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Abstract 

Background  Despite the interest in machine learning (ML) algorithms for analyzing real-world data (RWD) in health-
care, the use of ML in predicting time-to-event data, a common scenario in clinical practice, is less explored. ML 
models are capable of algorithmically learning from large, complex datasets and can offer advantages in predicting 
time-to-event data. We reviewed the recent applications of ML for survival analysis using RWD in healthcare.

Methods  PUBMED and EMBASE were searched from database inception through March 2023 to identify peer-
reviewed English-language studies of ML models for predicting time-to-event outcomes using the RWD. Two review-
ers extracted information on the data source, patient population, survival outcome, ML algorithms, and the Area 
Under the Curve (AUC).

Results  Of 257 citations, 28 publications were included. Random survival forests (N = 16, 57%) and neural networks 
(N = 11, 39%) were the most popular ML algorithms. There was variability across AUC for these ML models (median 
0.789, range 0.6–0.950). ML algorithms were predominately considered for predicting overall survival in oncology 
(N = 12, 43%). ML survival models were often used to predict disease prognosis or clinical events (N = 27, 96%) in 
the oncology, while less were used for treatment outcomes (N = 1, 4%).

Conclusions  The ML algorithms, random survival forests and neural networks, are mainly used for RWD to predict 
survival outcomes such as disease prognosis or clinical events in the oncology. This review shows that more opportu-
nities remain to apply these ML algorithms to inform treatment decision-making in clinical practice. More methodo-
logical work is also needed to ensure the utility and applicability of ML models in survival outcomes.
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Background
Survival analysis or time-to-event analysis has gained 
interest in health service research, as predicting the time 
to an outcome of interest is critically important in clinical 
research [1, 2]. Survival analysis refers to a group of sta-
tistical methods designed to handle time-to-event (TTE) 
outcome prediction. A challenge in the context of time-
to-event data is that while survival times for some sub-
jects will be known as they have experienced the event 
during  the study period, but  for a subset of the group, 
they may not have yet experienced the event during the 
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study period; therefore, their survival time will still be 
unknown. This phenomenon, often known as censoring, 
may happen due to a variety of reasons, such as patients 
have not yet developed the relevant outcome, such as dis-
ease progression or death by the end of the study period; 
the study subjects can also be  lost to follow-up during 
the study, or the patients experience another event that 
prohibits the further follow-up. Survival analysis must 
account for the censoring to obtain valid estimates for 
inferences. Survival analysis is particularly important 
in clinical oncology research as most oncology stud-
ies involve the assessment of time-to-event outcomes, 
including evaluating a patient’s overall survival (OS) and 
progression-free survival (PFS) after a cancer diagnosis 
or disease recurrence [3, 4]. Traditionally, the Cox Pro-
portional Hazards (CPH) model, as a semi-parametric 
model, is the most widely applied approach to overcome 
the issue of censoring for the analysis of time-to-event 
data [5–7]. However, the CPH model has several limita-
tions: reliance on the statistical assumption and not being 
tailored to high-dimensional complex data.

Machine learning (ML), a branch of artificial intelli-
gence, is a family of data analytical methods that enables 
the capture of patterns behind complex data [8, 9] and 
has gradually become a popular approach for risk pre-
diction in the healthcare research [10]. With  rapid gen-
eration and availability of real-world data (RWD) in the 
medical field, ML techniques have played an important 
role in using complex and large RWD to provide evidence 
in clinical research and practice, including clinical disease 
diagnosis, treatment outcomes, and disease progression 
[11–13]. In the health service areas, ML methods, includ-
ing random forests  (RF), k-nearest neighbors (KNNs), 
support vector machines (SVMs), and neural networks 
(NNs), are common methods [10]. Empirical evidence 
has shown that various ML methods have been adjusted 
to analyze time-to-event data. For example, Moncada-
Torres et  al. used Netherlands Cancer Registry data 
involving 36,658 breast cancer patients to compare three 
ML models (random survival forest, SVM,  and extreme 
gradient boosting) versus traditional regression-based 
CPH in survival outcomes  [14].  Findings  showed that 
ML models effectively obtained area under the receiver 
operating characteristic (AUROC) of 0.63 comparable 
to classical CPH. [14] Another study analyzed Alberta’s 
electronic health record data for the development of five 
ML models (penalized regression Ridge, least absolute 
shrinkage and selection operator [LASSO], elastic net, 
random survival forest, and gradient boosting) to predict 
time to incident hypertension in a Canadian population 
and demonstrated similar performance (AUC 0.76–0.78) 
between these ML models versus traditional CPH [15]. 
Despite many advances in ML methods and the growing 

need for time-to-event analysis, there is a gap in system-
atic understanding of the application of ML methods for 
time-to-event analyses.

Over the years, many ML-based approaches have 
been developed to diagnose diseases, predict disease 
severity prognosis, estimate probabilities of hospi-
tal readmissions, etc [16–18]. As the growth of interest 
in time-to-event outcomes, the use of ML solutions for 
predicting survival outcomes are  being proposed, e.g., 
for early detection of dementia disease or for estimating 
the development of oral cancer [19, 20]. As far as we are 
aware, no reviews exist  specifically involving studies of 
ML models to predict time-to-event outcomes from real-
world structured data. Therefore, to fill this evidence gap, 
we conducted this review of ML methods used for sur-
vival prediction using the RWD in healthcare. This 
review aims to characterize (1) the common ML meth-
ods that have been utilized for survival prediction involv-
ing RWD; (2) the performance of these ML models along 
with the data source, study design, sample size, and vali-
dation approaches; (3) the diseases and the type of time-
to-event outcomes; and (4) the quality of these models. 
This review serves as a primer for future research in 
developing novel ML-based predictive algorithms in sur-
vival prediction.

Methods
This scoping review utilized the  Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA-ScR) to achieve the study aims and to charac-
terize ML studies on time-to-event outcomes using the 
RWD [21]. To guide data extraction for ML prediction 
models, two checklists, including the  Critical Appraisal 
and Data Extraction for Systematic Reviews of Prediction 
Modeling Studies (CHARMS) checklist  and Machine 
Learning Methods in Health Economics and Outcomes 
Research Checklist were utilized  [22, 23].

Databases search and search strategy
This scoping review searched PUBMED and EMBASE 
online databases from database inception through March 
2023. Relevant studies involving ML methods for survival 
analyses based on real-world datasets were included. 
With guidance from the librarian for the Health Sciences, 
the author team developed search strategies. For these 
database searches, the search strategy included search 
terms involving “machine learning,” “survival outcome,” 
and “real-world database.” The search syntax related 
to ‘real-world database” was defined based on US FDA; 
according to the US FDA, the RWD in the healthcare 
field refers to the data relevant to population health sta-
tus or the delivery of healthcare, and such RWD can be 
collected from multiple sources: (1) claims and billing 
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activities, (2) electronic health records (EHRs), (3) dis-
ease registries, e-health services, and other wearable 
technology-driven services. For a focused scoping review, 
searches were limited to non-wearable real-world data. 
In addition, the survival outcome refers to the time-to-
event outcome; syntax related to this term was devel-
oped based on prior literature. All identified citations 
were imported into an electronic Excel sheet. The details 
of search strategies and results as per each database are 
shown in Additional Supporting File 1: Part I, Full Search 
Strategy.

Eligibility criteria and study selection
Citations from all databases were imported into the Excel 
sheets. After removing duplicates, the unique articles 
were imported into Excel sheets for titles and abstract 
review. Authors (YH, JL, ML) together performed titles 
and abstracts review and conducted the screening. Any 
conflict was solved through a discussion involving a 
fourth author (RR).

For full article eligibility screening, articles available in 
the complete paper were retrieved. Studies were deemed 
eligible if they used ML methods for survival analyses 
based on real-world non-wearable data. We included 
only ML-based survival prediction using real-world data-
sets, including patient charts or registries, administrative 
claims data, and electronic health records. We excluded 
studies with the following characteristics: (1) no popu-
lation-level structured data (e.g., randomized controlled 
trial (RCT), simulation data, imaging data); (2) without 
ML-based modeling (e.g., use ML for feature selection 
only, or just involve statistical learning methods); (3) no 
survival prediction (e.g., binary classification of survival, 
no time-to-event outcome), (4) primary research only 
(e.g., literature reviews excluded). Details of inclusion/
exclusion criteria are also provided in Additional Sup-
porting File 1: Part II. Inclusion/Exclusion Criteria for 
Screening Articles.

Data extraction and synthesis
Three authors performed data extraction using a stand-
ardized form based on Microsoft Excel spreadsheets. This 
study extracted information was  as follows: (1) Charac-
teristics of studies, including first author and publication 
year, data source, study population and setting, sample 
size, survival outcome predicted (see Additional support-
ing file 2: Supporting information Table S1); (2) Charac-
teristics of ML models, including ML algorithms used, 
model validation, ML model performance (see Additional 
supporting file 2: Supporting information Table S2); and 
(3) Quality assessment (see Additional supporting file 2: 
Supporting information Table  S3). Specifically, the area 
under the curve (AUC) was extracted as the evaluation 

metric because the AUC has the advantage of provid-
ing a comprehensive summary of the models’ predictive 
ability. These supporting documents were organized to 
facilitate linkage across studies. Due to variations in the 
study design and ML algorithm applied and heteroge-
neity in statistical analysis, the quantitative summary of 
studies was not feasible, and hence, all included studies 
were summarized qualitatively. The AUC with a 95% con-
fidence interval (if available) was extracted to describe 
model performance. To assist in presenting AUC by ML 
methods in data synthesis, we selected the ML model 
with the maximum AUC if more than one ML model was 
developed based on the same ML algorithm. In addition, 
the AUC values for validation datasets were given the 
priority. We visually presented the extracted data using 
boxplots and beeswarm plots, categorized by the type 
of ML algorithms. These plots were generated using the 
"beeswarm" package in R software [24]. Further, to allow 
a high-level comparison of ML studies, these studies 
were then grouped into two categories: ML-only studies 
and studies involving comparison of ML versus CPH. To 
characterize those comparative studies involving ML ver-
sus CPH, two authors independently abstracted both the 
performance of ML models and CPH. We also extracted 
findings related to the relative performance of  the ML 
over the CPH in the prediction of survival analyses.

Quality assessment
The prognosis study quality tool and clinical decision rule 
assessment tool (QUIPS) were used to assess the meth-
odological aspects and quality of the included studies 
critically [25]. The QUIPS focused on assessing the fol-
lowing elements: study cohort definition, adequacy of 
prognostic factor measurement, outcome variable meas-
urement, confounding adjustment, and statistical analy-
sis reporting. For each domain, the ratings include ‘yes,’ 
‘partly,’ and ‘no.’ The overall strength of evidence for each 
study was based on grading the above six domains. If all 
domains were designated ‘yes’ for high ratings, then the 
overall quality of articles was good. If at least one domain 
was designated ‘partly,’ then the overall quality of the evi-
dence was fair. If one or more domains were designated 
‘no,’ the overall strength of evidence was poor. See Addi-
tional supporting file 2: Supporting information Table S3 
for quality assessment results.

Results
This scoping review search identified a total of 98 stud-
ies from the PubMed and 159 studies from the Embase. 
After duplication elimination and abstract and title 
screening, studies were considered potentially relevant 
and selected for full-article review. Among these, 28 
peer-reviewed studies involving at least one unique ML 
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model across a broad list of patient populations and set-
tings were included in this review (Fig. 1).

Study characteristics
Data source and sample size
The majority of these studies (N= 14) were conducted 
using data from the US setting [26–39]. Among these US 
studies, most of them used administrative claims datasets 
[26, 27, 30, 31, 36, 39] (N = 6), including SEER-Medicare, 
Veteran health administrative claims, followed by elec-
tronic health records or electronic medical records [32–
34, 37, 38] (N = 5), and a few used patient registry cohort 
datasets [28, 29, 35] (N = 3). The remaining non-US stud-
ies used datasets from Europe [40–45] (N = 6), including 
Italy, Netherlands, Denmark, Switzerland, or Germany, 
and a few others used data from England (N = 3), China 
(N = 4), or India (N = 1). The median sample size was 
10,614 (range: 142- 247,960 patients).

Study population and time‑to‑event outcomes
Most of these studies involving ML-based prediction for 
survival analyses focused on cancer patients [26, 27, 30, 
31, 34, 36, 38, 39, 42, 43, 46, 47] (N = 12 studies); for ML 
studies in oncology, these models were used to predict 
their survival outcomes or cancer recurrence.

The remaining studies focused on patient populations 
in the cardiology [28, 35, 48, 49], COVID-19 [37, 50, 51], 
diabetes [29, 40, 41, 45], schizophrenia disorder patients 
[52], HBV infection [53], inpatients patients [32], those 
undergoing heart transplantation [33], or intensive care 
unit (ICU) patients [54]. Across these non-cancer dis-
ease areas, these ML studies predicted clinical outcomes, 
such as the development of cardiovascular events [29, 40, 
41, 45], the incidence of sudden cardiac arrest or venous 
thromboembolism or ventricular fibrillation, and death. 
Only one study used ML for treatment outcomes [52]. 
A detailed summary of included studies is provided in 
e-supporting Table 1.

Fig. 1  Flow diagram for study selection
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Characteristics of ML Models
Use of ML for survival outcomes
The types of ML algorithms used are reported in Table 1. 
From this review, the popular ML algorithms for survival 
analyses include random survival forests (N = 16) [26–
28, 31–34, 36, 42, 43, 45–49, 53], boosted tree methods 
[31, 34, 42, 43, 45, 51, 53], and artificial neural networks 
[30, 31, 37, 39–41, 43, 44, 46, 47, 49, 50]. Support vec-
tor methods [34, 35, 42, 53] and regularization (LASSO, 
ridge, elastic net) [43, 49, 52, 53] were also common, 
and other algorithms included naïve bayes [29, 35, 53], 
K-nearest neighbor [35], multi-layer perceptron [34]. 
Table 2 provides a description of these ML algorithms.

ML model performance
Across these studies, while three studies [28, 33, 45] 
failed to report model performance in AUC, others 
reported AUC for model evaluation. Among those stud-
ies reporting AUC for evaluation of model performance, 
there was a variation across the  AUCs reported, with 
their mean at 0.7852 and their median at 0.789 (IQR: 
0.73–0.847; range: 0.6–0.9503). While one study devel-
oped one ML model [52] with an AUC below 0.7, most 

of these studies developed at least one ML model with 
an AUC above 0.70. The boxplot and beeswarm plot of 
model performance based on the AUC, stratified by the 
type of ML algorithms, are shown in Fig. 2. The descrip-
tive findings  of the  AUC across these ML models are 
shown in Table 3.

Model validations
Among all included studies, twenty-five studies (89%) 
applied model validation. Table 4 details model validation 
methods among these included studies. Nineteen stud-
ies used internal validation, with fifteen studies randomly 
split datasets into a training set and a test set for valida-
tion of model performance [26, 27, 29, 31, 32, 36, 38–41, 
44, 46, 49, 50, 53], while four studies internally validated 
model performance using cross-validation methods [35, 
42, 48, 52]. Six studies applied external validation meth-
ods, including using an independent dataset for model 
performance validation [30, 34, 37, 43, 47], or used pro-
spective validation [51]. Still, three studies did not report 
any validation methods [28, 33, 45].

Comparison between model performance of ML vs. CPH
A total of 17 studies (61%) compared the performance of 
ML models with the traditional regression-based CPH. 
Most studies (N= 15 studies, 88%) reported that ML 
had better performance than CPH models [26, 30–32, 
34, 36, 38–43, 48–50]. Only one study reported that ML 
algorithms did not surpass the CPH model [27], and one 
study did not make a comparison, although it included 
CPH [29]. Details can be found in e-supporting Table 1.

Quality assessment
Among the included studies, a majority had high quality 
based on the appraisal of six domains of the QUIPS tool. 
Details of quality assessment for all included studies are 
summarized in e-supporting doc Table 3.

Discussion
This is the first scoping review that specifically evaluated 
the application of ML in survival analyses based on 28 
studies utilizing RWD. This scoping review summarized 
ML-based studies for survival prediction involving RWD 
in observational studies. This review also  provides the 
utility of these ML methods for survival analyses using 
RWD.

ML methods common in survival prediction and their 
model performance
The existing literature appling ML approaches in survival 
risk prediction is limited, and this scoping review found 
random survival forests and neural networks as popu-
lar ML algorithms for survival outcome prediction. As a 

Table 1  ML algorithms used in the studies and featuring studies 
(N = 28 studies)

ML Machine learning, LASSO Least absolute shrinkage and selection operator, 
NN Neural networks, CNN Convolutional neural network, RNN Recurrent neural 
network, DL Deep learning, KNN The k-nearest neighbors
a includes ada-boost, gradient boosting, gradient descent boosting, boosting, 
XGBoost
b includes CNN, RNN, DNN, deep stacking networks, and ensemble of DL 
methods
c includes LASSO (L1 regularization), Ridge Regression (L2 regularization), or 
Elastic-Net
d Since most studies have applied more than 1 machine learning algorithms, 
therefore the sum of the number of studies by machine learning method is 
greater than included studies (N = 28)

Type of ML Algorithms Number of 
Studiesd

Featuring Studies

Tree-based Methods
  Random survival forests 16 26–28,31–34,36,42,43,45–

49,53

  Boosted tree methodsa 7 31,34,42,43,45,51,53

Neural Networks
  Artificial neural networksb 11 30,31,37,39–

41,43,44,46,47,49,50

Support Vector Machine 4 34,35,42,53

Regularizationc 4

Other algorithms
  Naives bayes 3 29,35,53

  K-Nearest Neighbors 1 35

  Multi-layer Perceptron 1 34
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Fig. 2  ML Performances for survival analyses

Table 3  Descriptive statistics of AUC by ML algorithms

Abbreviations: ML Machine learning, NNs Neural networks, RF Random forest, DT Decision tree, SVM Support vector machine, STD Standard deviation, IQR The 
interquartile range. 
a It includes adaboost, gradient boosting, gradient descent boosting, boosting, XGBoost
b It includes Lasso (L1 regularization), ridge regression (L2 regularization), and elastic-net algorithms
c It includes: naives bayes, KNN or MLP
d the total number of studies may differ from than total number of included studies, because some studies used more than 1 ML algorithms and also models with no 
AUC reported were excluded

ML category Number of 
modelsd

Mean (STD) Median Min Max IQR

Random survival forests 13 0.8084 0.821 0.64 0.9503 0.73–0.85

Boosted tree methodsa 5 0.7876 0.78 0.722 0.853 0.73–0.853

Artificial neural networks 11 0.7999 0.802 0.721 0.926 0.747–0.8208

Support Vector Machine 3 0.7633 0.8 0.64 0.85 0.72–0.825

Regularizationb 6 0.7164 0.7095 0.6 0.801 0.709–0.7546

Other algorithmsc 4 0.7899 0.7695 0.7287 0.8917 0.7447–0.8147



Page 8 of 11Huang et al. BMC Medical Research Methodology          (2023) 23:268 

nonparametric tree-based ensemble method, a random 
survival forest is an extension of a random forest and is 
suitable for the analysis of censored time-to-event out-
comes for dynamic prediction [55, 56]. Several recent 
studies applied random survival forest for analyzing 
time-to-event data to predict survival in cardiology or 
oncology patients [57, 58]. Neural network is also a popu-
lar approach for survival prediction, e.g., for cancer sur-
vival prediction [59]. Only a few studies identified in this 
review combined different ML modeling approaches. As 
a best practice, future studies should utilized  combined 
ML approaches as an ML-based modeling strategy.

This review additionally offers several insights into 
the development of ML models for survival risk predic-
tion. Firstly, these models utilizing RWD are limited by 
the quality of underlying training datasets. As such, to 
obtain reliable models, a high-quality healthcare dataset 
that contains a large enough sample and suitable qual-
ity with rich variables of predictive value is required for 
the development of ML models [60, 61]. In this scoping 
review, the underlying real-world data for ML model 
development often involves electronic medical records. 
The quality of underlying RWDs for ML training is very 
important. In particular, the underlying databases should 
contain variables or information fully reflective of prog-
nostic and predictive value. Continued efforts to link dif-
ferent sources  of data will strengthen the application of 
ML for survival applications to generate real-world evi-
dence. Furthermore, most studies used internal valida-
tion, and only a few studies used external validation. In 
another systematic review, Brnabic et  al. summarized 
common ML methods used for real-world clinical deci-
sion-making, and they also found that only two studies 
performed external validation out of 34 publications [62]. 
There is a strong need to employ both internal and exter-
nal validation approaches for high-quality ML models. 
Also, model evaluation of an ML model performance is 

suggested involving a prospective dataset. Similar to the 
need for high-quality datasets for ML algorithm develop-
ment, external validation using another independent or 
prospective dataset is critical for successfully translating 
ML models into clinical applications. Practical guides 
and good modelling practice recommendations for the 
application of ML methods based on RWD need to be 
developed.

Comparative performance between ML and CPH 
for survival prediction
This current review also  demonstrates that compared 
to conventional CPH, most ML models achieved better 
performance in the context of complex, high-dimension 
datasets, adding to a body of literature about comparing 
ML with traditional models [66, 67]. Several systematic 
reviews compared ML and traditional logistic regression 
for binary outcome prediction, showing ML algorithms, 
such as random forest, gradient boosting, and neural net-
works, significantly outperformed logistic regression [66, 
67]. However, there is a lack of insights into the compara-
tive performance of ML versus conventional CPH in the 
context of survival outcomes. This review adds insights 
into the comparison of ML and CPH for survival pre-
diction and shows the improved performance of the ML 
model over  CPH in the context of the time-to-event out-
come. The conventional Cox model is not intended to 
deal with complex datasets with high dimensionality and 
a large number of features; instead, they are more adept 
at a subset of predictors. For example, it is suggested that 
using feature reduction methods, e.g., penalty-based 
LASSO (L1), ridge regularization, or elastic-net regu-
larization, and then modeling using the Cox regression 
methods could improve the performance of CPH [63–
65]. Overall, a head-to-head meta-analysis comparing 
ML models and classical CPH in the context of survival 
analyses is needed.

Furthermore, the intent of this review is not to clarify 
the most superior ML algorithm for survival prediction. 
Instead, the selection of the most suitable ML algorithm 
for survival analyses should be based on the particular 
research question as well as the characteristics of under-
lying datasets, e.g., how large the sample size is, how 
many variables are available, and how balanced the data-
sets are. For instance, if the population size is not large 
enough, the use of neural networks may result in an over-
fitting problem, while the SVM approach is advantageous 
for dimensionality reduction but requires careful tuning 
of the kernel number.

Future of ML‑based survival models using RWD
Although ML approaches are increasingly used for 
survival prediction, they have been mostly used for 

Table 4  Overview Of methods for model validation across 
studies (N = 28 studies)

Type of validation methods Number 
of 
studies

Featuring studies

Internal validation 19

Training/testing split 15 26,27,29,31,32,36,38–
41,44,46,49,50,53

Resampling involving k-fold cross-
validation

4 35,42,48,52

External validation 6

An independent dataset for validation 5 30,34,37,43,47

Prospective validation 1 51

No validation 3 28,33,45
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predicting future clinical events in oncology areas. There 
remain opportunities for future studies in other disease 
states to address the prediction of clinical events in other 
diseases. This review found ML survival models were 
often used to predict disease prognosis or clinical events. 
There is a need to use these ML-based survival methods 
to address treatment-related events such as dose titra-
tion, discontinuation, and switching doses. More meth-
odological work is also needed to address the relative 
performance of ML approaches with traditional CPH. 
Furthermore, validation of ML models in external vali-
dation cohorts could improve the utility of these models. 
However, almost all studies in our review only used sim-
ple internal validation. Future studies in the application 
of ML in survival outcomes might improve by making 
ML algorithms externally validated across various health 
settings to facilitate its clinical utility.

Limitations
We also acknowledge some limitations. First, this study 
provides the value of ML approaches for survival analy-
ses using RWD in healthcare. However, this information 
may not be sufficient to select an ML for survival analy-
ses due to the diversity of clinical outcomes assessed and 
the variety of datasets used among these studies. A more 
detailed assessment of model performance across these 
types of ML approaches under specific clinical outcomes 
can  provide the suitability  of ML for improved predic-
tion. Second, another valuable emphasis would consider 
the comparison of ML with traditional regression-based 
CPH. In addition, this study also has limitations in terms 
of methodologic exclusion. As the ML algorithms used 
for survival analyses are based on observational stud-
ies, we only included works that are developed in real-
world non-wearable datasets. We acknowledge that some 
studies were excluded due to their use of RCT data or 
wearable datasets. Lastly, although calibration provides 
information on agreement between the observed out-
comes and the values predicted by the models, calibra-
tion could not be quantitatively presented due to limited 
studies reporting calibration statistics.

Conclusions
This is the first scoping review that specifically focused 
on applying ML in time-to-event outcomes using RWD 
in healthcare. This scoping review found random sur-
vival forests and neural networks as the most popular 
ML methods for survival prediction using RWD, pre-
dominantly  in oncology. These ML survival models 
were mainly used to predict disease prognosis or clini-
cal events. This review found variations in the reported 
performance across multiple ML approaches with a 

mean AUC of 0.78 and a median of 0.79. Future stud-
ies could consider focusing on the application of ML 
in survival outcome prediction in other disease areas. 
There remain opportunities to apply these ML algo-
rithms for survival prediction of the treatment out-
comes that can inform clinicians about treatment 
decision-making. More methodological work is also 
needed, especially external validation and comparative 
performance, to ensure the utility and applicability of 
these ML models in survival outcomes.
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