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Abstract 

Lung cancer is a leading cause of cancer deaths and imposes an enormous economic burden on patients. It is impor-
tant to develop an accurate risk assessment model to determine the appropriate treatment for patients after an initial 
lung cancer diagnosis. The Cox proportional hazards model is mainly employed in survival analysis. However, real-
world medical data are usually incomplete, posing a great challenge to the application of this model. Commonly used 
imputation methods cannot achieve sufficient accuracy when data are missing, so we investigated novel methods 
for the development of clinical prediction models. In this article, we present a novel model for survival prediction 
in missing scenarios. We collected data from 5,240 patients diagnosed with lung cancer at the Weihai Municipal Hos-
pital, China. Then, we applied a joint model that combined a BN and a Cox model to predict mortality risk in individual 
patients with lung cancer. The established prognostic model achieved good predictive performance in discrimina-
tion and calibration. We showed that combining the BN with the Cox proportional hazards model is highly beneficial 
and provides a more efficient tool for risk prediction.
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Introduction
Lung cancer remains a significant public health issue and 
has become the most common cancer worldwide [1]. 
According to Global Cancer Statistics 2020 from GLO-
BOCAN, lung cancer accounts for 17.9% of all cancers 
in China [2]. Regarding mortality, lung cancer accounts 
for 19.4% of cancer deaths in China [3]. Given the high 
incidence and mortality rates, quantifying the risk of lung 
cancer deaths is crucial. Personalized prognostic models 
play a significant role in clinical decision-making, espe-
cially in cancer research, by exploring the relationship 
between predictive factors and outcome risks. Currently, 
many individuals undergo annual physical examinations, 
and electronic health records (EHRs) have collected vast 
amounts of data, which are essential for researching lung 
cancer prognostication. We collected EHR data from 
lung cancer patients diagnosed at Weihai Municipal Hos-
pital in China to predict the overall survival of lung can-
cer patients.

The previous study focused on establishing a survival 
prediction model for lung cancer using regression meth-
ods such as Cox proportional hazards (CPH) model [4]. 
However, a review of published cancer prognostic stud-
ies showed that missing covariate data are relatively 
common in clinical datasets and pose a great challenge 
to regression-based models [5]. Regression-based predic-
tive models do not allow the input of incomplete predic-
tors. In general, imputation of missing values should be 
performed before applying the developed model to new 
patients with missing predictors.

There are multiple methods for handling incomplete 
covariate data, including simple imputation, regres-
sion imputation, and multiple imputation (MI) [6] 
methods [7]. Simple imputation methods are com-
monly used to handle missing data, where the miss-
ing values are replaced by summary statistics such as 
mean, median, or mode. However, these methods tend 
to underestimate the variance of estimates and over-
look correlations among variables, which can lead to 
biased inferences [8]. Regression imputation methods 
incorporate the possible association between missing 
values and other variables to generate more rational 
values. Nonetheless, these methods amplify the corre-
lation among variables while underestimating the data 
variability [9]. The single imputation method does not 
consider the uncertainty related to missing values. MI 
can generate multiple sets of imputed values through 
different models and combine them into a final impu-
tation. This approach ensures that the imputed dataset 
better matches the original data characteristics, thereby 
improving prediction accuracy of statistical models 
built on the imputed dataset. However, the computa-
tional complexity of MI poses challenges when dealing 

with large-scale datasets. Additionally, MI assumes that 
missing values occur randomly; if there is a specific 
missing pattern, such as a non-random mechanism, MI 
may lead to inaccurate conclusions. Owing to the limi-
tations described above, these widely used imputation 
methods cannot achieve sufficient accuracy for datasets 
with missing values. Currently, there is no consensus on 
the most optimal approach for imputing missing data.

To address the challenge of missing data in clinical risk 
assessment, we applied a novel model titled conditional 
survival Bayesian networks (CSBN) [10], which com-
bines the Bayesian network (BN) with the CPH model. 
Bayesian Networks handle missing data effectively by 
constructing a complex network structure of different 
factors, thus eliminating the need for imputing missing 
values before analysis. Given the evidence, the BN can 
infer the posterior probability distribution of query vari-
ables. This ability to update posterior probabilities makes 
it possible for Bayesian networks to solve the prediction 
problem even in the presence of missing data. As a result, 
BN has become a widely used approach for predicting the 
occurrence and progression of diseases as well as evalu-
ating the effectiveness of different treatment options. For 
example, in cancer treatment, doctors could use BNs to 
predict patients’ survival status and evaluate different 
treatment schemes, which can guide the development of 
optimal treatment plans. Moreover, BN’s ability to sup-
port reasoning under uncertainty [11] has made it an 
extensively utilized tool in clinical diagnosis and risk pre-
diction [12].

The remainder of this manuscript is organized as fol-
lows. In Section "Preliminaries", we review the basic con-
cepts of the CPH model and the BN model, followed by 
the CSBN model. In Section "Data", we provide a descrip-
tion of the data used in this study. In Section "Methods", 
we designed a simulation study and provided a compre-
hensive description of the development of a prognos-
tic predictive model for lung cancer. We evaluate the 
performance of the model and compare it with other 
imputation methods on the simulated datasets in Sec-
tion "Results". In Section "Discussion", we discuss the 
advantages and limitations of our model. The conclusion 
is presented in Section "Conclusions". Finally, in Section 
"Future work", we consider future research in developing 
survival prediction models.

Preliminaries
Notations
In this section, we formalize the problem of survival anal-
ysis and describe how we combined the BN with the CPH 
model. The notations used in this paper are described in 
Table 1.
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Cox proportional hazards model
The CPH model [13] is a commonly used statisti-
cal regression model that examines the relationship 
between covariates and time-to-event outcomes. It 
combines the non-parametric baseline hazard with the 
parametric relative risk. In survival analysis, the pri-
mary objective is to estimate the survival probability 
functionS(t) = P(T > t) for each subject. This function 
provides the probability of a subject’s survival time T  
being beyond a given time t [14].

Assuming we have data [X ,T ,E] for each patient, 
where X = {x1, x2, ...xp} represents a p-dimensional vec-
tor comprising predictor variables. The indicator vari-
able E is used to denote the event status. Specifically, 
E = 1 indicates that an event has occurred, while E = 0 
indicates that the event is absent (censored) during the 
follow-up period. The variable T  represents the time at 
which the event occurred (when E = 1 ) or the censor-
ing time (when E = 0).

The hazard function, defined in Eq. (1), describes the 
instantaneous incidence of the event of interest at a 
given time t.

where F(t) stands for a cumulative event probability func-
tion, which can be formulated as F(t) = 1− S(t) . Here, 
S(t) denotes the survival probability function. Addition-
ally, f (t) represents the probability density function of T  , 
which can be calculated as f (t) = d

dt
F(t) = − d

dt
S(t).

The CPH assumes that the hazard function has the 
form, as shown in Eq. (2):

(1)
h(t) = lim

�t→0

Pr(t<T≤t+�t|T≥t)
�t

= lim
�t→0

F(t+�t)−F(t)
�t·S(t) =

f (t)
S(t) ,

where h0(t) represents the baseline hazard function, 
which represents the underlying risk rate at time t when 
all covariates are set to their reference values. X stands 
for the vector of predictors, and β is a vector of unknown 
regression coefficients.

The baseline hazard function is estimated non-para-
metrically using methods such as the Breslow estima-
tor or the Nelson-Aalen estimator [15]. The regression 
parameters β are estimated by maximizing a partial like-
lihood function. Supposing the set of samples consist of 
N  observations (Xi,Ti,Ei) |i=1,2,...N , the partial likelihood 
function is defined in Eq. (3):

In the equation above, D stands for the set of uncen-
sored samples, defined as D = {i|Ei = 1} , where Ei = 1 
indicates an event occurrence. R(t) =

{

j|Tj ≥ t
}

 refers to 
the risk set at time t, which includes individuals who have 
not experienced the event by time t.

Once the parameters β and the baseline hazard func-
tion are derived, the conditional survival probabil-
ity function S(t) for a given predictor vector X can be 
obtained, as shown in Eq. (4),

In this equation, H0(t) represents the baseline cumu-
lative hazard function at time t , which is given by 
H0(t) =

∫ t
0h0(t)dt.

LASSO for Cox proportional hazards model
The Lasso Cox model is a statistical technique that 
combines the Cox proportional hazards model with L1
regularization to achieve variable selection and param-
eter estimation [16]. The integration of  L1 regulariza-
tion constrains certain parameters to 0, which allows for 
variable selection, reduces the complexity of the model, 
and results in greater interpretability while maintaining 
model validity.

The objective function of the Lasso Cox model consists 
of two main components: a log-partial likelihood term 
and an L1 regularization term. The log-partial likelihood 
function, along with the penalty term for parameter esti-
mation in the Cox model, is expressed as follows:

(2)h(t|X) = h0(t) exp(Xβ ′),

(3)L(β) =

i∈D

exp(Xiβ
′)

j∈R(Ti)
exp(Xjβ

′)

(4)
S(t|X) = exp

[

−
∫ t
0 h (s|X) ds

]

= exp
[

−
∫ t
0 h0 (t) ds · exp (Xβ ′)

]

= exp (−H0 (t))
exp (Xβ′) = S0(t)

exp(Xβ ′)

Table 1 Notations used in this manuscript

Notation Description

n number of features

N number of samples

p number of predictors in CPH model

Xi 1× p vector of features for patient i  in CPH model

XBN 1× n vector of variables in Bayesian network model

T observed time

E indicator of event status

xi the i -th variable for each patient

h(t) the hazard function

h0(t) the baseline hazard function

H0(t) baseline cumulative hazard function

S(t) survival probability function

S0(t) baseline survival function
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Where n is the number of the samples, p is the 
dimensionality of β , � is a regularization parameter, 
and 

∑p
k=1 |βk | is the L1 norm. The optimal value of � 

is selected using cross-validation to strike a balance 
between bias and variance in the model.

The log-partial likelihood term assesses the goodness-
of-fit of the model to the data, while the L1 regularization 
term controls the complexity of the model.

The Lasso Cox model effectively eliminates less sig-
nificant variables from the model, leading to improved 
generalization ability and model stability, while simulta-
neously mitigating overfitting issues.

BN
A BN is a directed acyclic graph (DAG) that represents 
probabilistic dependencies among a set of variables. Each 
node in the graph corresponds to a random variable, and 
a directed edge between two nodes indicates the proba-
bilistic relationship between the variables in the network 
[17].

Let XBN = {x1, x2, ...xn} be a set of n variables. A BN 
over XBN  is denoted as a pair B(G,�) , where G repre-
sents the structure of the DAG and � represents the joint 
probability distribution of the DAG [18]. Specifically, if 
there is an edge from node xi to node xj , xi is referred to 
as the parent of xj , and xj is the child of xi . The parents of 
xi in the network are denoted as �xi . Under the assump-
tion of the BN [19], the joint probability of the global 
distribution can be decomposed into a product form as 
given in Eq. (6):

where P
{

xi|�xi

}

 represents the local conditional prob-
ability distribution of xi.

The BN model is trained in two steps: structure learn-
ing and parameter learning [20]. In structure learning, 
the goal is to identify an appropriate DAG that represents 
the relationships among the nodes. Parameter learning, 
on the other hand, aims to determine the conditional 
probability distribution of each node given its parents.

For discrete variables, each node in the BN is associ-
ated with a conditional probability table (CPT). The CPT 
contains the probabilities of each possible value of the 
node, given all possible combinations of states of its par-
ents. The CPT provides the conditional probabilities nec-
essary for inference and prediction in the BN model.

(5)

n
�

i=1

δi







X i β
′ − log





n
�

j=1

I(Tj ≥ Ti) exp (X i β
′)











− �

p
�

k=1

|βk |,

(6)� = P (x1, x1, .., xn) =

n
∏

i=1

P
{

x1|
∏

x1

}

Conditional Survival BNs
Conditional Survival Bayesian Network (CSBN) is a spe-
cial type of BN denoted as B(G′

,�
′
) , where G′ consists of 

a set of discrete nodes (D ) and a survival node (E) . The 
process of learning CSBN involves two steps: learning a 
BN model and combining it with the Cox Proportional 
Hazards (CPH) model.

In the first step, the general BN for the discrete node 
D is learned using standard BN learning techniques. This 
step involves applying standard BN learning algorithms 
to identify the probabilistic dependencies among the dis-
crete variables.

In the second step, the CPH model is utilized to 
extract the most significant risk factors associated with 
survival. These risk factors are then integrated into the 
previously obtained BN by connecting them to the sur-
vival node E . This integration is done by manually add-
ing directed edges from the predictors of the CPH model 
to the survival node E. The parent set of E , denoted as 
�E = X = {x1, x2, ...xp}.

By combining the BN model with the CPH model, the 
structure of the CSBN is obtained, which includes the 
previously learned BN structure along with the additional 
edges connecting the predictors of the CPH model to the 
survival node E.

To determine the values for the CPT of the survival 
node, we estimate PE|X (E|X ,T ) , which represents the 
conditional probability of the event occurring before 
time T  given the states of the parents X . This estimation 
is done using the CPH model and the following general 
formula, as shown in Eq. (7).

where S0(t) is the baseline survival probability at time 
t , which is calculated in the CPH model. The variable xi 
represents the value of the i-th covariate (assume base-
line value standardized to 0), βi represents the estimated 
regression coefficient corresponding to the i-th covariate 
xi , and p stands for the number of covariates in the CPH 
model.

Data
The study utilized a dataset comprising 5,240 lung cancer 
patients who received treatment at the Weihai Munici-
pal Hospital from May 2013 to May 2021. The inclusion 
criteria involved patients diagnosed with primary lung 
cancer within the specified timeframe, while those with 
abnormal ID formats were excluded from the analysis. 
The primary endpoint of the study was overall survival 
(OS), defined as the time from the initial lung cancer 

(7)
PE|X (E = 1|X ,T = t)
= P(E = 1|

∏

E ,T = t)

= 1− S0 (t)
exp(

∑p
i=1βixi),
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diagnosis to the last follow-up or death. The outcomes 
were obtained from the death registry database main-
tained by the Shandong Provincial Center for Disease 
Control and Prevention.

Among the initial cohort of 5,240 participants in this 
study, 51.9% were male and 48.1% were female. The 
median age of the participants was 63 years, ranging 
from 22 to 92 years. The median follow-up period was 
2.04 years, with an interquartile range of 347 to 1,294 
days. During the follow-up, 21% of the patients were 
identified as deceased.

This study incorporated a total of 26 variables, includ-
ing demographic characteristics, comorbidities, labora-
tory and clinical features, as well as diagnostic variables. 
The dataset consisted of both continuous and discrete 
variables. To apply the widely used discrete Bayesian 
Network (BN) method, the continuous variables were 
discretized. For instance, the variable of age was discre-
tized into four groups: < 45, 45–59, 60–74, and > 74 years 
old. Laboratory characteristics were categorized via ter-
tile division, with  T1,  T2, and  T3 representing the first, 
second, and third tertiles of the dataset, respectively.

Methods
Simulation study
To assess the reliability of the CSBN model, a simulation 
experiment was conducted using datasets with varying 
missing rates. Simulated data was employed to evaluate 
the predictive performance of the CSBN model.

In simulated experiments of this study, covariate char-
acteristics were the same distribution as the Weihai 
lung cancer cohort. The event time in the simulations 
was modeled using a log-normal distribution, with the 
parameter determined by XW’, where W’ was obtained 
through log-normal regression in the original data and 
X represented the feature vector. The censoring time was 
modeled using a Weibull distribution, with parameters 
estimated from regression analysis on the original data.

The simulation procedure was repeated 500 times to 
generate a synthetic dataset of 6,000 patients for each 
missing-rate scenario. The simulated datasets were 
divided into training and test sets in a 1:1 ratio. To intro-
duce missing values, we randomly removed observations 
from the test data, with the proportion of missing values 
ranging from 10% to 40% in increments of 10%.

We compared the CSBN model with three other com-
monly used imputation methods, namely KNN, MICE, 
and missForest. The recently proposed missForest 
method uses random forest to predict the missing values 
[21]. The KNN algorithm [22] is based on the nearest-
neighbor search, where each missing value is replaced by 
a weighted mean of k-nearest observation values. MICE 
[23] is a multiple imputation method that iteratively 

imputes missing values by fitting conditional models for 
each variable.

For this experiment, we fixed the number of nearest 
neighbors at five for the KNN algorithm, and the num-
ber of multiple imputations was set at 10 for MICE. The 
simulated datasets were imputed using these three impu-
tation methods and then utilized in a multivariable Cox 
model to make survival predictions.

We compared the CSBN model with three imputa-
tion methods on simulated datasets that had varying 
proportions of missing values. The accuracy of differ-
ent predictive models was compared using their average 
AUC values across 500 simulated datasets. The simula-
tion aimed to evaluate the impact of different imputation 
methods on the predictive performance of lung cancer 
prediction models.

Statistical analysis
We searched for potential predictors of lung cancer by 
conducting a univariable analysis with Cox proportional 
hazards regression within the derivation cohort. We con-
ducted a LASSO penalty with tenfold cross-validation 
to select prognostic predictors of lung cancer. The pre-
dictive ability of our models was assessed using the area 
under the receiver operating characteristic curve (AUC), 
Harrell concordance index (C-index), and calibration 
curves [24,  25]. Furthermore, to evaluate their clinical 
utility, decision curveanalyses (DCA) were carried out 
[26]. We employed R software version 4.0.5 to build the 
model and perform statistical analyses with the following 
packages: survival, bnlearn, pROC, coxph. The flow chart 
of the prediction model development process is shown in 
Fig. 1.

Variable selection
The data was divided into training and validation cohorts 
based on the completeness of patient’s information. The 
training cohort comprised 2,137 participants with no 
missing covariates, while the validation cohort had 3,103 
participants with missing values. The baseline character-
istics of both cohorts were stratified by survival outcome 
and summarized in Supplementary Table 1.

The training cohort was utilized for developing the 
predictive model. To construct a predictive model and 
identify potential factors that may be associated with the 
risk of death in lung cancer patients, all candidate factors 
were screened by univariate Cox regression analysis with 
a significance threshold of p < 0.05 . The complete form 
of univariate Cox regression analyses for overall survival 
is presented in Table  2. The univariate Cox regression 
analyses  revealed that smoking, older age, pleural effu-
sion, worse pathological stage, lung abscess, pulmonary 
heart disease, interstitial lung disease (ILD), pulmonary 
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embolism, respiratory failure, higher red blood cell 
count, higher fibrinogen, higher eosinophil, and being 
male were associated with a higher mortality risk from 
lung cancer.

To further simplify the model and alleviate the prob-
lem of overfitting, LASSO regression was introduced for 
feature selection. The LASSO method is a useful feature 
selection method that reduces the coefficient of insig-
nificant variables to 0 with a penalty function. Twenty-
two variables initially screened through univariate Cox 
regression analyses were considered as potential varia-
bles for the LASSO Cox model. The optimal penalization 
coefficient for the model was selected through tenfold 
cross-validation. By utilizing the LASSO selection pro-
cedure in multivariate Cox proportional hazards models, 
twelve independent prognostic predictors for lung cancer 
were identified (Fig. 2). These predictors were then inte-
grated into the Bayesian network (BN) by directly linking 
them to the lung cancer survival outcome node.

The final multivariable Cox regression model was con-
structed using all the prognostic predictors obtained 
from the LASSO selection procedure. The regression 
coefficients and hazard ratios of these prognostic fac-
tors are presented in Table 2. In the multivariate analysis, 
several factors were found to be independent prognostic 
factors for poorer overall survival in lung cancer patients, 

which aligns with previous reports [27–29]. These fac-
tors include worse pathological stage, smoking, older 
age, COPD, higher fibrinogen level, and pneumonia. We 
also found that alcohol drinking had a protective effect 
on lung cancer, but this was not statistically significant 
( P = 0.195 ). Previous studies have suggested that low 
or moderate alcohol consumption is associated with a 
reduced risk of lung cancer death [30].

The process of generating the BN model
The BN model was constructed using the 22 significant 
variables identified through univariable analysis with Cox 
proportional hazards regression. The network structure 
was determined using a data-driven approach that com-
bined a tabu-search algorithm [31] with prior knowledge 
from the medical literature. For instance, based on avail-
able medical evidence, the nodes representing age and 
gender were allowed to have a direct influence on smok-
ing, while no variable was permitted to influence age and 
sex [32]. Moreover, considering that smoking is the pri-
mary cause of COPD, COPD was represented as a child 
node of smoking in the BN [33].

To achieve a high-quality and robust network 
structure, this study employed Bootstrap and model 
averaging methods in the network structure learn-
ing process [34]. These methods were used to obtain 

Fig 1 Flowchart of prediction model development process
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Table 2 Univariate Cox regression analysis and multivariate Cox regression analysis

Univariate analysis Multivariate analysis

Characteristic Beta HR (95% CI) P Beta HR (95% CI) P

Gender

 Female Reference Reference

 Male 0.799 2.224 (1.864–2.654) <0.001 0.074 1.077 (0.839–1.383) 0.560

Age

  (18,44] Reference Reference

  (44,59] 0.784 2.190 (1.117–4.296) 0.023 −0.037 0.964 (0.487–1.909) 0.916

  (59,74] 1.107 3.025 (1.560–5.865) 0.001 0.108 1.114 (0.567–2.191) 0.754

  (74,92] 1.758 5.800 (2.897–11.612) <0.001 0.509 1.664 (0.822–3.372) 0.157

Smoking

 Never Reference Reference

 Current 1.033 2.809 (2.321–3.398) <0.001 0.585 1.795 (1.306–2.466) <0.001

 Former 0.628 1.874 (1.497–2.345) <0.001 0.186 1.205 (0.881–1.647) 0.243

Drinking

 no Reference Reference

 yes 0.686 1.986 (1.672–2.359) <0.001 −0.172 0.842 (0.650–1.092) 0.195

NSCLC

 no Reference Reference

 yes −1.117 0.327 (0.265–0.404) <0.001 −0.09 0.914 (0.736–1.135) 0.416

Radiotherapy 0.431 1.539 (1.290–1.836) <0.001

Chemotherapy 0.555 1.743 (1.475–2.060) <0.001

Targeted therapy 0.656 1.928 (1.627–2.284) <0.001 −0.459 0.632 (0.525–0.761) <0.001

COPD 0.633 1.884 (1.591–2.230) <0.001 0.195 1.216 (1.009–1.465) 0.040

Pneumonia 0.93 2.535 (2.145–2.996) <0.001 0.125 1.133 (0.946–1.359) 0.176

Pleural effusion 1.063 2.894 (2.431–3.445) <0.001

STAGE

 I Reference Reference

 II 1.888 6.607 (3.105–14.058) <0.001 1.778 5.916 (2.771–12.631) <0.001

 III 3.234 25.393 (14.608–44.140) <0.001 3.027 20.644 (11.716–36.377) <0.001

 IV 3.897 49.263 (28.908–83.952) <0.001 3.716 41.091 (23.662–71.356) <0.001

URI −0.445 0.641 (0.443–0.926) 0.018

Lung abscess 0.876 2.402 (1.322–4.365) 0.004

Pulmonary embolism 1.138 3.121 (2.037–4.783) <0.001

Pulmonary heart disease 1.013 2.753 (1.954–3.877) <0.001

ILD 1.022 2.779 (1.980–3.899) <0.001 0.416 1.515 (1.063–2.159) 0.021

Respiratory failure 1.368 3.926 (2.902–5.313) <0.001 0.628 1.873 (1.362–2.577) <0.001

Red blood cell count

  T1 Reference

  T2 0.517 1.678 (1.300–2.166) <0.001

  T3 1.039 2.825 (2.219–3.598) <0.001

Eosinophil

  T1 Reference

  T2 0.517 1.678 (1.300–2.166) <0.001

  T3 1.039 2.825 (2.219–3.598) <0.001

Fibrinogen

  T1 Reference Reference

  T2 0.804 2.234 (1.711–2.917) <0.001 0.276 1.318 (1.004–1.730) 0.047

  T3 1.754 5.780 (4.537–7.363) <0.001 0.57 1.769 (1.374–2.277) <0.001
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high-confidence connections as prior information for 
network construction. The high-confidence connec-
tions were treated as a whitelist within the Bayesian 
network. Parameter learning was carried out using the 
maximum likelihood estimation algorithm to derive the 
conditional probability tables for each node. The visu-
alization of the network topology is depicted in Fig. 3.

Combination of the BN and Cox model
In order to leverage the strong estimation capabilities 
of Cox regression models for survival data along with 
the effective inference capabilities of BN, an additional 
node representing the survival outcome of lung can-
cer patients was incorporated into the constructed BN. 
This survival outcome node provided information on 
whether each patient experienced mortality (valued 1) 
or survival (valued 0). The independent prognostic fac-
tors identified through LASSO Cox regression analysis 
were directly linked to the lung cancer survival out-
come node. The conditional probability table for the 
survival outcome node was determined using Eq. (7).

The final conditional survival BN model was obtained 
by re-estimating the parameters of the BN. The param-
eters of the survival outcome node were specifically 
determined using the Cox proportional hazards model. 

The results of the Cox model are embedded in a Bayes-
ian network in the form of a conditional probability 
table. The likelihood weighting inference algorithm [35] 
in the Bayesian network was used to determine three-
year survival probabilities in lung cancer patients.

Results
Simulation experiment for varying missing rates
The results depicted in Fig. 4 display the AUCs of various 
survival prediction models on simulated datasets with 
different proportions of missing values. As expected, 
the AUC decreased with an increase in the proportion 
of missing values in the validation dataset. At each miss-
ing proportion level, the CSBN model demonstrated the 
highest performance, followed by KNN. Moreover, the 
performance gap between CSBN and KNN widened as 
the proportion of missing values increased. The mean 
performance of missForest and MICE was nearly identi-
cal. Additionally, we observed that the AUC of the CSBN 
model remained relatively stable compared to the other 
three imputation methods as the missing rate escalated 
from 10% to 40%.

When evaluating the impact of missing values, we 
found that the CSBN model exhibited good performance 

Table 2 (continued)

Univariate analysis Multivariate analysis

Characteristic Beta HR (95% CI) P Beta HR (95% CI) P

Direct bilirubin

  T1 Reference

  T2 −0.396 0.673 (0.556–0.816) <0.001

  T3 −0.774 0.461 (0.370–0.575) <0.001

Fig 2 Feature selection using the LASSO Cox regression model. a LASSO coefficient profiles of the 22 predictors in the training cohort. b 
Cross-validation to select the optimal regularize parameter � based on the error within one standard error range of the minimum, 12 predictors 
selected using LASSO Cox regression analysis
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even when the missing rate reached 40%, maintaining a 
strong discriminatory ability with an AUC higher than 
0.8. In contrast, the AUC of the CPH model experi-
enced a more significant decline when utilizing general 

imputation methods. This result provides evidence that 
the CSBN model surpasses commonly used imputation 
methods and exhibits superior robustness in handling 
missing data.

Fig 3 Bayesian network structure

Fig 4 Boxplots of the AUCs for models with different imputation methods on the following four simulated datasets. 1. Proportion of missing values 
= 10%, 2. Proportion of missing values = 20%, 3. Proportion of missing values = 30%, 4. Proportion of missing values = 40%. Note that the CSBN 
model attained the best performance. As the missing rate increased, the average AUCs of the Cox model decreased significantly, but the average 
AUCs of the CSBN were both good and stable
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Validation cohort performance
Having demonstrated the superior performance of the 
CSBN model on simulated datasets, we next verify 
whether it can maintain this level of performance in real-
world cases. To verify the validity of the CSBN model, the 
remaining 3,103 medical records in the validation cohort 
were used as test samples. In this cohort, we excluded 
patients who did not complete the three-year follow-up 
period, resulting in 1,433 samples used for internal model 
validation.

We evaluated the predictive performance of the CSBN 
model in terms of discrimination and calibration. Dis-
crimination was assessed using the concordance statistic 
and the AUC. The calibration plot was employed to assess 
the agreement between the predicted and observed risk 
of lung cancer.

The CSBN model exhibited good discrimination for 
three-year survival, with an AUC of 0.870 (95% CI: 
0.845~0.895) in the training cohort and 0.896 (95% CI: 
0.878~0.913) in the validation cohort (Fig.  5). The cali-
bration plot was generated by plotting the observed and 
predicted risk in each decile of predicted risk. The calibra-
tion curve for three-year survival in the validation cohort 
demonstrated a high level of consistency between the pre-
dicted probabilities and the observed probabilities (Fig. 6).

To further evaluate the performance, we compared 
the CSBN model with the CPH model. We assessed the 
predictive accuracy of the CPH model in the validation 
cohort by imputing the incomplete test samples using the 
non-parametric missing data imputation method imple-
mented via the R-package of missForest. The imputed 
data was then used to make three-year survival predic-
tions using the CPH model.

The CPH model alone yielded an AUC of 0.863 (95% 
CI, 0.848~0.877) for three-year overall survival in the val-
idation cohort. In contrast, the CSBN model achieved a 
slight improvement in predictive power in the presence 
of missing predictors.

To compare the clinical utility between our prediction 
model and the CPH model, we conducted decision curve 
analysis. DCA evaluates the clinical usefulness by calcu-
lating the net benefit, which involves a trade-off between 
true positive rates and false-positive rates. Specifically, 
we calculated the net benefit at a range of risk thresholds 
for each model.

As shown in Fig. 7, the standardized net benefit of our 
model surpassed that of the CPH model within the range 
of threshold probabilities up to 70%. This demonstrates 
the utility contribution of the BN approach.

Discussion
In this study, we utilized a joint model that combines 
the Cox proportional hazards model with the Bayes-
ian network (BN) to predict three-year survival in lung 
cancer patients. The established prognostic model 
for lung cancer was evaluated using two performance 
metrics, namely the AUC and calibration, and inter-
nal validation demonstrated high discrimination and 
calibration.

Through simulation studies, we discovered that the BN 
strategy significantly enhances discrimination compared 
to missForest, KNN, and MICE methods when dealing 
with high ratios of missing data. Our findings provide 
support for the use of the CSBN model as an effective 
tool for risk prediction, particularly when clinical records 
of patients are incomplete.

Fig 5 ROC curves of the CSBN. The ROC curves of the CSBN predicting three-year overall survival in the training cohort (a) and validation cohort (b)
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The CSBN model utilizes Bayesian networks to rea-
son about the probability of event occurrence based on 
the available variables and their conditional probabil-
ity relationships, effectively addressing the challenge of 
risk assessment with incomplete information. The pro-
posed approach in this study has a fourfold contribu-
tion. (1) The proposed prediction model compensated 
for the shortcomings of the CPH model, where predic-
tions should be made based on all known variables in the 

model. This was achieved by inference methodologies of 
the BNs model. (2) BNs have the ability to incorporate 
expert knowledge and observational data to identify the 
conditional independence between risk factors. They also 
provide a visual tool that intuitively reflects the relation-
ship between survival and prognostic factors. (3) Since 
the model is based on readily available covariates in daily 
clinical practice, it can serve as a prognostic instrument 
for individual lung cancer patients, assisting clinicians 

Fig 6 Calibration plots of the CSBN. The calibration curves of the CSBN for predicting three-year overall survival in the training cohort (a) 
and validation cohort (b)

Fig 7 Decision curve analysis for the comparison of the net benefit between the CSBN model (blue line) with the CPH model (red dotted line). The 
CSBN model achieved a higher net benefit compared with the CPH model
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in decision-making processes. (4) As BNs derive predic-
tions through a probabilistic framework, the results can 
be explained from a probability perspective.

The CSBN model effectively addresses the challenges of 
missing data in risk assessment while maintaining high pre-
diction accuracy. However, we must acknowledge the limi-
tation that the CPT of the survival outcome node grows 
exponentially as the number of its immediate parent nodes 
increases [36]. To avoid the problem of dimensionality and 
expand the applicability of the CSBN model, we employed 
variable selection techniques to reduce the complexity of 
the CPH model. There are many existing variable selection 
techniques such as optimal subset variable selection, step-
wise regression, and LASSO [37]. In this study, the widely 
used lasso penalty was utilized for variable selection.

Conclusions
In this study, we used a hybrid solution that combined 
a CPH model and a BN model to solve the problem of 
missing data in prognostic research for lung cancer. 
Internal validation suggests that our model has good pre-
dictive performance in both discrimination and calibra-
tion. In addition, the simulation results show that the BN 
imputation methods are more efficient than other widely 
used imputation methods and relatively robust among 
various missing rates of the data. The BN model effec-
tively handles missing data and enhances the robustness 
of the model through probabilistic inference.

Our findings suggest that the BN model has promis-
ing potential in improving the accuracy and reliability of 
survival prediction in the presence of missing data. These 
results provide valuable insights into the application of 
BN models in healthcare and medical research.

Future work
Survival analysis plays a critical role in various fields, but 
the presence of missing data often poses challenges in accu-
rately estimating survival probabilities and making reliable 
predictions. In this study, we developed and optimized 
a Bayesian network model for survival analysis. The BN 
model captures missing data variability from a probabilistic 
standpoint, resulting in improved model robustness.

Accurately assessing patient risk is crucial for making per-
sonalized treatment decisions in clinical practice. Future 
research can explore further optimization and improvement 
of the model. Introducing additional clinical features and bio-
markers provides a potential avenue to enhance the accuracy 
of the models. By incorporating a broader range of variables, 
we can improve the model’s predictive power and its applica-
bility in real-world clinical settings. Ultimately, these advance-
ments in personalized medicine can lead to improved patient 
outcomes and more effective healthcare services.
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