual-
ity of RWE for both regulators and industry scientists. It 
can also inspire remediation strategies that strengthen 
the quality of the RWE.

Variants of the roadmap have been published in which 
Step 2 precedes Step 1. A preliminary description of the 
statistical model that relies on the time ordering of the 
covariates offers a starting point that doesn’t rely on sta-
tistical knowledge. In some scenarios when little is known 
about the causal structure, e.g., rare diseases with little 
knowledge of the natural history of the disease, defining 
a statistical model based on time ordering and respect-
ing known bounds on the data is a helpful starting point. 
Researchers with causal knowledge may prefer construct-
ing a causal model first, and then working with statisti-
cians to develop a statistical model that captures other 
elements of the data distribution that aren’t represented 
in the causal model, such as bounds on continuous vari-
ables, monotonicity constraints, and known interactions. 
Refining the statistical and causal models can be an itera-
tive process. Ultimately they must agree.

A published retrospective cohort study will serve to 
illustrate how to detect and overcome insufficiency for 
causal effect estimation. Our intent is not to provide a 
commentary on the published findings, but to discuss 
concepts in causality and present results from an alter-
native data analysis. Shinohara, et. al. studied the asso-
ciation between ritodrine hydrochloride and maternal 
pulmonary edema in twin pregnancy in Japan [13]. Ritro-
dine had previously been shown to increase risk of pul-
monary edema in pregnant women [14]. Study authors 
wanted to establish this result in the sub-population of 
women pregnant with twins, who are at higher risk of 
pre-term labor. In Japan, ritodrine is a first line therapy 
for halting pre-term labor, although in the United States, 

it was withdrawn from the market in 1995 due to efficacy 
and safety concerns [13, 15].

The target of the primary analysis was the dose–
response association. The odds ratio (OR) for developing 
pulmonary edema associated with a one unit increase in 
total ritodrine dosage was estimated as OR = 1.02, with a 
95% confidence interval (CI) of (1.004, 1.03). The authors 
state that due to unmeasured confounding, a causal inter-
pretation is not warranted. The finding was interpreted as 
a partially adjusted measure of the dose–response asso-
ciation, since certain pre-existing health conditions that 
confound the treatment-outcome association were not 
available to the study team.

The study provides a rich example of challenges to 
learning from data, well beyond unmeasured confound-
ing. In the next section we follow the TL roadmap to 
identify additional barriers to evaluating a causal dose–
response curve. Subsequently, we discuss potential solu-
tions that are based on specifying a statistical model 
that respects the process that gave rise to the data, craft-
ing a realistic definition of treatment consistent with 
real-world feasibility, and selecting an alternative, less 
ambitious, target parameter. Results of a modified data 
analysis support the conclusion that ritodrine treatment 
increases risk for pulmonary edema.

Methods
Evaluating real‑world evidence
Data made publicly available on Dryad by the study 
authors consists of observations on n = 225 women 
in Japan pregnant between 2009 and 2016 [16]. Each 
observation contains baseline covariates, L(0) ; ritodrine 
treatment administered over multiple time points, A(t); 
time-varying covariates at multiple time points,L(t) ; the 
pulmonary edema outcome, Y ; and additional covariates 
measured up to 24 h post-delivery, L(t+) . Actual infusion 

Fig. 1 The targeted learning roadmap
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rates of the study drug varied from 50  mg per minute 
(mg/min) to 200 mg/min, over a variable period of time. 
Total dosage was converted to units of 72 mg/24 h. We 
step through the roadmap to better understand circum-
stances under which causal effect estimation might be 
possible, given the information available.

Step 1: Statistical model
Study authors posed a main terms logistic regression 
m o d e l , logit{P pulmonaryEdema } = β0 + β1ritodrine + β2PIH + β3BMI+

β4PPH + β5corticosteroids + β6Mg + β7transfusion+ β8term+ β9bedrest  , 
where covariates are defined as ritodrine (the treatment): 
total dosage of ritodrine; PIH: pregnancy-induced hyper-
tension (Y/N); BMI: body mass index (kg/m2); PPH: post-
partum hemorrhage; term: term birth (Y/N); bedrest: bed 
rest > 6 weeks (Y/N).

This defines the statistical model narrowly, in a way 
that almost certainly precludes the true data distribu-
tion. Including treatment in the model as a continuous 
main term automatically imposes a linear and monotonic 
dose–response relationship. Making this restrictive mod-
eling assumption at the outset for all situations is unwar-
ranted. In fact, the paper provides the crude proportion 
of outcome events observed in the RWD, grouped by dos-
age levels [13]. Plotting these values suggests the dose–
response relationship is, in fact, non-monotonic (Fig. 2). 
The crude risk increases as total dosage approaches 50 
units, then decreases at larger doses. Although adjusting 
for measured confounders might explain away some of 
the crude dose–response association, a main terms logis-
tic dose–response model appears to be unrealistic.

From a causal perspective, the timing of the outcome 
relative to other covariates included in the model is also 
problematic. The outcome event was measured from 
beginning of follow-up through 24  h postpartum [S. 
Shinohara, personal communication, December 2019]. 
That means that at least two covariates, PPH (postpar-
tum hemorrhage) and term (term birth), occurred after 

the outcome, for some women. Including post-outcome 
covariates in a causal dose–response model violates the 
tenet that a cause must precede an effect.

Steps 2 and 3: Causal estimand and corresponding statistical 
parameter
Because the causal model must be contained within 
the statistical model, here it is identical to the statisti-
cal model. Both the causal estimand and the statistical 
parameter are given by β1.

Steps 4 and 5: Estimation and inference
Maximum likelihood estimates of the model coefficients, 
standard error (SE) estimates, and 95% CIs were calcu-
lated using standard methodology.

Step 6: Interpretation
Mathematically, the model coefficients quantify the pro-
jection of the true dose–response curve onto the model. 
However, because the model is highly misspecified, as 
discussed in Step 1, the parameter estimate is not equiva-
lent to the causal conditional log odds associated with a 
one unit increase in total dose.

Strategies for improving the quality of real‑world evidence
Deficiencies in the study design, model specification, and 
available data undermine confidence in any causal inter-
pretation of the study finding, and the RWE generated by 
the study is arguably not reliable. Designing and carrying 
out a new study may not be feasible, but instead we can 
revisit the roadmap to see if it may be possible to learn 
something relevant from the data we have.

Step 1: Statistical model
Parametric model misspecification can be avoided by 
defining a realistic, less restrictive, statistical model, M
.In Step 1 We define the statistical model M non-para-
metrically as all distributions of the data consistent with 

Fig. 2 Proportion of patients with pulmonary edema grouped by total dose of ritodrine
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the process by which treatment, covariates, and the out-
come arise over time. We can further restrict M to dis-
tributions that respect the study inclusion criteria. This 
specification of the statistical model includes some distri-
butions of the data where the dose–response relationship 
is monotonic (e.g., a main terms parametric model) and 
some distributions where it is not.

Step 2: Causal estimand
The causal model makes conditional independence 
assumptions consistent with the time ordering of the 
data and assumes exogenous errors. The causal dose–
response relationship can be defined in terms of a 
marginal multi-dimensional parameter. For example, 
given clinically meaningful groupings of total dosage 
administered, the mean risk for each treatment group 
can be targeted. Consider seven treatment categories: 
patients who receive no treatment ( A = 0 ), or treat-
ment at one of six levels ( A = 1 , …, 6 , correspond-
ing to > 0–10, 11–20, 21–30, 31–40, 41–50, 51 + units) 
(Fig.  2). The causal dose–response parameter is writ-
ten as ψcausal = (ψ0,ψ1,ψ2,ψ3,ψ4,ψ5,ψ6) , where ψa is 
the counterfactual mean outcome observed if, contrary 
to fact, each patient received treatment at dosage level 
A = a . Furthermore, any causal contrast, such as the risk 
difference (RD), risk ratio (RR), or OR, can be easily cal-
culated, e.g., ψ1 − ψ0 is the RD for treatment with up to 
10 units of ritodrine vs. no treatment.

Step 3: Statistical estimand and assessment of identifiability
Next, we specify a statistical estimand in observed data, 
ψobs , that corresponds to our multi-dimensional ψcausal 
under identifying assumptions. For each dimension, 
ψobs
A=a = E(Y |A = a, L(t)) , where L(t) is the complete 

covariate history from baseline ( t = 0 ) through the time 
the event occurred, or 24 h post-delivery.

A problem is that the relative timing of L(t) and A(t) , 
is not clearly recorded in the dataset. In other words, it is 
impossible to properly define L(t) , thus we cannot spec-
ify any statistical parameter that corresponds to ψcausal . 
Another complication is that clinicians may have slowed 
or stopped ritodrine infusion upon observing pulmonary 
edema in the patient. Under this scenario, the outcome 
partly causes the total dose, rather than the total dose 
causing the outcome. For these reasons, a causal dose–
response curve is simply not identifiable from the data. 
Any study finding would rest entirely on a foundation of 
unrealistic modeling assumptions, and this RWE would 
not be appropriate to support decision-making.

Alternative formulation: In the absence of additional 
data that are fit for purpose, an alternative, unplanned 
analysis might provide insight into the causal relation-
ship between ritodrine and pulmonary edema. Consider 

a simpler question: does treatment with any dose of 
ritodrine vs. no treatment increase risk for pulmonary 
edema? From this point treatment standpoint, the data 
consists of n independent and identically distributed 
observations O = (Y ,A,W  ), where Y  is a binary out-
come indicator, A is a binary treatment indicator ( A = 1 
for treated, A = 0 for no treatment), and W  is a vector of 
baseline covariates. We are interested in a less ambitious 
causal parameter, the RD. Downstream covariates that 
affect treatment infusion over time are irrelevant, and 
time-dependent confounding is no longer an issue. In the 
next subsection we step through the roadmap with this 
revised clinical question in mind.

Determining a point treatment effect by following the 
Targeted Learning roadmap
Step 1: Statistical model
The statistical model is defined as all probability distribu-
tions of the data, with structure O = (Y ,A,W ) , consist-
ent with study inclusion criteria.

Step 2: Causal estimand
The causal model makes no further assumptions, beyond 
exogenous errors. The causal parameter of interest is the 
marginal RD, defined in terms of counterfactual out-
comes by ψcausal = E(Y1 − Y0) , where Y1 is the counter-
factual outcome under any level of treatment and Y0 is 
the counterfactual outcome under no treatment.

Step 3: Statistical estimand and assessment of identifiability
The statistical estimand, ψobs = E[E(Y |A = 1,W )− E(Y |A = 0,W )], 
has a valid causal interpretation when underlying 
assumptions are met [17]. The consistency assumption 
states that for each observation, the outcome under the 
observed exposure is equivalent to the counterfactual 
outcome that would be seen had the observed treatment 
been assigned. It is satisfied under our simpler definition 
of treatment as any exposure to ritodrine, versus none.

The positivity assumption states that within all strata 
of confounders patients have a positive probability of 
receiving treatment at all levels considered. An outcome-
blind look at the data shows that in some age groups no 
individuals were treated with ritodrine (Table 1), thus the 
parameter is not identifiable from the data. However, if 
coarser age categories are clinically justified, the violation 
can be eliminated by re-defining the age categories.

There is also another, more serious, violation of the 
positivity assumption. The prescribing information for 
ritodrine precludes administration when patients have 
serious pre-existing conditions, including maternal 
cardiac disease, hyperthyroidism, diabetes, and others 
[18]. If physicians adhere to these prescribing instruc-
tions, then no patients with these conditions would 
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receive ritodrine, and the causal contrast in this sub-
population of women cannot be evaluated. However, 
these covariates aren’t in the publicly available data-
set. If the information was also not known to clini-
cians, then women with these conditions could possibly 
receive treatment, and there would be no theoretical 
violation of the positivity assumption.

The final causal assumption, coarsening at random 
(CAR), is an assumption of no unmeasured confound-
ers. With respect to the pre-existing conditions, if cli-
nicians were unaware of patients’ status, then these 
covariates could not have affected treatment decisions, 
so none are confounders. If clinicians were aware, then 
all of these covariates are unmeasured confounders.

Alternative formulation: One option would be to aug-
ment the exclusion criteria to rule out pregnant women 
who are ineligible to receive the study drug. The causal 
parameter would address a modified scientific ques-
tion: What is the marginal effect of ritodrine compared 
with no ritodrine on risk of pulmonary edema among 
women pregnant with twins to whom ritodrine may be 
prescribed?" The RD would be identifiable from data, 
and interpretable as a subgroup-specific causal effect. 
Unfortunately, this approach isn’t feasible with the 
available dataset because we cannot identify patients 
with the relevant pre-existing conditions.

A second option would be to modify the scientific 
question again. Suppose we were interested in under-
standing how incidence of pulmonary edema would be 
affected if ritodrine were withdrawn from the market. 
The target population includes all women pregnant 
with twins, even those who are ineligible to receive 
ritodrine. The following realistic treatment rules [19] 
can always be followed,

Rule 1: Treat with ritodrine unless expressly contra-
indicated,
Rule 2: Never treat with ritodrine

The marginal RD of pulmonary edema for following 
Rule 1 vs. Rule 2 can be estimated from observed data.

Step 4: Estimation and inference
Targeted minimum loss-based estimation (TMLE) with 
super learning (SL) was used to estimate the RD for the 
two realistic treatment rules. Potential baseline con-
founders included in the adjustment set were age, height, 
weight, BMI, and binary indicators of the following vari-
ables: obesity (BMI ≥ 25), first pregnancy, single placenta, 
assistive reproductive technology use, magnesium admin-
istration, and corticosteroid administration. Analyses 
were run using R (v4.0.2), and the tmle (v1.5.0–1) and 
SuperLearner (vx2.0–26) packages [20–22]. For SL, 
the number of cross validation folds, V, was set to 20 to 
account for the number of events [23]. The default library 
of algorithms for modeling the outcome included linear 
regression, Bayesian additive regression trees (BART, in 
dbarts v0.9–18)[24], and lasso (glmnet v4.0–2)[25]. The 
default library for modeling the propensity score (PS) 
included logistic regression, BART, and generalized addi-
tive models (gam v1.20) [26]. These library specifications 
allow us to explore more of the possible probability dis-
tributions contained in M than restricting to a para-
metric main terms model. TMLE uses the SL fit for the 
treatment assignment mechanism to update the initial 
SL estimate of the outcome prediction model to improve 
the bias variance trade-off for the target parameter [10]. 
TMLE requires the PS (1-PS) to be bounded away from 
zero for treated and untreated subjects, respectively. 
We set this lower bound to 0.06, based on the formula 
5/[

√
nln(n)] , with n = 225) [27]. Influence curve-based 

standard errors (SE) were reported by the software.

Results
PS diagnostics allow us to understand the overlap 
between treatment and control groups. The C-statistic 
associated with the predicted PS values (0.72), and the 
plot of the PS distributions within each treatment group 
(Fig.  3) indicate reasonable overlap of treated and com-
parator groups. No PS values were extreme, so trunca-
tion had no impact. The estimated RD was  ̂ψobs = 0.21 
(SE, σ̂ = 0.062; 95% CI = [0.09, 0.33]).

Step 5: Interpretation of the study finding and sensitivity 
analyses
Ritodrine was estimated to increase risk for pulmonary 
edema by 21%. Next, we assess if unexplained depar-
tures from the underlying causal assumptions could 
reverse that conclusion. If without our knowledge any of 
the three causal assumptions were violated, even at infi-
nite sample size the estimated RD would not equal the 
true causal effect. The difference between the statistical 

Table 1 Number of subjects in control and treated groups by 
age in the original study age groupings (left), and re-defined age 
groupings (right)

Original Categories Re‑defined Categories

Age Control Treated Age Control Treated

16–20 2 0 16—30 48 33

21–25 9 7

26–30 37 26

31–35 50 29 31–35 50 29

36–40 38 19 36–50 45 20

41–45 4 1

46–50 3 0
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parameter and the causal parameter is termed the causal 
gap, δ = ψ stat − ψcausal . A non-parametric sensitivity 
analysis illustrates how point estimates and CI bounds 
change at different assumed values of δ [28].

Figure 4 shows the estimated RD and 95% CI under dif-
ferent values of δ. For comparison, the size of the causal 
gap is also expressed relative to the SE of the effect esti-
mate (SE units). The point estimate and 95% CI bounds 
determined from the data analysis are plotted at 0 on 
the x-axis. If there is a non-zero causal gap, then the 
estimate and CI would shift either left or right, depend-
ing on the direction and magnitude of the gap. Estimates 
and CIs plotted in gray correspond to different hypo-
thetical causal gaps. If subject matter experts believe that 
any potential causal gap is likely to be negative then this 
sensitivity analysis reinforces a conclusion that ritodrine 
increases risk for pulmonary edema. If the causal gap is 
thought to be in the positive direction, unless the gap size 
is greater than approximately 0.1 the conclusion remains 
unchanged. The causal gap would have to be extremely 
large (> 0.325) to conclude that ritodrine is protective for 
pulmonary edema. Methods for establishing plausible 
values of the causal gap include expert knowledge, exist-
ence of a known external interpretable bound [28], data 

on negative controls, "worst case" imputation of missing 
outcomes, and analyses of data with key confounders 
omitted.

The recently proposed G-value calls attention to 
the gap size that would be needed to negate the find-
ing from the current study (cause the CI to include 
the null if it is currently excluded, or exclude the 
null if it currently lies within the CI). For a 95% CI 
G-value = min

(∣

∣ψn − 1.96σ − null
∣

∣,
∣

∣ψn + 1.96σ− null
∣

∣

)

, where ψn is the estimated effect size, σ is the SE, and 
null is the null value for the parameter (0 for the ATE, 
1 for the RR, etc.)[12]. The G-value takes both bias and 
variance into account to help determine an appropriate 
level of confidence in conclusions drawn from the study. 
Here the G-value = 0.09 (1.5 SE units).

Discussion
Although the findings suggest that exposure to 
ritodrine increased risk for pulmonary edema among 
women pregnant with twins in Japan, in the absence 
of information on pre-existing conditions that affect 
risk for pulmonary edema the study finding cannot be 
interpreted as an unbiased estimate of the true causal 
effect.

Fig. 3 Distribution of propensity scores in treated (blue) and comparator (red) groups
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Conclusions
For regulatory purposes, a well-designed study and good 
quality data are of paramount importance. Following the 
TL roadmap allowed us to systematically evaluate the 
suitability of these data for estimating a causal dose–
response curve. Outside of a regulatory environment, the 
roadmap pointed us to explore alternative formulations 
of the causal question to produce more reliable, inter-
pretable RWE.

Steps 1–3 of the roadmap crystallized the statistical learn-
ing task by defining the statistical model ( M ), causal parameter 
( ψcausal ), and statistical estimand ( ψobs ), that can answer the cor-
responding clinical question of interest. The original study’s overly 
restrictive M was ill-suited for modeling the true causal dose–
response relationship. Our alternative formulation of a multi-
dimensional ψcausal addressed that problem. However, given the 
uncertainty around the time ordering of treatment, covariates, 
and outcome, we were unable to describe a corresponding statis-
tical estimand that could be identified from the data. Even with-
out looking at the actual data, we were able to identify structural 
barriers that preclude evaluating a causal dose–response curve. 
This situation motivated targeting a point treatment parameter, 
defined in terms of realistic treatment rules.

Step 4, estimation of the statistical parameter, should go 
beyond fitting the coefficients in a single parametric model. 
If M is sufficiently general, i.e., realistic, then flexible machine 
learning (SL) is required. TMLE tailors the procedure for 
unbiased, efficient estimation of the statistical parameter, and 
provides influence curve-based inference.

Step 5, interpretation of the study finding, should incor-
porate a non-parametric sensitivity analysis that avoids 
imposing unwarranted parametric constraints. If a small, 
hypothetical but clinically plausible causal gap is sufficient to 
nullify or reverse the substantive conclusion, then the study 
findings are not a dependable guide decision making. On the 
other hand, when findings are robust in the face of plausible 
values of the causal gap, confidence is reinforced.

RWE can fulfill needs for information beyond that generated 
by RCTs. However, trust must be earned, not assumed. The TL 
roadmap provides a systematic process for establishing whether 
the RWE provides transparent, reliable, and actionable support 
for decision-making. A thorough, honest, realistic assessment of 
RWE can be a routine part of any decision-making process. The 
TL roadmap prescribes how this can be accomplished.

Abbreviations
BART   Bayesian additive regression trees
BMI  Body mass index
CI  Confidence interval
GAM  Generalized additive model
OR  Odds ratio
PS  Propensity score
RCT   Randomized controlled trial
RD  Risk difference
RR  Relative risk
RWD  Real-world data
RWE  Real-world evidence
SE  Standard error
SL  Super learner or super learning
TMLE  Targeted minimum loss-based estimation
TL  Targeted learning

Fig. 4 Non-parametric sensitivity analysis showing the risk difference and 95% confidence intervals under different presumed values of the causal 
gap, δ , and also relative to the standard error (SE-units)
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