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Abstract
Background  Administrative healthcare claims databases are used in drug safety research but are limited for 
investigating the impacts of prenatal exposures on neonatal and pediatric outcomes without mother-infant pair 
identification. Further, existing algorithms are not transportable across data sources. We developed a transportable 
mother-infant linkage algorithm and evaluated it in two, large US commercially insured populations.

Methods  We used two US commercial health insurance claims databases during the years 2000 to 2021. Mother-
infant links were constructed where persons of female sex 12–55 years of age with a pregnancy episode ending in 
live birth were associated with a person who was 0 years of age at database entry, who shared a common insurance 
plan ID, had overlapping insurance coverage time, and whose date of birth was within ± 60-days of the mother’s 
pregnancy episode live birth date. We compared the characteristics of linked vs. non-linked mothers and infants to 
assess similarity.

Results  The algorithm linked 3,477,960 mothers to 4,160,284 infants in the two databases. Linked mothers and linked 
infants comprised 73.6% of all mothers and 49.1% of all infants, respectively. 94.9% of linked infants’ dates of birth 
were within ± 30-days of the associated mother’s pregnancy episode end dates. Characteristics were largely similar in 
linked vs. non-linked mothers and infants. Differences included that linked mothers were older, had longer pregnancy 
episodes, and had greater post-pregnancy observation time than mothers with live births who were not linked. 
Linked infants had less observation time and greater healthcare utilization than non-linked infants.

Conclusions  We developed a mother-infant linkage algorithm and applied it to two US commercial healthcare 
claims databases that achieved a high linkage proportion and demonstrated that linked and non-linked mother and 
infant cohorts were similar. Transparent, reusable algorithms applied to large databases enable large-scale research 
on exposures during pregnancy and pediatric outcomes with relevance to drug safety. These features suggest studies 
using this algorithm can produce valid and generalizable evidence to inform clinical, policy, and regulatory decisions.
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Background
Pregnancy is characterized by distinct periods of embry-
onic development representing critical exposure win-
dows for children’s health [1]. Exposures before or during 
pregnancy, including pharmaceuticals, can affect con-
ception, fetal development, pregnancy outcomes, and 
children’s health. While up to 90% of women take medi-
cation during pregnancy [2, 3], drug safety evidence 
is scarce because clinical trials often exclude pregnant 
people [4–6]. Mechanisms for generating pregnancy drug 
safety evidence are available, such as teratology informa-
tion services [7], pregnancy and birth registries [8–12], 
case control studies [13], prospective cohort studies 
[14], and linked registry and prescription data resources 
[15]. However, these approaches often lack power to 
adequately assess rare exposures or outcomes, suffer 
from information biases, are slow to deliver results, may 
reflect selected populations, and are resource intensive. 
This research landscape produces an incomplete under-
standing of the benefits and risks of prenatal medication 
use and resultant birth outcomes. Timely and robust 
evidence is urgently needed in this population, as high-
lighted by the COVID-19 pandemic and the lack of effi-
cacy and safety data for vaccine receipt during pregnancy.

Calls have been made to use real-world data (RWD) to 
study medication effects in pregnancy and are increas-
ingly accepted by health authorities as part of post-
authorization safety commitments [16, 17]. Large, 
administrative healthcare databases for pregnancy 
research are advantageous because they include large 
samples, multi-therapeutic area drug dispensing and 
diagnosis reimbursement claims, longitudinal patient 
observation, and reflect routine-care clinical practice 
[18].

To assess prenatal exposures on infant outcomes 
in RWD requires implementing algorithms to define 
pregnancy episodes and to link live births to infant 
records, which is challenging in the United States 
where national health record identifiers are absent. 
Mother-infant linkage has been conducted using US 
administrative healthcare databases, including among 
Medicaid, commercially-insured, and Military Health 
System populations [19–24]. Other efforts, such as the 
Medication Exposure in Pregnancy Risk Evaluation Pro-
gram (MEPREP) [25, 26], have linked administrative and 
electronic health record data to state birth records. How-
ever, details on linkage confidence and evaluation are 
sparse [27].

Our study builds on past efforts to create mother-infant 
linked cohorts in RWD. The objective of this work was to 
link mother and infant data using two large, US commer-
cial insurance databases. We also sought to evaluate the 
algorithm through comprehensive characterization com-
parisons between linked and non-linked mothers and 

infants. In contrast to other linkage studies that use pro-
prietary algorithms, our algorithm is publicly available. 
The algorithm was developed for use against the Obser-
vational Medical Outcomes Partnership (OMOP) Com-
mon Data Model (CDM) [28, 29], so it may be applicable 
to similar databases that have been standardized. Our 
linkage algorithm furthers earlier linkage work based 
on insurance enrollment ID matching only, by applying 
additional temporal criteria intended to increase linkage 
confidence.

Methods
Data sources
The study used two health insurance claims databases, 
IBM® Marketscan® Commercial Database (CCAE)
[2000–2022] and Optum’s de-identified Clinformatics® 
Data Mart Database (Clinformatics®)[2000–2021]. Both 
contain de-identified, patient-level, encounter-based, 
longitudinal, employer-based US administrative health 
insurance claims records and include inpatient and out-
patient diagnoses, procedures, and outpatient prescrip-
tion dispensing records. Both databases use a unique 
insurance enrollment ID for identifying beneficiaries 
and their dependents under a single, primary insurance 
holder account. Both databases were transformed to the 
OMOP CDM, which provides a standardized represen-
tation of database structure and clinical content [30] to 
enable consistent analysis across disparate healthcare 
databases [31, 32]. Detailed database descriptions are in 
Additional file 1.

Linkage algorithm
The linkage algorithm relies on and is distinct from an 
algorithm for identifying pregnancy episodes and out-
comes [33]. The pregnancy episodes algorithm was pre-
viously described, implemented, and validated in several 
administrative healthcare databases, including those 
utilized in this study [33]. In the pregnancy episodes 
algorithm, pregnancy outcomes (live births, stillbirths, 
abortions, and ectopic pregnancies) with associated dates 
were identified among women aged 12–55 years. Second, 
it estimated pregnancy start dates using a hierarchy of 
pregnancy markers, such as last menstrual period, amen-
orrhea, urine tests, and ultrasounds. The algorithm was 
validated through clinical adjudication of 700 electronic 
pregnancy episode profiles from Clinformatics® and the 
Clinical Practice Research Database that demonstrated 
high agreement between algorithm results and reviewers 
on 6 operating characteristics. This algorithm is currently 
being updated to include gestational age indicators in the 
ICD-10-CM vocabulary [34, 35].
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Step 1: identify candidate mothers and infants
We first identified candidate mothers as females whose 
pregnancy episode(s) ended with live birth and occurred 
during a period of insurance enrollment.

Multiple periods of insurance enrollment were com-
bined into a single observation period provided gaps 
between an enrollment period end and subsequent start 
date were ≤ 30 days. We identified candidate infants as 
persons whose year of birth was the same as their first 
observation period start year (i.e., were 0 years of age at 
observation period start) and had an insurance enroll-
ment ID shared with a candidate mother. Candidate 
infants’ date of birth (DOB) was set as year, month, and 
day. Year of birth was available for all persons in both 
databases. Month and day were unavailable in the data 
sources we used through the patient de-identification 
process, so we inferred these components from observa-
tion period start month and day. Most day of birth val-
ues were set as 1 because insurance enrollment typically 
begins on the first day of a month. We refer to this date 
as the inferred date of birth, rather than the true date of 
birth, which we assert is the delivery date of the corre-
sponding linked mother, where links were established. 
The algorithm will use month and day of birth if available 
but will set these values to month and day of enrollment 
start otherwise. This supports algorithm transportability 
if used in other insurance claims databases where birth 
date information may or may not be redacted.

Step 2: identify candidate mother-infant links
We identified candidate links between mothers and 
infants where they matched on insurance enrollment ID 
and the candidate infant’s inferred DOB occurred during 
a candidate mother’s observation period.

Step 3: classify probable mother-infant links
We identified probable links between mothers and 
infants by restricting to those where the candidate 
infant’s DOB occurred within ± 60 days of the candidate 
mother’s pregnancy episode end date. This correspon-
dence window was varied in a sensitivity analysis (Addi-
tional file 1).

Step 4: exclude ambiguous mother-infant links
In Step 2, we identified rare instances where multiple 
mothers could be associated with a single infant. These 
records were excluded from analysis.

Cohorts used in algorithm evaluation
Nine cohorts were constructed to compare characteris-
tics between linked vs. non-linked mothers and infants. 
The index date refers to the temporal reference against 
which covariates were constructed.

1)	 Mothers linked to ≥ 1 infant indexed at pregnancy 
episode start.

2)	 Mothers linked to ≥ 1 infant indexed at pregnancy 
episode end.

3)	 Infants linked to a mother indexed at inferred DOB.
4)	 Mothers not linked to an infant indexed at pregnancy 

episode start.
5)	 Mothers not linked to an infant indexed at pregnancy 

episode end.
6)	 Infants not linked to a mother indexed at inferred 

DOB.
7)	 Candidate mothers indexed at pregnancy episode 

start.
8)	 Candidate mothers indexed at pregnancy episode 

end.
9)	 Candidate Infants indexed at inferred DOB.

Note that cohorts 7, 8, and 9 were constructed to create 
cohorts 4, 5, and 6. For example, cohort 4 equals moth-
ers in cohort 7 with mothers from cohort 1 removed. 
Cohorts 1–3 and 4–6 were used in characteristic 
comparisons.

Characterization analyses
We characterized mother cohorts using demographic, 
clinical, and healthcare utilization covariates relative to 
each index date: once with covariates that reflect events 
observed during the year before or on the pregnancy 
episode start date (reported in Table  1), and again with 
covariates that reflect events observed during the year 
before or on the delivery date (reported in Table 2). The 
intent of Table 1 is to describe pre-pregnancy character-
istics, whereas the intent of Table 2 is to describe charac-
teristics that occur mostly during pregnancy (recognizing 
the limitation that approximately 3 months of the one-
year covariate construction window is before pregnancy 
start). We characterized the infant cohorts with covari-
ates that reflect events observed on or during the year 
after the inferred DOB. See Additional file 1 for details 
on how demographic, clinical, and healthcare utiliza-
tion covariates were measured. For example, if a proce-
dure code for a basic metabolic panel was observed on 
a patient record 3 months before delivery date, a mea-
surement covariate would be constructed indicating that 
the test was performed but it would not include any lab 
results.

Lastly, we compared characteristics between linked vs. 
non-linked mothers and infants to evaluate differences 
between populations that did and did not meet linkage 
algorithm criteria. We made covariate comparisons by 
calculating the standardized mean difference (SMD) for 
each covariate in units of the pooled standard deviation, 
a metric uninfluenced by large sample sizes [36], and 
interpreted SMD values > 0.1 as meaningfully different 
[37, 38].
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CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 995,892)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 420,199)

SMD

Index year
2000 0.61 0.72 0.013 1.35 1.39 0.003
2001 0.94 1.13 0.019 3.83 3.77 -0.003
2002 1.92 2.04 0.009 4.71 4.54 -0.008
2003 3.11 2.64 -0.028 4.84 4.65 -0.009
2004 4.02 3.39 -0.033 4.8 4.49 -0.015
2005 3.97 3.27 -0.037 6.18 4.09 -0.095
2006 4.74 4.11 -0.031 6.3 4.76 -0.067
2007 4.93 4.36 -0.027 6.31 4.81 -0.065
2008 6.07 5.25 -0.036 5.93 4.64 -0.058
2009 6.17 5.83 -0.014 5.12 5.18 0.003
2010 7.45 6.47 -0.039 4.54 6.01 0.066
2011 8.16 8.36 0.007 4.37 6.45 0.092
2012 6.85 7.69 0.032 4.87 5.33 0.021
2013 6.96 7.26 0.012 4.71 4.81 0.005
2014 5.9 6.82 0.038 4.41 4.78 0.018
2015 5.34 5.99 0.028 4.6 5.02 0.02
2016 4.96 5.45 0.022 4.67 5.17 0.023
2017 4.87 5.11 0.011 4.81 5.28 0.022
2018 5.09 5.27 0.008 4.78 5.11 0.015
2019 4.5 4.79 0.014 4.44 4.89 0.021
2020 3.43 4.06 0.033 4.33 4.65 0.015
2021 0 0.01 0.008 0.11 0.18 0.017
Index month
1 10 9.71 -0.01 9.05 9.14 0.003
2 7.58 10.71 0.109 7.79 8.32 0.019
3 6.1 14.36 0.275 7.86 9.19 0.048
4 7.4 8.38 0.037 7.42 7.7 0.011
5 8.48 7.07 -0.053 8.24 7.97 -0.01
6 8.42 6.8 -0.061 8.07 7.8 -0.01
7 8.88 6.89 -0.074 8.41 8.11 -0.011
8 8.79 6.84 -0.073 8.37 8.01 -0.013
9 8.7 7.1 -0.059 8.52 8.18 -0.012
10 8.73 7.43 -0.048 8.79 8.48 -0.011
11 8.49 7.23 -0.047 8.7 8.4 -0.011
12 8.43 7.47 -0.036 8.78 8.71 -0.003
Age (years)
Mean 31.22 27.36 -0.483 30.93 27.94 -0.357
Std. deviation 4.68 6.48 4.88 6.81
Median 31 27 31 28
Prior observation time (days)
Mean 737.21 833.74 0.079 715.62 778.33 0.054
Std. deviation 743.73 978.46 741.25 893.25
Median 503 489 476 472
Post observation time (days)
Mean 1357.52 959.98 -0.265 1221.15 930.43 -0.212
Std. deviation 1193.69 905.81 1092.51 829.61
Median 929 648 825 642
Pregnancy episode length (days)
Mean 273.15 269.83 -0.111 272.73 270.33 -0.08
Std. deviation 18.44 23.58 18.89 23.27

Table 1  Selected characteristics of linked and non-linked mothers, measured 365 days before and including pregnancy start
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Results
All source code and an interactive web application for 
viewing full results is available at https://data.ohdsi.org/
MotherInfantLinkEval/. A reader can navigate to this 
web-based application to review the full characterization 
results set for each linked vs. non-linked comparison. By 
default, the table reports characteristic prevalence results 
for linked vs. non-linked cohorts sorted by largest to 
smallest standardized mean difference between charac-
teristic prevalence. Additionally, a reader can search for 
characteristics of interest using the search bar.

Figure  1 depicts step-by-step attrition of the linkage 
algorithm.

In CCAE, 3,064,263 candidate mothers and 2,942,216 
candidate infants were identified in Step 1, of whom 

26.8% and 1.4% were dropped respectively during Step 
2, resulting in 2,915,538 candidate links. Links were 
reduced by 13.2% and 0.1% in steps 3 and 4 respec-
tively, which resulted in 2,528,482 links: 2,146,726 linked 
mothers, and 2,528,482 linked infants. 31.3% of linked 
infant’s DOB were on the same day as their linked moth-
er’s pregnancy episode end date and 58.3%, 71.5%, and 
92.1% occurred within ± 7 days, ± 14 days, and ± 30 days, 
respectively. Linked infant’s DOB was on average 5.9 days 
(SD = 15.1, median = 1) after the pregnancy episode end 
date. Linked mothers comprised 70.1% of all mothers 
(n = 3,064,263) and linked infants comprised 51.2% of all 
infants (n = 4,935,376) (Additional file 1).

In Clinformatics®, 1,684,615 candidate mothers and 
1,823,690 candidate infants were identified, of whom 

CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 995,892)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 420,199)

SMD

Median 278 277 278 278
Distinct conditions
Mean 6.67 6.77 0.01 6.95 7.45 0.045
Std. deviation 6.73 7.34 7.38 8.18
Median 5 4 5 5
Distinct drug ingredients
Mean 4.68 4.62 -0.009 4.14 4.44 0.04
Std. deviation 5.39 5.49 5.17 5.5
Median 3 3 3 3
Distinct procedures
Mean 7.4 6.62 -0.075 7.08 6.92 -0.015
Std. deviation 7.39 7.28 7.61 7.71
Median 5 5 5 5
Distinct measurements
Mean 6.7 6.29 -0.025 13.62 12.48 -0.03
Std. deviation 11.93 11.86 27.48 25.9
Median 3 3 3 3
Distinct visit types
Outpatient Visit
Mean 6.61 5.51 -0.085 6.38 5.89 -0.036
Std. deviation 9.81 8.31 10.47 8.98
Median 4 3 3 3
Inpatient Visit
Mean 0.11 0.11 0 0.1 0.11 0.003
Std. deviation 1.11 1.25 0.77 0.94
Median 0 0 0 0
Emergency Room Visit
Mean 0.16 0.34 0.09 0.38 0.33 -0.007
Std. deviation 1.16 1.56 6.14 4.89
Median 0 0 0 0
Charlson comorbidity index
Mean 0.19 0.2 0.002 0.22 0.24 0.017
Std. deviation 0.85 0.89 0.93 1.02
Median 0 0 0 0
CCAE: IBM® Marketscan® Commercial Database; Clinformatics®: Optum’s de-identified Clinformatics® Data Mart Database; SMD: Standardized difference of means

Table 1  (continued) 

https://data.ohdsi.org/MotherInfantLinkEval/
https://data.ohdsi.org/MotherInfantLinkEval/
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CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 995,892)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 420,199)

SMD

Index year
2000 0.1 0.31 0.047 0.01 0.02 0.01
2001 0.64 0.87 0.026 2.01 2.2 0.013
2002 1.14 1.51 0.032 4.27 4.29 0.001
2003 2.21 2.26 0.003 4.82 4.67 -0.007
2004 3.32 2.87 -0.026 4.78 4.57 -0.01
2005 4.08 3.44 -0.034 5.07 4.05 -0.049
2006 4.03 3.37 -0.035 6.37 4.42 -0.087
2007 4.81 4.21 -0.029 6.3 4.84 -0.064
2008 5.26 4.71 -0.025 6.26 4.79 -0.064
2009 6.38 5.4 -0.042 5.81 4.58 -0.055
2010 6.17 6.26 0.004 4.8 5.62 0.037
2011 7.65 6.81 -0.033 4.49 6.14 0.074
2012 8.04 8.94 0.032 4.4 6.46 0.091
2013 6.7 6.97 0.01 5.07 4.9 -0.008
2014 6.97 7.38 0.016 4.56 4.74 0.009
2015 5.45 6.15 0.03 4.47 4.86 0.018
2016 5.44 6.03 0.025 4.73 5.12 0.018
2017 4.95 5.25 0.014 4.68 5.2 0.024
2018 4.91 5.18 0.012 4.8 5.23 0.02
2019 4.97 5.12 0.007 4.74 5.1 0.017
2020 4.43 4.68 0.012 4.34 4.76 0.021
2021 2.33 2.28 -0.003 3.23 3.43 0.011
Index month
1 8.08 6.7 -0.053 7.55 7.44 -0.004
2 7.77 6.19 -0.062 7.43 7.04 -0.015
3 8.74 6.84 -0.071 8.32 8.01 -0.011
4 8.56 6.65 -0.072 8.14 7.83 -0.012
5 8.97 6.9 -0.077 8.58 8.13 -0.016
6 8.7 7.2 -0.055 8.47 8.19 -0.01
7 8.71 7.48 -0.045 8.76 8.51 -0.009
8 8.73 7.46 -0.047 8.96 8.74 -0.008
9 8.52 7.6 -0.034 8.71 8.63 -0.003
10 9.68 8.96 -0.025 8.77 8.85 0.003
11 8.37 10.81 0.083 8.27 8.64 0.013
12 5.17 17.22 0.389 8.04 9.99 0.068
Age (years)
Mean 31.99 27.98 -0.504 31.68 28.66 -0.36
Std. deviation 4.67 6.44 4.87 6.81
Median 32 27 32 28
Prior observation time (days)
Mean 1010.36 1103.57 0.076 988.36 1048.67 0.052
Std. deviation 743.4 978.27 741 893.1
Median 777 758 749 743
Post observation time (days)
Mean 1084.37 690.15 -0.263 948.41 660.09 -0.21
Std. deviation 1192.66 905.33 1091.46 828.86
Median 656 377 552 371
Distinct conditions
Mean 19.81 20.75 0.061 20.21 21.43 0.076
Std. deviation 10.21 11.4 10.64 11.96

Table 2  Selected characteristics of linked and non-linked mothers, measured 365 days before and including pregnancy end
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20.6% and 1.4% were dropped respectively during Step 
2, resulting in 2,086,438 candidate links. Links were 
reduced by 12.9% and 12.5% in steps 3 and 4 respec-
tively, which resulted in 1,589,010 links: 1,301,623 linked 
mothers and 1,589,010 linked infants. 67.4% of linked 
infant’s DOB were on the same day as their linked moth-
er’s pregnancy episode end date and 98.0% 98.6%, and 
99.3% occurred within ± 7 days, ± 14 days, and ± 30 days, 
respectively. Linked infants’ DOB was on average 0.7 
days (SD = 4.0, median = 0) after the pregnancy episode 
end date. Linked mothers comprised 77.3% of all mothers 
(n = 1,684,615) and linked infants comprised 47.0% of all 
infants (n = 3,379,811)(Additional file 1).

Figure 2 depicts the comparative prevalence of demo-
graphic, drug exposure, condition, procedure, and 
measurement occurrence covariates for the linked vs. 
non-linked mother and infant cohorts.

The plots illustrate that the characteristics of linked 
and non-linked mothers were generally similar. However, 

infant characteristics, including conditions, measure-
ments, drugs, and procedures were more prevalent 
among linked vs. non-linked infants. Large SMD covari-
ates with greater prevalence among the linked infants 
included procedural billing records related to infant 
care, infant screening procedures, immunizations, and 
some conditions (see web application to review all char-
acteristics). We also observed a greater prevalence of 
birth-related covariates among linked infants than non-
linked infants (e.g., “Single live birth”, ”Finding related to 
pregnancy”). Despite these differences, we still observed 
absolute SMDs of < 0.1 for > 99% of covariates across 
all algorithm implementations of each linked vs. non-
linked comparison in both databases where the number 
of covariate comparisons ranged from 58,611 (CCAE 
infants) to 68,368 (Clinformatics® mothers pregnancy 
end).

Table 1 reports characteristics and SMDs of linked vs. 
non-linked mothers for several characteristics measured 

CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 995,892)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 420,199)

SMD

Median 18 18 18 19
Distinct drug ingredients
Mean 5.3 5.65 0.045 5.4 6 0.074
Std. deviation 5.35 5.61 5.39 5.84
Median 4 4 4 4
Distinct procedures
Mean 17.46 16.82 -0.054 18.6 18.55 -0.004
Std. deviation 8.44 8.51 8.72 9.11
Median 16 15 18 17
Distinct measurements
Mean 20.85 20.95 0.004 44.01 41.65 -0.046
Std. deviation 15.57 16.57 36.44 36.03
Median 18 18 32 27
Distinct visit types
Outpatient Visit
Mean 15.53 14.21 -0.089 15.7 14.76 -0.054
Std. deviation 11.33 9.52 13.44 10.96
Median 13 12 12 12
Inpatient Visit
Mean 1.13 1.14 0.006 1.14 1.12 -0.019
Std. deviation 0.67 0.69 0.71 0.64
Median 1 1 1 1
Emergency Room Visit
Mean 0.33 0.67 0.146 1.03 0.98 -0.007
Std. deviation 1.36 1.85 5.63 4.52
Median 0 0 0 0
Charlson comorbidity index
Mean 0.3 0.3 0.001 0.32 0.34 0.016
Std. deviation 0.9 0.94 0.98 1.08
Median 0 0 0 0
CCAE: IBM Commercial Database; Clinformatics®: Optum’s de-identified Clinformatics® Data Mart Database; SMD: Standardized difference of means

Table 2  (continued) 
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relative to pregnancy episode start date. Pregnancy epi-
sode starts were equally distributed by year over the 
study period, although index dates in non-linked moth-
ers were more common in February and March in CCAE. 
Mean age was greater among linked mothers in both 
databases (CCAE: 31.2 vs. 27.4 years, Clinformatics®: 
30.9 vs. 27.9 years). There was greater post-pregnancy 
mean observation time among linked mothers in both 
databases (CCAE: 1358 vs. 960 days, Clinformatics®: 
1221 vs. 930 days) and mean pregnancy episode length 
was greater among linked mothers in CCAE (273 vs. 270 
days). Linked vs. non-linked mothers did not differ in 
clinical event counts, healthcare utilization, and Charlson 
comorbidity index in either database.

Table  2 reports characteristics and SMDs of linked 
vs. non-linked mothers for the same characteristics as 
Table  1 except for pregnancy episode length but were 
measured relative to pregnancy episode end date. Age 
was greater among linked mothers in CCAE (32.0 vs. 30.9 

years), which reflects the slightly greater linked preg-
nancy episode lengths reported above. There was greater 
post-pregnancy observation time among linked mothers 
in both databases (CCAE: 1084 vs. 690 days, Clinformat-
ics®: 948 vs. 660 days). Although uncommon, emergency 
room visits were greater among non-linked mothers in 
CCAE (0.7 vs. 0.3).

Table  3 reports characteristics and SMDs of linked 
vs. non-linked infants for several characteristics mea-
sured at their inferred birth dates (enrollment start date). 
Non-linked births were more common in the early study 
period (2000–2003) in both databases. There was greater 
average post-birth observation time among linked infants 
in both databases (CCAE: 1060 vs. 886 days., Clinformat-
ics®: 855 vs. 751 days). Average condition (CCAE: 6.8 vs. 
5.7, Clinformatics®: 7.8 vs. 6.4) and procedure (CCAE: 
11.6 vs. 9.9, Clinformatics®: 12.3 vs. 10.0) occurrences 
were greater among linked infants. Healthcare utilization 

Fig. 1  Mother-infant linkage algorithm attrition diagram
Panel A: IBM® Marketscan® Commercial Database
Panel B: Optum de-identified Clinformatics® Data Mart Database
Footnote: Candidate mothers: women whose pregnancy episode(s) ended with live birth and occurred during a mother’s observation period; Candidate 
infants: persons who were 0 years of age at observation period start; Candidate links: mothers-infant pairs who matched on insurance enrollment ID 
infant’s date-of-birth occurred during a candidate mother’s observation period; Probable links: candidate links where candidate infants date-of-birth 
occurred within ± 60 days of the candidate mother’s pregnancy episode end date; Inferred links: removal of probable links where multiple mothers as-
sociated with one infant
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Fig. 2  Demographic, drug exposure, condition, procedure, measurement, and visit occurrence prevalence
Footnote: The x-axes display the prevalence of each covariate in the linked populations and the y-axes display the prevalence of each covariate in the 
non-linked populations. Data points that lay on the diagonal represent covariates that are equally prevalent in the linked and non-linked populations. 
Data points to the right the diagonal represent covariates that are more prevalent in the linked populations and those to the left are more prevalent in 
the non-linked populations

 



Page 10 of 15Weaver et al. BMC Medical Research Methodology          (2023) 23:246 

CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 2,406,894)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 1,790,801)

SMD

Sex
gender = FEMALE 48.71 48.66 -0.001 48.57 48.55 0
gender = MALE 51.29 51.34 0.001 51.43 51.45 0
Index year
2000 0.09 1.08 0.13 0.01 3.87 0.283
2001 0.64 1.07 0.046 2.01 6.89 0.238
2002 1.14 2.54 0.104 4.27 4.93 0.032
2003 2.21 3.95 0.101 4.82 4.66 -0.008
2004 3.32 4.3 0.051 4.78 4.49 -0.014
2005 4.08 4.44 0.018 5.07 6.65 0.067
2006 4.03 4.99 0.047 6.37 6.06 -0.013
2007 4.81 4.8 0 6.3 5.97 -0.014
2008 5.26 6.23 0.042 6.26 5.06 -0.052
2009 6.38 6.57 0.008 5.81 4.13 -0.077
2010 6.17 7.5 0.053 4.79 3.56 -0.062
2011 7.65 7.35 -0.011 4.49 3.52 -0.05
2012 8.04 7.25 -0.03 4.39 3.51 -0.045
2013 6.7 6.32 -0.015 5.08 3.99 -0.052
2014 6.98 6.29 -0.028 4.56 4.02 -0.026
2015 5.45 4.15 -0.061 4.47 4.68 0.01
2016 5.44 4.1 -0.063 4.73 4.84 0.005
2017 4.95 4.02 -0.045 4.68 4.68 0
2018 4.91 4.47 -0.021 4.8 4.44 -0.017
2019 4.97 3.65 -0.065 4.74 4.04 -0.034
2020 4.43 3.43 -0.051 4.34 3.49 -0.044
2021 2.34 1.49 -0.062 3.24 2.54 -0.042
Index month
1 4.78 4.57 -0.01 7.42 6.15 -0.05
2 7.11 6.37 -0.03 7.39 5.91 -0.059
3 8.24 7.42 -0.031 8.3 6.73 -0.06
4 8.8 8.49 -0.011 8.15 6.97 -0.045
5 8.67 8.58 -0.003 8.54 10.15 0.056
6 8.64 9.04 0.014 8.47 8.5 0.001
7 9 10.52 0.052 8.79 9.93 0.039
8 8.53 9.88 0.047 8.93 9.57 0.022
9 8.42 10.31 0.065 8.74 9.95 0.041
10 9.66 9.67 0 8.78 9.38 0.021
11 9.32 7.88 -0.051 8.3 8.32 0.001
12 8.84 7.28 -0.057 8.19 8.44 0.009
Post observation time (days)*
Mean 1060.01 886.47 -0.106 855.02 751.11 -0.091
Std. deviation 1206.57 1113.97 1103.29 985.63
Median 618 486 431 395
Distinct conditions
Mean 6.81 5.73 -0.115 7.75 6.39 -0.13
Std. deviation 6.9 6.39 7.64 7.11
Median 5 4 6 5
Distinct drug ingredients
Mean 2.69 2.45 -0.049 8.55 7.44 -0.066
Std. deviation 3.43 3.38 12.05 11.76
Median 1 1 2 2

Table 3  Selected characteristics and standardized differences of linked and non-linked infants
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(i.e., outpatient and inpatient visits) was similarly greater 
among linked infants.

The final person and record counts for each of the 9 
cohorts constructed by the 3 linkage algorithm imple-
mentations in each database are reported in Additional 
file 1. Result sets for the two algorithm sensitivity imple-
mentations are reported in Additional file 1. We observed 
similar stepwise attrition proportions across sensitivity 
implementations. Attrition proportions in the first births 
sensitivity implementation were greater in Step 3 because 
this is where first birth restrictions were made. There 
were no appreciable differences in linked vs. non-linked 
mother and infant characteristics across algorithm sensi-
tivity implementations.

Discussion
We developed and implemented an algorithm to 
infer mother-infant links in two large US commercial 
healthcare databases that exhibited high linkage cov-
erage and similar characteristics across linked vs. non-
linked persons. This signifies generalizability of linked 
mother-infant pairs to commercially insured source pop-
ulations, which facilitates large-scale research on prena-
tal exposures and infant outcomes. This constitutes novel 
research by virtue of our emphasis on linked vs. non-
liked characterization comparisons to support generaliz-
ability. Similarity of measured characteristics in linked vs. 

non-linked mother and infant records is supporting evi-
dence that results produced by analyzing linked cohorts 
will generalize to the underlying source population, in 
this case commercially insured pregnant people and 
their infants. Our assessment of average linked-infant 
follow-up time (Clinformatics®: 855 days, CCAE: 1060 
days) allows their inclusion in perinatal-exposure studies 
where outcomes of interested are not birth outcomes per 
se but longer-term infant conditions. Further, our linkage 
algorithm was implemented in the OMOP CDM, and the 
source code is publicly available. The utility of using stan-
dardized analytic routines against a standard data repre-
sentation allows for transportable, complex algorithms to 
be implemented in other claims databases formatted to 
the OMOP CDM with no loss of fidelity [39].

Our algorithm identified > 3.4  million linked mothers 
and > 4.1  million linked infants. Access to large, linked 
populations makes feasible the study of a wide range of 
prescription drug exposures, maternal and neonatal 
outcomes, and subgroups that are often unavailable in 
smaller linked populations [40, 41] and registries [18, 42, 
43]. This approach requires fewer study resources com-
pared to studies that require primary data collection [44].

Across databases, linked mothers comprised 73.6% 
of all mothers with live births. In Clinformatics®, 77.3% 
of mothers were successfully linked to infants, which is 
lower but comparable to the 84% reported in a recent 

CCAE Clinformatics®
Characteristic Linked

% (n = 2,528,482)
Non-linked
% (n = 2,406,894)

SMD Linked
% (n = 1,589,010)

Non-linked
% (n = 1,790,801)

SMD

Procedures
Mean 11.55 9.87 -0.164 12.28 9.99 -0.213
Std. deviation 7.42 7 7.83 7.36
Median 10 9 11 9
Distinct measurements
Mean 2.63 2.23 -0.056 3.29 2.83 -0.044
Std. deviation 4.96 4.92 7.43 7.61
Median 1 1 1 1
Distinct visit types
Outpatient Visit
Mean 10.09 8.65 -0.155 9.47 8.32 -0.107
Std. deviation 6.65 6.46 7.74 7.51
Median 9 8 9 7
Inpatient Visit
Mean 0.67 0.5 -0.236 1.03 0.69 -0.494
Std. deviation 0.51 0.57 0.47 0.51
Median 1 0 1 1
Emergency Room Visit
Mean 0.22 0.24 0.016 0.1 0.13 0.006
Std. deviation 0.84 0.91 3.95 3.45
Median 0 0 0 0
CCAE: IBM Commercial Database; Clinformatics®: Optum’s de-identified Clinformatics® Data Mart Database; SMD.: Standardized difference of means

*Post-index observation time was measured from the linked mother’s delivery date (true birth date) to end of observation time

Table 3  (continued) 
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study using data from the same source with fewer linkage 
restrictions [19]. Despite similar methods, other linkage 
studies have reported mixed linkage coverage, suggesting 
that differences are due to data accuracy and/or availabil-
ity variation across sources. Palmsten et al. linked Med-
icaid-enrolled mothers and infants and reported linkage 
coverage of 55.6% for inpatient deliveries, although with 
considerable variation by state (0–96%) [23], which the 
authors attributed to varying family identifier quality and 
use. A study in TRICARE enrollees in the Military Health 
System reported 90% of pregnancies ending in live births 
were linked with infants [24], which may be attributable 
to lower insurance coverage churn.

In our study, linked infants comprised 49.1% of all 
infants defined as persons 0 years of age at their obser-
vation period start. Contextualizing our linked infant 
coverage is difficult because most studies only report 
the proportion of linked pregnancies [19, 23]. However, 
Garbe et al. conducted a study using the German Phar-
macoepidemiological Research Database (GePaRD), a 
claims database from four statutory health insurance 
providers, and reported that 77.3% of newborns were 
linked with mothers [45]. Additionally, a study among 
Medicaid enrollees in Tennessee reported 97% of infants 
were linked with a delivery, however such high cover-
age is likely explained by the use of vital record data with 
identifying information [41].

While our primary analysis used a ± 60-day window 
between infant DOB and mothers’ pregnancy episode 
end to identify candidate links, in sensitivity analyses, 
we observed high correspondence at 7, 14, and 30 days, 
including same-day correspondence of 31.3% in CCAE 
and 67.4% in Clinformatics®. Overall correspondence 
was greater in Clinformatics®, which may be due to more 
accurate and specific DOB information. Increasing the 
correspondence window to 90 days increased the pro-
portion of linked infants by only 1.5% in CCAE and 0.2% 
in Clinformatics®, which we do not interpret as material 
because most of the correspondence occurred within 
± 30 days.

Characteristic comparisons between linked and non-
linked mothers revealed similar demographic, clini-
cal, and healthcare utilization profiles. Our linkage 
evaluation largely supports the generalizability of the 
linked mother population, having compared thousands 
of covariates between linked and non-linked mother 
cohorts and observing few differences. Of note, two of 
the differences we found in both CCAE and Optum were 
also detected in a recent study using the Sentinel net-
work: non-linked mothers were younger and had shorter 
gestations than linked mothers [46]. It is possible that 
these consistent differences are due to unmeasured fac-
tors associated with mother and infant not sharing the 
same insurance policy. Despite this, we found that SMDs 

were < 0.1 for nearly all observed characteristics, suggest-
ing that in a prenatal exposure study on a small, exposed 
subset of the linked mother population, systematic differ-
ences between the study sample and non-linked mothers 
to whom the results will apply will be minimal.

Despite substantial similarity between linked and non-
linked infants, we observed more differences than when 
comparing mothers. Of note, linked infants had greater 
total healthcare utilization and prevalence of individual 
clinical events, including birth and infant-care related 
claims. Because our algorithm linked mothers to infants 
by a shared insurance ID within a defined temporal inter-
val, candidate infants whose inferred DOB fell outside 
of that interval would be non-linked and less likely to 
have their clinical events captured in the database. This 
suggests that some billing records may be attributed to 
family members on other insurance plans among the 
non-linked populations. Still, this evaluation supports 
the generalizability of the linked infant population. In 
cases of multiple pregnancies, linkages are made between 
maternal records and all live births from that pregnancy. 
In the event of a multifetal pregnancy ending in both a 
live birth and a stillbirth, codes associated with the still 
born infant may be observed on the live born infant 
record or on that of the linked mother. The occurrence 
of this scenario is expected to be very rare, with less than 
0.5% of multifetal pregnancies experiencing a stillbirth in 
one study [47].

Despite CCAE and Clinformatics® both consisting of 
administrative claims data from large US commercial 
insurance plans, data content heterogeneity between 
them still exists, which could contribute to results dif-
ferences between them. In Clinformatics®, we observed 
more situations where multiple women of child-bear-
ing age were associated with one candidate infant. This 
suggests that more extended family members may be 
included on the same insurance plan in Clinformatics® 
than in CCAE, which would increase the situations where 
one infant is associated with > 1 candidate mother on the 
same health plan. Regarding selection bias, by excluding 
multiple women of child-bearing age on the same insur-
ance plan, we may be selectively decreasing representa-
tion of large, varied families covered in the Clinformatics® 
database.

We note that several recent studies have established 
mother-infant linkage algorithms in claims databases 
with similar methods to the one described in this paper 
[23, 24, 34, 45, 48]. Specifically, linkage algorithms in 
the Clinformatics® [34] and in the CCAE [48] used 
infant dates of birth, maternal delivery dates, and fam-
ily insurance IDs to link delivering mothers with infants. 
The algorithm used in CCAE captured slightly more 
links because it did not restrict to live births initially, 
had a wider correspondence window allowance, and 
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when multiple mothers or pregnancies were associated 
with a single infant, it selected the earliest whereas our 
approach excluded those ambiguous links. While other 
studies have used related methods successfully [23, 24, 
34, 45, 48], we show that our standardized approach 
works across multiple databases. The algorithm pre-
sented in this study offers a reproducible framework 
that can be implemented across different databases, par-
ticularly those transformed to the OMOP CDM. Fur-
ther, we have characterized the populations of linked and 
unlinked mothers and children, which aids in contextu-
alizing the output of these linkages and implications for 
their use in future research.

A strength of our study is the rigorous linkage approach 
utilizing insurance ID in addition to delivery and birth 
procedure dates in large US claims databases represent-
ing the commercially insured population. Further, we 
provide open-source code and a web-application to inter-
actively review characterization results, which provides 
valuable context for the external validity of future studies 
among linked populations. Lastly, developing a reproduc-
ible mother-child linkage algorithm in large administra-
tive databases facilitates evidence generation in pregnant 
populations with improved rigor by avoiding recall, refer-
ral, and self-selection biases inherent to registry or other 
primary data collection studies of prenatal medication 
use [18].

Using administrative healthcare claims databases in 
pharmacoepidemiologic research has limitations. Erro-
neously coded or missing diagnostic, procedure, and 
drug dispensing records results in misclassification which 
may under- or over-estimate exposures, covariates, 
health outcomes, other clinical events, and healthcare 
utilization [49]. Subsequent information bias that can 
result from misclassification is underappreciated [50] and 
could bias findings of future drug safety studies. Further, 
because the data do not provide exact date of birth infor-
mation for non-linked infants, estimating event preva-
lence during 365-days post-birth is imprecise. This may 
result in misclassification by failing to capture events spe-
cifically related to the birth encounter itself. We observed 
these birth-related conditions and procedures as imbal-
anced in Fig. 2 and the infants tab of the web application.

Still, developing reliable mother-infant linkages in large 
healthcare databases has increased the capacity to exam-
ine associations between rare prenatal drug exposures 
and infant outcomes with sufficient power. For example, 
prenatal use of antidepressants, stimulants, antihyperten-
sive medications, and sulfonamides have been studied in 
relation to validated congenital anomalies [51–55]. This 
has yielded needed real-world evidence on the safety of 
prenatal exposures.

While we found few differences between linked and 
non-linked populations suggestive of high internal 

validity to the underlying commercially insured US pop-
ulation, our results do not necessarily ensure external 
validity to those covered under other types of insurance 
or lacking coverage. The data in this study are representa-
tive of people with US-based, employer-sponsored health 
insurance, indicative of a higher socioeconomic status 
population. Given the established association between 
wealth and health [56, 57], care should be taken not to 
assume that linked vs. non-linked similarity we observed 
is consistent across other socioeconomic demograph-
ics. Further, administrative healthcare databases include 
detailed outpatient drug dispensing records but provide 
fewer details on inpatient dispensing records, prescrip-
tions, or administrations typically available in electronic 
medical records. Additionally, we note that pregnancy 
episode length was slightly shorter in non-linked preg-
nancies (Table  1), but we do not believe this difference 
could substantially influence observed linked vs. non-
linked maternal covariate differences in the year before 
birth, which were few. Lastly, our study has not been 
validated. However validation of a similar algorithm 
developed in claims data among Medicaid beneficiaries 
showed high positive predictive value [58].

Conclusions
Our study reinforces the shift towards implement-
ing pharmacoepidemiology studies on prenatal drug 
exposures utilizing large electronic healthcare data as a 
supplement to traditional pregnancy registries. Our algo-
rithm and evaluation demonstrate the ability to assemble 
large mother-infant linked cohorts for investigating pre-
natal drug exposure effects on infant outcomes.
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