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Abstract 

The interrupted time series (ITS) design is widely used to examine the effects of large-scale public health interventions 
and has the highest level of evidence validity. However, there is a notable gap regarding methods that account for lag 
effects of interventions.

To address this, we introduced activation functions (ReLU and Sigmoid) to into the classic segmented regression (CSR) 
of the ITS design during the lag period. This led to the proposal of proposed an optimized segmented regression 
(OSR), namely, OSR-ReLU and OSR-Sig. To compare the performance of the models, we simulated data under mul-
tiple scenarios, including positive or negative impacts of interventions, linear or nonlinear lag patterns, different lag 
lengths, and different fluctuation degrees of the outcome time series. Based on the simulated data, we examined 
the bias, mean relative error (MRE), mean square error (MSE), mean width of the 95% confidence interval (CI), and cov-
erage rate of the 95% CI for the long-term impact estimates of interventions among different models.

OSR-ReLU and OSR-Sig yielded approximately unbiased estimates of the long-term impacts across all scenarios, 
whereas CSR did not. In terms of accuracy, OSR-ReLU and OSR-Sig outperformed CSR, exhibiting lower values in MRE 
and MSE. With increasing lag length, the optimized models provided robust estimates of long-term impacts. Regard-
ing precision, OSR-ReLU and OSR-Sig surpassed CSR, demonstrating narrower mean widths of 95% CI and higher 
coverage rates.

Our optimized models are powerful tools, as they can model the lag effects of interventions and provide more 
accurate and precise estimates of the long-term impact of interventions. The introduction of an activation function 
provides new ideas for improving of the CSR model.

Keywords Intervention evaluation, Interrupted time series, Activation functions, Segmented regression, Statistical 
methods, Simulation study

Introduction
The interrupted time series (ITS) design developed by 
Box and Tiao in 1975, [1] stands as a quasi-experimental 
design with the strongest evidence validity [2, 3]. It is pos-
sibly the most practical method for examining the effects 
of large-scale public health policies given ethical, social, 
or logistical constraints [4]. It involves collecting data 
both before and after the intervention, and analyzing the 
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time series data to determine whether the intervention 
has led to a significant change in the outcome beyond 
the expected temporal trends. Segmented regression, the 
most classic and widely used statistical method for eval-
uating the effects of interventions under an ITS design 
with the aggregated time series data (weekly, monthly, 
etc.), [5, 6] is a powerful method that accounts for under-
lying trends and has a high capacity to infer causation [7]. 
Classic segmented regression (CSR) sets the interrup-
tion a priori at a fixed point in the outcome time series, 
typically the nominal intervention time point, to distin-
guish between the pre- and post- intervention phases 
[8]. In the pre- and post-intervention phases, the CSR 
model typically requires data to be linear, homoscedastic, 
independent, normal, and stationary [3, 9, 10]. After the 
fixed interruption point (initial post-intervention phase), 
the linear data requirement of the CSR model makes the 
impacts of interventions perceived as immediate, direct, 
and leapfrogged at a fixed point, which may be violated in 
intervention evaluations [6].

However, some interventions and exposures in prac-
tice may have gradual or delayed impacts on the out-
come time series, as reported in many studies [11–14]. 
For example, the nursing intervention carried out by the 
Oncology Advanced Practice Nurse in the USA had a lag 
effect on the quality of life of post-surgical women with 
gynecologic cancer, [11] and the effects of the Medicare 
Act on hospital admission tended to emerge gradually 
after its adoption [12]. In addition, there is substantial 
evidence that air pollution exposure has a lag effect on 
respiratory and cardiovascular disease-related mortal-
ity and morbidity [13–16]. The effect of supra-threshold 
heat exposure on mortality persisted for several days, and 
the cumulative effect remained high even after 30 days of 
exposure in Seoul and Incheon [17].

In the above-mentioned situations, it takes time for 
interventions to reach the long-term trajectory of their 
effectiveness. The time frame required for an interven-
tion to reach its long-term trajectory is referred to as the 
lag period, and the length of this time frame is the lag 
length. During the lag period, the effect of the interven-
tion was gradually applied to the outcome time series. 
We defined this gradual or delayed effect of the inter-
vention as the “lag effect”. The CSR model either ignores 
the time points of the lag period and models the entire 
time series directly, or removes them, and then models 
the remaining time points [5, 18]. Direct modeling using 
the CSR model may violate the basic linearity require-
ment for the regression model within the post-interven-
tion phases, and the parameter estimates can be biased 
and inconsistent. Censoring (removing time points of 

the lag period) not only leaves out data but can also dis-
tort parameter estimations [19]. In conclusion, the CSR 
model fails to model the lag effects of interventions and 
exposure because of its priori setting of interruptions at 
only one fixed point in the outcome time series. When 
interventions have linear or nonlinear lag effects, [20, 
21] there is still a lack of sufficient solutions for interven-
tion evaluation using an outcome time series alone. To 
address this issue, we planned to model the lag effects 
of interventions by introducing ‘bridge functions’ (acti-
vation functions) into the CSR during the lag period, 
and thus proposed an optimized segmented regression 
(OSR) model. Activation functions are a family of func-
tions with various forms that are sufficiently flexible to 
describe linear and nonlinear processes [22]. They are 
suitable to describe the lag effects of interventions and 
their different forms correspond to different patterns of 
lag effects. Their common forms include the ReLU, Sig-
moid, hyperbolic tangent, and Mish [23]. In this study, 
we utilized the most commonly used linear ReLU and 
nonlinear Sigmoid functions as examples for our analy-
sis. We introduced these two activation functions to 
model the linear and nonlinear lag patterns, and estab-
lished the OSR-ReLU and OSR-Sig models, respectively.

To compare the performance of OSR with that of CSR, 
we simulated a sequence of outcome time series with the 
characteristic that interventions have delayed impacts 
on outcome time series. We simulated multiple scenar-
ios, including the positive or negative impacts of inter-
ventions, linear or nonlinear lag patterns, different lag 
lengths, and different fluctuation degrees of the outcome 
time series. We established a set of criteria to evaluate the 
performances of the different models [24]. Based on the 
simulated data, the performance of the models was eval-
uated by examining the bias of estimates and the mean 
relative error (MRE), mean square error (MSE), mean 
width of 95% confidence interval (CI), and coverage rate 
of 95% CI for the long-term impact estimates of interven-
tions. This was to ascertain whether the optimized mod-
els (OSR-ReLU and OSR-Sig) were superior to the classic 
model (CSR).

Methods
Classic segmented regression (CSR)
CSR is widely used in intervention evaluations under the 
ITS design, and models can be used to analyze aggre-
gated (weekly, monthly, etc.) time-series data that meet 
linear, homoscedastic, independent, normal, and station-
ary assumptions.

(1)Yt = β0 + β1 × time + β2 × intervention+ β3 × post-time+ εt .
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The matrix expression of Eq. 1 is:

Yt is the outcome of interest at time point t , which 
can be a weekly or monthly routine data source (e.g., 
total monthly births in hospitals). From the ini-
tial observation point to the last observation point, 
time is was used as the variable of the time point 
( time = t = 1, 2, 3, . . . ,Te ). Te is the total length of 
the time series and T0 is the time point at which the 
intervention is implemented (nominal interven-
tion time). The intervention was executed using a 
dummy variable, intervention . The values before and 
after the implementation of the intervention are rep-
resented as 0 and 1, respectively. The indicator vari-
able, post-time , is used to track the passing of time 
after the nominal implementation of the intervention. 
During the post-implementation phase, the value of 
post-time was initially set to 1 and increased over time 
( post-time = 1, 2, 3, . . . ,Te − T0 < Te ). ǫt is the ran-
dom error term at the time t with constant variance σ 2

ǫ  
(independent of t ), i.e., homogeneity of variance for the 
regression model (Eq. 1).

The baseline trend of the outcome time series before 
the implementation is represented by β1 . The instant 
impact of the intervention on Yt is reflected by the value 
of β2 . The change in the trend of outcome time series 
(slopes) is represented by β3 , which captures the inter-
vention’s long-term impact.

The CSR model assumes that the intervention effect 
occurs instantaneously at a certain time and cannot 
handle the intervention’s lag effect. To address this 
problem, we introduced activation functions into the 
CSR model to modify the variables intervention and 
post-time , and proposed an optimization model.

Optimized segmented regression (OSR)
OSR (Eq.  3) is an improvement of CSR. In the opti-
mized model, we modeled the lag period by introduc-
ing different activation functions as follows:

(2)Y = XCSR*β + ǫ;β = [β0,β1,β2,β3]
T ,XCSR =

1 1 0 0
...

...
...

...
1 T0 0 0
1 T0 + 1 1 1
...

...
...

...
1 Te 1 Te − T0

.

(3)Yt = β0 + β1 × time + β2 × F(t)× intervention+ β3 × F(t)× post-time+ ǫt .

The piecewise function F(t) 

L is the deemed lag length. For the activation function 
f (t) , there are several possible forms, which can fit differ-
ent lag patterns of intervention effects. The actual lag pat-
tern ofintervention effects determines the form used. In 
this study, we discuss linear (ReLU) and nonlinear (Sig-
moid) patterns: (1) linear: f (t) = 1

L
∗ t , and the corre-

sponding model is denoted by OSR-ReLU; (2) nonlinear: 

f (t) = a
1+e−t + b , subject to 
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−
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−
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+ b = 1,
 and the 

corresponding model is denoted by OSR-Sig.
The difference between the CSR and OSR models 

is the introduction of activation functions to modify 
the variables intervention and post-time during the 
lag period. Specifically, the differences in the variable 
assignments F(t)× intervention and F(t)× post-time 
are shown in Fig. 1 for lag lengths of 2, 4, 6, 8, and 10 
during the lag period. When the lag length L = 2, the 
OSR-ReLU and OSR-Sig models are equivalent, as dem-
onstrated in Supplementary Material - Explanation 1.

Data simulation
We first set the length of the simulated outcome time 
series to 60-time points and divided the outcome time 
series into two equal parts, representing the pre-inter-
vention and post-intervention phases.

In this study, the pre-intervention series for outcome 
variable generation was defined as Ypre(t) = 1 ∗ t + 1 . 
For the post-intervention series of the outcome vari-
able, we considered two situations: the intervention 
had a positive or negative long-term impact (we set 
its absolute value to 2) on the outcome time series. 
Thus, the post-intervention outcome time series were 

(4)F(t) =

{
f (t − T0) ,T0 ≤ t ≤ T0 + L;
1 , else.
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Ypost−p(t) = (1+ 2) ∗ t + 1 = 3 ∗ t + 1 for positive impact (+ 2) 
and Ypost−n(t) = (1− 2) ∗ t + 1 = −1 ∗ t + 1 for negative 
impact (-2).

For the possible lag length L , we simulated L=2, 4, 6, 
8, and 10 for the five different lag lengths. Within the lag 
length, we used linear and S-smooth interpolation to 
simulate the linear (ReLU) and nonlinear (Sigmoid) lag 
patterns separately, so that the simulated outcome time 
series have different lag patterns of interventions. These 
two interpolations of the outcome time series Y (t) are 
expressed as IPLTReLU (t) (Eq. 5) and IPLTSig (t) (Eq. 6).

t1 , Y (t1) and t2 , Y (t2) are the values of the interpolation 
function at the two corresponding interpolation points. In 
our simulation, t1 = 30 , t2 = 30+ L and Y (t1) = Ypre(30) , 
Y (t2) = Ypost−p(30+ L) or Ypost−n(30+ L).

(5)IPLTReLU (t) = t1 +
Y (t2)− Y (t1)

t2 − t1
(t − t1); t1 ≤ t ≤ t2.

(6)IPLTSig (t) =
as

1+e−t
+ bs; subject to






as

1+e
−

�
−
t2−t1+2

2

� + bs = Y (t1),

as

1+e
−
t2−t1+2

2

+ bs = Y (t2),
t1 ≤ t ≤ t2.

We then added a white noise series to the outcome 
time series to simulate random perturbation of the out-
come time series by other factors, including white noises, 
N
(
0, 32

)
 , N

(
0, 62

)
 and N

(
0, 92

)
 , a total of three different 

fluctuation levels of white noise.

Possible scenarios of outcome time series
During the simulation process, different outcome time 
series were generated separately using different param-
eter settings. For the positive (+ 2) or negative (-2) long-
term impact of the intervention and two interpolation 
methods for the lag period ( IPLTReLU and IPLTSig ), 
there were 2× 2 = 4 types of outcome time series, which 
were represented by ‘2&ReLU, 2&Sig, N2&ReLU, and 
N2&Sig’ in this study. Additionally considering five dif-

ferent lag lengths ( L = 2, 4, 6, 8, 10 ) and three different 
σ of white noises ( N

(
0, 32

)
 , N

(
0, 62

)
 and N

(
0, 92

)
 ), the 

number of possible scenarios for outcome time series 
was 60 ( 2× 2× 5× 3 = 60 ). For one specific simulation 

Fig. 1 Assignment of F(t)× intervention and F(t)× post-time during the lag period for different lag lengths L . Panels a and b depict 
the assignment results of variables F(t)× intervention and F(t)× post-time (for the CSR model, they depict the assignment results 
of variables intervention , and post-time ) for different lag lengths L (2, 4, 6, 8, 10) during the lag period for the three different models (CSR, 
OSR-RuLU and OSR-Sig), respectively. Different colors represent different lag lengths L . Blue indicates L=2, orange indicates L=4, red indicates L=6, 
cyan indicates L=8, and green indicates L=10



Page 5 of 12Zhang et al. BMC Medical Research Methodology          (2023) 23:277  

scenario, we used n = 1,000 simulation repetitions. The 
outcome time series generated under different simulation 
scenarios are shown in Supplementary Material Fig S1.

Software and execution
The statistical software MATLAB (version 9.6.0.10727) was 
used to generate the simulated data and model calculations 
[25–27]. The function ‘Normrnd’ in MATLAB was used 
for the generation of random numbers. For reproducibility, 
a seed was set at the beginning of the simulation. Tableau 
Desktop 20021.3 was used to graphically present the results.

Model evaluation
In this study, the performance of models was judged 
based on a range of criteria in estimating the long-term 
impacts of intervention ( ̂β3 in the models). Figure  2 
shows the results of different models for estimating 
the long-term impact β̂3 of the intervention. The per-
formance of the models was evaluated based on several 
metrics, including the bias of the estimates, mean rela-
tive error, mean square error, mean width of the 95% 
CI and coverage rate of the 95% CI. These metrics are 
defined as follows:

• Bias of estimates

E
[
β̂3

]
− β3 =

1

n

n∑

i=1

β̂3,i − β3

• Mean relative error (MRE)

• Mean square error (MSE)

• Mean width of 95% CI

• Coverage rate of 95% CI

We can examine the bias of parameter estimation for 
different models by observing the distribution figure of 
parameter estimation β̂3 under all simulation scenarios. 

E

[∣∣∣∣∣
β̂3 − β3

β3

∣∣∣∣∣× 100%

]
=

1

n

n∑

i=1

∣∣∣∣∣
β̂3,i − β3

β3

∣∣∣∣∣× 100%

E

[(
β̂3 − β3

)2]
=

1

n

n∑

i=1

(
β̂3,i − β3

)2

E
[
β̂3uup − β̂3low

]
=

1

n

n∑

i=1

β̂3,iuup − β̂3,ilow

Pr
(
β̂3low ≤ β3 ≤ β̂3uup

)
=

1

n

n∑

i=1

{
1, if β̂3,ilow ≤ β3 ≤ β̂3,iuup ;

0, else.

Fig. 2 Assignment of F(t)× "intervention" and F(t)× "post-time" during the lag period for different lag lengths L. β̂3 and corresponding 95% CIs 
with different models with 1000 simulation repetitions. Panel a and b plot the β̂3 and corresponding 95% CIs with different models. The outcome 
time series of Panel a and b are 2&ReLU and N2&ReLU type with lag length L = 4 and adding white noises N

(
0, 32

)
 . Different colors represent 

different models: pink represents the CSR model, red represents the OSR-ReLU model, and blue represents the OSR-Sig model. The horizontal 
plane represents the true value of the long-term effect of the intervention on the outcome variable for that type (+ 2 or -2). The dots in the figure 
represent the point estimates β̂3 of the long-term effects, and the vertical lines represent the 95% CIs for the corresponding estimates



Page 6 of 12Zhang et al. BMC Medical Research Methodology          (2023) 23:277 

Simultaneously, we learn how the parameter estimation 
bias changes as the settings changed in different simula-
tion scenarios. n is the number of simulation repetitions 
(in this study, n = 1,000).
β3 is the true value of the long-term impact of the inter-

vention, which is set in advance during the data simu-
lation (+ 2 or -2). β̂3,i is the point estimate of the model 
for long-term impacts at the i-th simulation repetition. 
β̂3,iuup and β̂3,ilow are the upper and lower limits of the 
95% confidence interval at the i-th simulation repetition, 
respectively.

Results
Bias of estimates
Figure 3 presented the distributions of long-term impact 
estimates specific to scenarios where the true value of the 
long-term impact was + 2 (Supplementary Material Fig 
S2 was specific to the scenarios where the true value of 
long-term impact was − 2). Both OSR-ReLU and OSR-Sig 
yielded, especially the OSR-Sig, approximately unbiased 
estimates of long-term impact across nearly all simulation 

scenarios. In contrast, CSR provided biased estimates 
of the long-term impact, and the deviation between the 
estimates and the true value increased with the increase 
of the lag length ( L ). For all three models, as the degree 
of fluctuation in the outcome time series increased, the 
distribution of parameter estimation tended to be flat.

Mean relative error (MRE)
On average, the MRE for OSR-ReLU (9.27%) and OSR-
Sig (8.08%) was significantly lower than that of CSR 
(43.29%) from Table S1. As demonstrated in Table  S1, 
Fig.  4 and Fig S3, with increasing lag length, the aver-
age MRE for CSR experienced a substantial rise, jump-
ing from 11.38% ( L=2) to 73.58% ( L=10), an increase of 
nearly 6.5 times. In contrast, the average MRE for both 
OSR-ReLU and the OSR-Sig remained stable or rose 
slightly, from 7.13% ( L=2) to 13.76% ( L=10) for the OSR-
ReLU and from 7.13% ( L=2) to 9.79% ( L=10) for the 
OSR-Sig.

Although the MRE for both OSR-ReLU and the 
OSR-Sig increased slightly with the rise fluctuation 

Fig. 3 Distributions of long-term impact estimates ( ̂β3 ) calculated by three methods. The figure plots distributions of long-term impact estimates 
β̂3 when the impact true value of long-term impact is 2. Different colors represent different models: pink represents the CSR model, red represents 
the OSR-ReLU model, and green represents the OSR-Sig model. The vertical black dotted line represents the true value (+ 2). The horizontal axis 
at the bottom of the figure indicates the axis of the parameter estimate β̂3 , and the vertical axis shows the number of parameters estimates β̂3 
in a specific interval during 1,000 simulation repetitions
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degrees of the outcome time series, from 6.59% ( σ=3) 
to 12.19% ( σ=9) for the OSR-ReLU and from 4.90% ( σ
=3) to 11.42% ( σ=9) for the OSR-Sig, their MRE values 
were considerably lower than that of CSR. The MRE 
for CSR remained around 43% as σ changed from three 
to nine.

Mean square error (MSE)
As shown in Table S2, the average MSE for OSR-ReLU 
(0.0579) and OSR-Sig (0.0459), was considerably lower 
than that of CSR (0.9792). As shown in Table S2, Fig. 5 
and Fig S4, the MSE for CSR increased significantly 
with the rise in lag length, moving from 0.0745 ( L=2) 
to 2.2056 ( L=10). In contrast, the MSE for OSR-ReLU 
rose marginally (from 0.0373 with L =2 to 0.1048 with 
L=10), and similarly for OSR-Sig, it increased slightly 
(from 0.0373 with L =2 to 0.0622 with L=10).

Mean width of 95% CI
The mean widths of the 95% CI for OSR-ReLU (0.7668) 
and OSR-Sig (0.7607) were lower than that for CSR 

(1.1481) (Table S3, Fig.  6 and Fig S5). As the lag length 
increased, the mean width of the 95% CI for both OSR-
ReLU and OSR-Sig remained nearly unchanged, espe-
cially when the lag length was less than six. In contrast, 
the mean width of the 95% CI for CSR increased slightly 
from 1.1580 ( L=2) to 1.5300 ( L=10). With an increase in 
the degree of fluctuation of the outcome time series, the 
mean width of the 95% CI for the three models increased 
slightly.

Coverage rate of 95% CI
Figure  7 and Fig S6 displayed the coverage rates of the 
95% CIs for the true values (+ 2 & -2) across various sim-
ulation scenarios and further delineated how the cover-
age rates changed with increasing lag length L and and 
fluctuation degree σ of the outcome time series, cap-
turing distinct trends in coverage rates among different 
models. For most simulation scenarios, the coverage rate 
of 95% CI for the three models was less than the nominal 
95% level (Fig. 7 and Fig S6). The coverage rate of the 95% 
CI for CSR was far below the 95% level in all simulation 
scenarios, and when the lag length reached four or more, 

Fig. 4 Mean relative error (%) for positive impact simulation scenarios. The horizontal axis at the bottom of the figure represents the lag length ( L ). 
Mean relative error (%) for negative impact simulation scenarios is shown in Fig S3 of the Supplementary Material
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their 95% CI had difficulty in covering the corresponding 
parameter. When the lag period reached ten, the cover-
age rate of 95% CI for CSR was only 0.23% (Table S4). 
For OSR-ReLU and OSR-Sig, the overall coverage rate 
of 95% CI was slightly lower than the nominal coverage 
rate (95%), but it reached more than 90% for most sce-
narios. As the lag length increased, the coverage rate of 
the 95% CI for OSR-ReLU and OSR-Sig declined slowly, 
especially when the lag length was less than six. Inter-
estingly, the coverage rate of 95% CI for all three models 
increased when the fluctuation degree of outcome time 
series increased ( σ increased from three to nine).

Model application
To show the application steps of the OSR models, we 
provide an application example in Supplementary Mate-
rial and published the corresponding MATLAB code 
(https:// github. com/ AlexZ hang6 62/ CSRmo del- appli cat-
ion- examp le/ tree/ main). In the Supplementary Material 
section: Application Example, we have a detailed descrip-
tion of the data structure and modeling results of this 
application example.

Discussion
In this study, to overcome the defect that the CSR can-
not model the lag effects of interventions, we proposed 
OSR models by introducing different activation func-
tions to the CSR. Using the activation function ReLU 
and Sigmoid function, we established the OSR-ReLU and 
OSR-Sig models, and we evaluated the accuracy and pre-
cision of the estimation of the long-term impact (slope 
change) of the intervention for OSR-ReLU, OSR-Sig and 
CSR models based on a range of simulated scenarios. The 
OSR models yielded approximately unbiased estimates of 
long-term impact and outperformed the CSR model in 
terms of accuracy and precision.

The introduction of an activation function that incor-
porates lags into the model, as expected, can significantly 
improve the accuracy of the long-term impact estimates 
of interventions. Both the MRE and MSE of OSR-ReLU 
and OSR-Sig were significantly lower than those of CSR, 
and as the lag length increased, the accuracy of the opti-
mized model for long-term impact estimation was also 
quite robust, especially when L was less than six-time 
points. Compared to CSR, OSR-ReLU and OSR-Sig 

Fig. 5 Mean square error for positive impact simulation scenarios. The horizontal axis at the bottom of the figure represents the lag length ( L ). 
Mean square error for negative impact simulation scenarios is shown in Fig S4 of the Supplementary Material

https://github.com/AlexZhang662/CSRmodel-application-example/tree/main
https://github.com/AlexZhang662/CSRmodel-application-example/tree/main
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corrected for the long-term impact parameter estimates 
of the intervention and obtained an approximately unbi-
ased estimate for almost all scenarios. Direct modeling 
with the CSR model within the post-intervention phases 
violated basic linearity requirement for the regression 
model [28, 29]. As the lag period increased, the linearity 
requirement becomes more difficult to satisfy, resulting 
in more biased parameter estimates, as proven by our 
simulation results. The OSR model adjusts the inde-
pendent variables of the regression model by introduc-
ing activation functions during the lag period that fit the 
actual characteristics of the data and significantly reduces 
the bias of the parameter estimates. However, when the 
intervention has no lag effect, blind use of the OSR model 
instead leads to worse results. In the Supplementary 
Material - Baseline simulation, we additionally designed 
baseline simulation scenarios with no lags but satisfying 
all basic CSR assumptions to demonstrate the potential 
loss in efficiency of OSR models. Therefore, we should be 
more cautious about specifying different models.

OSR-ReLU and OSR-Sig also outperformed CSR in 
terms of precision, with the corresponding 95% CI having 

narrower mean widths than CSR while having higher 
coverage rates. In fact, a model with a wider 95% CI was 
more likely to cover the parameters [30, 31]. However, the 
CSR model’s biased estimates of parameters had a detri-
mental impact on β̂3 with higher MRE and MSE, which in 
turn resulted in a lower coverage rate of 95% CI than that 
of the OSR-ReLU and the OSR-Sig, and far less than the 
nominal 95% level [25]. Ideally, the coverage rate of 95% 
CI should be at the nominal 95% level with no bias; [32, 
33] however, the coverage rate of 95% CI for OSR-ReLU 
(88.82%) and OSR-Sig (92.31%) was slightly below this 
level, which indicating that optimized models provided 
approximately unbiased estimates. This is because OSR 
models alleviate the heteroscedasticity of the error term 
without completely eliminating it. Thus, an estimation 
model for the full unbiasedness of the long-term impact 
may require further research.

Our results showed that as the fluctuation degree ( σ ) 
of the outcome time series increased, the mean width of 
95% CI and the MSE of the estimates increased, but the 
corresponding coverage rate of the 95% CI decreased. 
This suggests that a wider 95% CI is more effective in 

Fig. 6 Mean width of 95% CI for positive impact simulation scenarios. The horizontal axis at the bottom of the figure represents the lag length ( L ). 
Mean width of 95% CI for negative impact simulation scenarios is shown in Fig S5 of the Supplementary Material
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covering the parameters, despite the increased deviation 
of the estimates from the true values in our simulation 
scenarios. Occasionally, the coverage rate of the parame-
ters is crucial for comprehending the parameter distribu-
tions [34, 35]. We argued that the correct method should 
minimize the error while ensuring high estimation preci-
sion, similar to the OSR-ReLU and OSR-Sig proposed in 
this study.

Strengths
Employing different activation functions (linear ReLU 
and nonlinear Sigmoid function) to model different 
intervention lag patterns is a novel strength of this study. 
The corresponding optimized models can effectively 
describe the lag process and surpass the CSR model 
in both accuracy and precision when estimating of the 
long-term impact of interventions, especially when 
intervention lag effects are present. Our simulation sce-
narios were inspired by real-world ITS studies, [36, 37] 
including the intervention’s positive or negative impacts, 
different lag patterns, different lag lengths, different fluc-
tuation degrees of outcome time series, and 60 different 

scenarios altogether, which provided a comprehensive 
description of the interrupted time series analysis in 
many cases.

Limitations
There are several limitations of this study. First, for each 
simulation scenario, we aim to maintain the Monte Carlo 
Standard Error (MCSE) below 0.5% for all potential cover-
age rate values [38, 39]. Although more repetitions would 
result in a smaller MCSE, it remains to be determined 
whether the current 1,000 repetitions are sufficient to 
maintain the MCSE below 0.5%, or how many repetitions 
are sufficient. Second, all outcome time-series’ changes 
resulted from a random number generator, which lim-
ited the applicability of our findings, as with all simulation 
studies. Third, considering the potential loss in efficiency 
of OSR models when the intervention has no lag effect, 
it is critical to specify between CSR and OSR, which is 
also a difficulty highlighted in Discussion section of this 
study. Four, the parameter (lag length: L ) used in the OSR 
models was known and consistent with the lag length L of 
the simulated outcome time series. However, in practical 

Fig. 7 Coverage rate (%) of 95% CI for positive impact simulation scenarios. The horizontal axis at the bottom of the figure represents the lag length 
( L ). Coverage rate (%) of 95% CI for negative impact simulation scenarios is shown in Fig S6 of the Supplementary Material



Page 11 of 12Zhang et al. BMC Medical Research Methodology          (2023) 23:277  

studies, selecting the activation function and the param-
eter L is major challenge in the statistical analysis of OSR 
models. Two possible approaches are the implementation-
driven and the data-driven approaches. In the application 
example in Supplementary Material - Application Exam-
ple, we conducted a preliminary exploration of these two 
approaches. In addition, the robustness of the difference 
between parameter L incorporated in the OSR model and 
the actual lag length La of the intervention warrants fur-
ther investigation.

Conclusion
To address the limitation of CSR, which fails to model 
the lag effects of interventions, we propose two opti-
mized models, OSR-ReLU and OSR-Sig. These models 
employ a linear ReLU function and a nonlinear Sig-
moid function, respectively, to represent different lag 
patterns. Based on simulated data, both OSR-ReLU 
and OSR-Sig outperformed the CSR model in terms of 
both accuracy and precision, and yielded approximately 
unbiased estimates. Our optimized models provide a 
more comprehensive and effective tool for evaluating 
intervention effects under an interrupted time series 
design.
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