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Abstract
Background Epidemiological surveys offer essential data on adolescent substance use. Nevertheless, the precision 
of these self-report-based surveys often faces mistrust from researchers and the public. We evaluate the efficacy of 
a direct method to assess data quality by asking adolescents if they were honest. The main goal of our study was 
to assess the accuracy of a self-report honesty item and designate an optimal threshold for it, allowing us to better 
account for its impact on point estimates.

Methods The participants were from the 2020 Illinois Youth Survey, a self-report school-based survey. We divided 
the primary dataset into subsets based on responses to an honesty item. Then, for each dataset, we examined 
two distinct data analysis methodologies: supervised machine learning, using the random forest algorithm, and a 
conventional inferential statistical method, logistic regression. We evaluated item thresholds from both analyses, 
investigating probable relationships with reported fake drug use, social desirability biases, and missingness in the 
datasets.

Results The study results corroborate the appropriateness and reliability of the honesty item and its corresponding 
threshold. These contain the agreeing honesty thresholds determined in both data analyses, the identified association 
between reported fake drug use and lower honesty scores, increased missingness and lower honesty, and the 
determined link between the social desirability bias and honesty threshold.

Conclusions Confirming the honesty threshold via missing data analysis also strengthens these collective 
findings, emphasizing our methodology’s and findings’ robustness. Researchers are encouraged to use self-report 
honesty items in epidemiological research. This will permit the modeling of accurate point estimates by addressing 
questionable reporting.
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Background
Epidemiological surveys provide much-needed data to 
public health officials on substance use. Data can be used 
to determine if policy changes, such as allowing medical 
or recreational cannabis, increase adolescent use [1, 2]. 
Additionally, epidemiological studies monitor emerging 
and trendy substances (i.e., synthetic marijuana, kratom) 
that, while rare, may result in drastic consequences [3, 
4]. Monitoring the use of substances helps evaluate the 
effectiveness and swiftness of public health responses. 
Finally, epidemiological studies provide longitudinal 
trend data, allowing a long-term view of the ebbs and 
flows of youth substance use.

Despite the critical need for epidemiological surveys, 
their veracity is continually challenged due to reliance 
on self-report. Self-reported data are sometimes dis-
trusted by the school principals who allow its collec-
tion [5]. Without confidence in such data, public health 
officials and the lay public may not make informed sub-
stance use prevention and treatment decisions. Worse 
yet, the stakes could involve the erosion of trust between 
researchers and the public, which has trended downward 
recently [6].

Scalable methods could improve the validity of self-
reports in extensive epidemiological studies. In clinical 
research with smaller samples than those from epidemio-
logical surveys, it is possible to have interviewers clarify 
discrepancies in self-report data [7], combine parental 
reports with youth self-report [8], or collect biological 
specimens (i.e., urine, hair, or saliva tests) from corre-
sponding self-report data [9]. However, these strategies 
are impractical for surveys that collect tens of thousands 
of anonymous adolescent responses. Furthermore, mod-
els that capture indifferent, directional, and extreme 
responses [10] cannot fully account for the complexity 
of adolescent substance use behaviors or the potential 
biases in self-report data. Numerous researchers have 
long speculated that over-reporting of substance use is a 
problem in self-report adolescent surveys [11–15] which 
amplifies the need for research on honesty.

Because of their large size, sensitivity analyses on point 
estimates from epidemiological surveys may be robust to 
small amounts of invalid data. However, increased prob-
lems may exist in obtaining accurate estimates of the 
prevalence of rare phenomena or their associations with 
other variables. For example, after eliminating various 
percentages of data suspected to be derived from mis-
chievous responders, associations between self-reported 
gender minority status and various mental health prob-
lems were significantly reduced in magnitude [16]. In 
addition, many phenomena of interest in epidemiologi-
cal surveys on substance use involve data with low base 
rates in the population. Some examples include establish-
ing the prevalence and correlates of opioid use during 

high school, determining the association between gender 
identity (i.e., transgender vs. cisgender) and substance 
use, or establishing the number of youth ages 12–18 who 
consider themselves to be in recovery from substance use 
[17–19].

Furthermore, at the local level, where prevention plan-
ning occurs with a much smaller sample size (e.g., 200 
adolescents), invalid responses could result in ineffective 
program planning. Examples may include directing sub-
stance use prevention resources toward overestimated 
problems. Conversely, prevention planning could fail to 
recognize and prevent a rare, underestimated problem 
occurring in hot spots. Increasing confidence in the valid-
ity of epidemiological surveys on adolescent substance 
use benefits researchers and prevention specialists.

A straightforward method to assess validity is asking 
adolescent survey respondents if they were honest. This 
low-burden method could identify youth who exhibited 
various response sets, such as mischievous responses 
[16], underreporting, or overreporting. Several studies 
have evaluated the effectiveness of self-reported hon-
esty items and scales using inferential statistical studies 
[20–26].

However, existing literature does not deliver integrate 
the use of supervised machine learning with traditional 
inferential statistical methods. In general, machine learn-
ing approaches automate analyses with some degree of 
training an algorithm. This approach is suitable in situa-
tions with large data sets. In supervised machine learn-
ing, the output is known (honest vs. dishonest) and 
random forest learning helps to classify the groups based 
on the known output [27]. In the present study, we use 
machine learning to scan the entire dataset for variables 
with the strongest associations with substance use sever-
ity scores.

Traditional inferential statistical methods require 
researchers to specify important variables a priori and 
require that basic assumptions are met. These include 
normality of errors, linearity of variable relationships, 
absence of multicollinearity, homoscedasticity, and inde-
pendence of observations. Contrariwise, supervised 
machine learning does not assume specific data distribu-
tion and can manage non-linear relationships between 
variables without sticking to the assumptions above.

We assume that these two methods may yield inher-
ently different thresholds for our self-report honesty item 
due to their fundamental differences described above. 
Thus, should the findings converge across machine 
learning and inferential statistical approaches, it could 
increase our confidence in the validity of the honesty 
item and its designated threshold.

While the convergence of the results of the two analyti-
cal methods can increase confidence, further validation is 
needed to ensure suitability and precision - both methods 



Page 3 of 9Kosgolla et al. BMC Medical Research Methodology          (2023) 23:210 

could be consistently incorrect. Therefore, it is vital to 
utilize further validation techniques. Hence, we strength-
ened our results by including analyses on social desirabil-
ity biases, using a fake drug question and missingness.

Methods
Data and participants
This study used the 2020 Illinois Youth Survey (IYS) 
data, a biennial self-reported survey funded by the Illi-
nois Department of Human Services (IDHS) that col-
lects responses from 8th, 9th, 10th, 11th, and 12th-grade 
adolescents. The survey includes adolescents’ responses 
about their consumption of substances, perceptions of 
substance use, family and school support, and health and 
nutritional habits. In 2020, 616 Illinois schools registered 
voluntarily to participate in this survey, and 125,067 ado-
lescents took the survey. The survey was administered in 
school settings via online or paper/pencil format.

Measures
Honesty
At the end of the survey, adolescents responded to the 
item “How honest were you in filling out this survey?“ on 
a Likert scale (1: Very honest, 2: Honest pretty much of 
the time, 3: Honest some of the time, 4: Honest once in a 
while, and 5: Not honest at all).

CRAFFT scale
The widely used CRAFFT scale (Car, Relax, Alone, For-
get, Friends, Trouble) measured substance use problem 
severity. The CRAFFT is a six-item screening measure (1: 
yes, 0: no; range = 0–6) with high sensitivity for detecting 
the presence of substance use disorders or heavy canna-
bis use at a cutoff of two or higher [28, 29]. Thus, we cre-
ated a dichotomous variable indicating whether or not (1: 
yes, 0: no) participants met the recommended CRAFFT 
cutoff.

Furthermore, other scales, alcohol use, and binge 
drinking during the past 30 days/past year, were mea-
sured on the Likert scale (1= “0 occasions” to 6 = “20 
or more occasions”). Age was measured on a continu-
ous scale. All the other items mentioned below (unless 
noted) are dichotomous indicators: been drunk or high 
at school, drove a car after using marijuana, got alcohol 
from a friend, first-time alcohol use within past year, 
got alcohol from a party, perceived prevalence of alco-
hol use at school (0-100%), got alcohol from parents w/o 
their permission, perceived risk of marijuana use, recov-
ery problem solved, drove a car after drinking alcohol, 
felt bad about gambling, suicidal ideation, experienced 
depression, been drunk or high at school, sold illegal 
drugs at school, had a fight post/while drinking alco-
hol, been hurt/injured post/while drinking alcohol, and 
victim of a violent crime post/while drinking alcohol. 

We performed a supervised machine-learning analysis 
employing all observed parameters from the IYS survey. 
Nevertheless, we only described the measures related to 
the dependent parameter to retain a concise and direct 
report. For all measures, item descriptions and response 
options can be found in supplemental materials (please 
refer to additional file 1).

Data and participants
Missing data handling
We performed Little’s MCAR test on the primary data-
set to determine whether the data were missing at ran-
dom (MAR), not missing at random (MNAR), or missing 
completely at random (MCAR). The test showed that the 
data was indeed MCAR, with a non-significant result 
(missing patterns = 1710, chi-square = 35,000 df = 342,000, 
p-value = 1.00). Hence, we used multiple imputation 
methods to impute missing data. We began with an ini-
tial imputation using the mice R statistical software pack-
age v3.14.0 [30] to determine the best method based on 
the parameter measurement scales. Based on predictor-
Matrix results, predictive mean matching (pmm) was the 
most appropriate imputation method. Subsequently, we 
executed the imputation procedure.

Subsampling
In IYS 2020, respondents differed across the honesty 
levels: 72,653 were Very Honest (VH), 26,068 reported 
being Pretty Honest (PH), 4,916 said they were Some-
times Honest (SH), and 3,522 marked being Rarely Hon-
est (RH). This latter group combined individuals that 
said they were honest “once in a while” or “not at all.” 
We assume they are equally invalid and combining them 
allowed for an adequate analytic sample. We employed 
a random subsampling strategy to enhance the robust-
ness of our analyses. From these initial groups, VH was 
subsampled to a size of 5,000; likewise, PH was also 
decreased to a sample size of 5,000. Due to their smaller 
counts, the SH and RH datasets stayed unchanged. This 
approach was used to achieve more balanced sample 
sizes across the honesty levels, thereby reducing possible 
biases in our analyses arising from varying group sizes.

Supervised machine learning analysis
Our study employed the Random Forest (RF) method 
to classify the dependent variable responses using 
given predictors. RF creates multiple decision trees and 
engages Gini impurity to optimize the data-splitting pro-
cedure. Nevertheless, as decision trees are inclined to 
bias and overfitting, RF improves robustness through fea-
ture randomness and bootstrap aggregation. This process 
involves randomly sampling data, out-of-bag verification, 
and random choice of predictors for each tree, providing 
a more reliable and diversified model [31–35].
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The initial step of the RF classification technique is 
bootstrap sampling. One-third of each bootstrap sample 
(in-bag data) is then separated for testing purposes (out-
of-bag (OOB) data), while the remaining data is used for 
training the model (building the decision trees). The next 
step comprises feature randomness. As the fourth step, 
decision trees are built for each training bootstrapped 
dataset by computing Gini impurity and recursively 
dividing the training data into subsets where each subset 
becomes a node in the decision tree. Gini impurity can be 
computed for items with J classes as:

 Gini (t) = 1−
∑

J
i=1p(i|t)

2  (1)

where:
Gini(t): Gini index for node t,
p(i|t) is the ratio of the samples belonging to class i 

for node t, and J is the number of classes. Leaf nodes are 
determined when only one observation is left in the split-
ting process.

As an outcome, the RF algorithm calculates the mean 
decrease in the Gini impurity index, demonstrating input 
parameter importance concerning the response param-
eter. Decreased Gini impurity measures the Gini impu-
rity reduction due to including an input parameter to the 
decision tree. The mean decrease in Gini impurity is the 
average reduction of Gini impurity for all the decision 
trees in the RF. A higher mean decrease of Gini impurity 
for an input parameter indicates that adding that param-
eter improves the model purity (accuracy), implying that 

the input parameter is a significant predictor. Therefore, 
we utilized the mean decrease Gini impurity scores of RF 
models to evaluate the importance of input parameters. 
Finally, testing is performed for each decision tree with 
the OOB data, and the misclassification rate (OOB error 
rate) is computed.

In our RF analysis, the CRAFFT scale was the depen-
dent parameter and all other observed parameters in 
the survey pertaining to alcohol and marijuana use were 
independent predictors. This analysis was completed 
using R open-source packages randomForest v4.7-1.1, 
reprtree, caret, and rfPermute v2.5.1 [36–39]. Initially, 
we conducted a sensitivity analysis for the RF model to 
determine the best-fitting model parameters. We used 
the OOB error and the area under the receiver operating 
characteristic (ROC AUC) to determine the best fit.

Inferential statistical analysis
Logistic regression is a statistical method to model 
dichotomous dependent parameters using odds ratios. 
The data were analyzed using the R stats package (version 
3.6.2). We simulated the impact of risk-taking and sensa-
tion-seeking behaviors, depression, suicidal ideation, and 
age on the CRAFFT measure. We selected relevant input 
parameters (felt bad about gambling, suicidal ideation, 
experienced depression, been drunk or high at school, 
sold illegal drugs at school, had a fight post/while drink-
ing alcohol, been hurt/injured post/while drinking alco-
hol, victim of a violent crime post/while drinking alcohol, 
and age), and conducted the generalized linear model 
analysis for various honesty scales. The model fit was 
evaluated using the Akaike information criterion (AIC) 
and Bayesian information criterion (BIC). Additionally, 
for each parameter in the model, a p-value of less than 
0.05 was considered statistically significant.

Results
The full R code used for the analysis can be located in the 
supplementary material (please refer to Additional file 2).

Participant characteristics
The demographics and descriptive statistics for the VH, 
PH, SH, and RH datasets subsampled within the 2020 IYS 
dataset are recapitulated in Tables 1 and 2, respectively.

RF analysis
We systematically increased the fundamental model 
parameter values during the sensitivity analysis and reran 
the rf model to evaluate its performance. According to 
this iterative process, the optimum number of trees to 
grow in the model was 2000, and the optimum number 
of parameters randomly selected as candidates at each 
split when creating the individual trees was 20. Then, we 
conducted the analysis for each dataset and reported the 

Table 1 Demographics
Parameter Category Dataset 

VH (%)
Dataset 
PH (%)

Dataset 
SH (%)

Da-
taset 
RH 
(%)

Age 13-year-old 0.2 0.2 0.3 1.3
14-year-old 5.0 5.0 3.7 3.5
15-year-old 18.4 19.1 18.7 17.4
16-year-old 19.0 18.9 19.8 20.1
17-year-old 31.7 32.1 30.8 28.9
18-year-old 25.3 24.4 26.1 26.4
19-year-old 0.4 0.3 0.6 2.4

Gender Female 49.8 50.6 47.9 32.9
Male 48.2 47.1 48.8 57.8
Transgender 0.8 0.9 1.2 3.9
Do not identify 1.1 1.5 2.0 5.4

Race White 59.6 52.8 44.7 43.4
Black 6.8 6.2 8.7 11.5
Latino 14.1 19.7 25.6 22.0
Asian American 5.8 6.9 4.2 4.1
Native American 0.5 0.5 0.6 1.2
Multi-racial 10.5 11.1 13.3 12.8
Other 2.7 2.8 2.8 5.0
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OOB and ROC. We assumed that the lower the OOB 
error, the higher the classification accuracy of the RF 
model. Furthermore, an area under the curve (AUC) in 
receiver operator curves (ROC) above 0.9 indicates an 
outstanding RF model that performs better than random 
chance, and a value of 1 indicates a perfect model. Thus, 
we found that all our RF models performed outstandingly 
(please refer to Table 3).

Additionally, we evaluated the mean decrease Gini 
impurity scores for all the analysis results to determine 
the parameter importance. Figure 1 depicts the descend-
ing order of significance for input parameters for each 
honesty level, as computed by the RF model for the 
CRAFFT scale. This importance is evaluated based on 
mean decrease in Gini impurity scores attained through 
the RF analysis. Consequently, the model accurately 
identified the top six parameters with the highest mean 
decrease Gini impurity score for datasets VH and PH. 
However, the model did not accurately evaluate impor-
tant input parameters for datasets SH and RH.

Inferential statistical analysis
Figure  2 depicts the evaluation of the generalized lin-
ear model (logistic regression) that analyzes the effects 
of different honesty values on the dependent mea-
sure, the CRAFFT scale. The fit indices AIC and BIC 
were: dataset VH: AIC = 2858.25, BIC = -39662.53; 
dataset PH: AIC = 3427.20, BIC = -39093.58; data-
set SH: AIC = 3901.62, BIC = -38619.17; dataset RH: 
AIC = 3509.98, BIC = -32186.43. Subsequently, we can 
deduce that inferences made from the analysis became 
insignificant for parameters “sold illegal drugs at school” 
and “was a victim of a violent crime post/while drinking 
alcohol” when the honesty level was below PH.

Reported use of a fake drug
Also, we evaluated whether honesty level was associated 
with a higher percentage of youth reporting they used a 
fake drug, which is included as a validity check for care-
lessness and mischievous responses. A higher percent-
age of adolescents reported using a fake drug as youth 
reported being less honest (please refer to Table 2).

Missingness and honesty
We studied missing data patterns for all the parameters 
for different honesty levels. As illustrated in Fig. 3 (refer 
to the additional file 1 for a comprehensive view of the 
questionnaire items), SH and RH responses demon-
strated a substantial increase in the percentages of miss-
ing data as the survey progressed compared to their VH 
and PH counterparts. Similarly, the overall missing data 
percentage was higher for SH and RH responses, reveal-
ing a negative association between data missingness and 
self-reported honesty.

Discussion
In the RF model used in the SH and RH datasets, the 
responses from adolescents with lower honesty levels 
detrimentally influenced the model’s accuracy and valid-
ity. To elaborate, the RF model failed to approximate the 
crucial input parameters in these datasets accurately. 
This finding is echoed by the inferential statistical model, 
underpinning its validity.

Additionally, the inferential statistics model demon-
strated inconsistencies in responses from adolescents 
classified as SH and RH, especially for the parameters 
“sold illegal drugs at school” and “was the victim of vio-
lent crime post/while or after drinking alcohol.” These 
parameters are deemed the most stigmatizing among 
the independent parameters in the model, which can 
be related to the impact of social desirability bias on 
the honesty threshold. This relationship also aligns with 
the threshold demarcated from both analytical models, 
emphasizing the association between the honesty thresh-
old and reaction to socially unpleasant scenarios [40, 41].

Table 2 Descriptive statistics
Parameter Data-

set VH 
(%)

Data-
set PH 
(%)

Data-
set SH 
(%)

Da-
taset 
RH 
(%)

Missingness 15.9 15.8 16.7 18
CRAFFT 18.6 21.1 25.4 30.9
Fake drug use 1 1.3 4 15.9
Sold illegal drugs at school 3.3 3.5 6.4 16.2
Been drunk or high at school 7.2 8.7 13.5 21
Drove a car after using marijuana 5.5 5.9 8.1 15.4
Victim of a violent crime (PD) 1 1.2 3.1 10.9
Had a fight (PD) 4 4.7 6.5 13.6
Been hurt/injured (PD) 3.1 3.6 6 13
Got alcohol from a friend 17.2 19.8 20.6 22.2
Got alcohol from a party 8.7 9 10.3 13.8
Got alcohol from parents w/o their 
permission

11.7 14.2 14.8 19.4

Suicidal ideation 46.4 47.1 46.9 45.7
Felt bad about gambling 40.6 41.8 41.4 42.6
Perceived prevalence of alcohol use 
at school (> 90%)

5.6 5.4 8.9 17.2

Perceived risk of marijuana use 84.1 82.7 73.3 64.5
Resolved a substance use problem 3.8 4.3 7.2 15.1
Alcohol use over past year 33.1 42.8 41.6 35.3
Alcohol use during past 30 days 21.2 28.4 35.4 38.3
Binge drinking during past 30 days 8.3 10.4 17.6 25.4
First time alcohol use within past year 18.2 23.6 25.3 23.5

Table 3 OOB and ROC values of RF analysis
Output Dataset VH Dataset PH Dataset SH Dataset RH
OOB (%) 8.14 10.62 13.02 13.79
AUC 1.00 0.93 0.93 0.93
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According to the missing data analysis, less hon-
est respondents were also likelier to leave incomplete 
responses. This association and the missingness thresh-
old observed beginning at the SH level further validate 
our findings from two separate analyses.

The consistency of honesty thresholds emanated 
from both analyses, the relationship of reported fake 
drug use with lower honesty scores, the determined 

association between honesty threshold and social desir-
ability bias, and finally, the confirmation of the honesty 
threshold through missing data analysis all collectively 
emphasize the suitability and reliability of the hon-
esty scale and its relevant threshold. The results suggest 
that carefully applying the honesty scale’s threshold in 
the primary dataset requires the deletion of SH and RH 
responses. However, conceptually, it may be difficult for 

Fig. 2 Odds ratios of the generalized linear model: Analyzing the effects of varying honesty values on the dependent measure, the CRAFFT scale

 

Fig. 1 Gini impurities of the random forest model: Analyzing the effects of varying honesty values on the dependent measure, the CRAFFT scale
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researchers to imagine that youth who provide question-
able responses to an epidemiological survey would recant 
at the end when presented with a self-reported honesty 
item. Nevertheless, these analyses support the occur-
rence of this phenomenon. These findings also indicate 
that it is critical to consider case selection rules and data 
quality when using epidemiological data for studies on 
rarely used substances such as heroin.

Sensitivity testing
As only 8% of the responders in the IYS dataset were 
recognized as sometimes honest and rarely honest, their 
removal may have a minimal impact on aggregated point 
estimates. However, deletion may be more challenging 
to address when dealing with smaller datasets where less 
honest responses constitute a more significant propor-
tion. This is also the scenario when investigators subset 
data from extensive epidemiological studies to investigate 
rare phenomena among youth (e.g., heroin use, recov-
ery, being transgender). For example, if, as we saw here, 
there was more overreporting on a rare phenomenon, it 
would create difficult decisions for researchers using a 
small subset. They would need to choose between poten-
tially lowering the analytic sample size of some groups of 
interest (e.g., transgender youth). This may improve data 
quality but lower statistical power for analyses. In such a 
case, it is advisable to utilize sensitivity analysis (see [16] 
for more details) to designate an appropriate threshold 
for excluding invalid responses, thereby confirming the 
validity and integrity of the findings.

Furthermore, when using honesty item, the direction of 
biases can become observable, as we have demonstrated 

in our RF (Fig. 1) and logistic regression analyses (Fig. 2) 
and descriptive (Table 2). So, this can inform what strate-
gies are needed to address biases introduced by dishon-
est reporting. More guidance, however, is needed on 
what percent of data can be eliminated, so we encourage 
future simulation studies on this topic. We also encour-
age researchers to investigate other ways to model point 
estimates that do not rely on deleting data from respon-
dents reporting low honesty. To our knowledge, there are 
no studies that have empirically validated such corrective 
procedures in adolescent epidemiological research. This 
is especially important in smaller subsets of data drawn 
from large epidemiological surveys.

Limitations
Our study is limited in the following ways. First, the 2020 
IYS did not represent all Illinois youth, as it ended pre-
maturely during the COVID-19 pandemic. Second, no 
biological measures were available to integrate into our 
models, which may have provided additional measures 
for testing the construct validity of the honesty item 
(although we note that biological testing in an epidemio-
logical survey may be cost-prohibitive). Third, our hon-
esty measure was a single item that asked youth about 
their honesty across the entire survey. Some researchers 
are reluctant to use a single item, preferring scales that 
can provide more breadth of measurement. However, we 
note that the single item used here was extensively vali-
dated in this study as an indicator of data quality.

Furthermore, there are examples of single items with 
better predictive validity than entire scales [42, 43]. The 
intrinsic subjectivity, concealed aspects, and variability 

Fig. 3 Missing data percentage for each survey question for different honesty levels
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of social desirability bias pose a substantial challenge in 
its measurement and identification. Also, there are exam-
ples of single items with better predictive validity than 
entire scales [42, 43]. The intrinsic subjectivity, concealed 
aspects, and variability of social desirability bias pose a 
substantial challenge in its measurement and identifica-
tion. Also, our survey responses are provided anony-
mously. Social desirability bias is inversely correlated to 
anonymity in self-reported survey responses. Neverthe-
less, it is essential to recognize that anonymity is not a 
comprehensive solution and cannot eliminate all self-
reporting biases [44]. Consequently, we cannot confirm 
the association between the social desirability bias and 
the honesty threshold.

Finally, evaluating honesty in adolescent self-reported 
surveys is difficult due to subjectivity. Their cognitive 
development stage can obscure the sense of abstract 
concepts such as honesty. Even with anonymity, there 
could be concerns of repercussions directing to less hon-
est responses. Smaller datasets further complicate the 
problem as generalizing results is challenging. Despite 
such issues, numerous measures and indicators can help 
evaluate the reliability and validity of the honesty scale 
for smaller datasets.

Conclusions
Despite the limitations, our study presents a substantial 
contribution to the field. It expands the confirmation of 
this honesty item’s reliability, relevance, and associated 
threshold by involving two analytical methods. More-
over, the designation of a recommended honesty thresh-
old was further substantiated by equipping fake drug use, 
social desirability bias, and missingness in data. Hence, 
our research delivers a more robust test of the honesty 
item’s performance.

In conclusion, we encourage researchers using epide-
miological data to consider the effects of dishonesty as 
a potential limitation. A self-reported honesty item may 
be a scalable solution to improving data quality in large 
epidemiological surveys without increasing respondent 
burden. Researchers are encouraged to set a suitable 
threshold for their specific population. Identifying and 
modeling the impact of invalid responding is advised for 
large epidemiological studies, as they influence public 
health decisions.
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