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Abstract 

Meta-analysis poses a challenge when original study results have been expressed in a non-uniform manner, such 
as when regression results from some original studies were based on a log-transformed key independent variable 
while in others no transformation was used. Methods of re-expressing regression coefficients to generate compara-
ble results across studies regardless of data transformation have recently been developed. We examined the relative 
bias of three re-expression methods using simulations and 15 real data examples where the independent variable 
had a skewed distribution. Regression coefficients from models with log-transformed independent variables were 
re-expressed as though they were based on an untransformed variable. We compared the re-expressed coefficients 
to those from a model fit to the untransformed variable. In the simulated and real data, all three re-expression meth-
ods usually gave biased results, and the skewness of the independent variable predicted the amount of bias. How 
best to synthesize the results of the log-transformed and absolute exposure evidence streams remains an open ques-
tion and may depend on the scientific discipline, scale of the outcome, and other considerations.

Keywords  Conversion, Meta-analysis as topic, Regression analysis, Transformation

Introduction
The results of a group of studies deemed comparable 
can be synthesized quantitatively using meta-analysis. 
To base the meta-analysis on all available data, “Results 
extracted from study reports may need to be converted 
to a consistent, or usable, format for analysis” [1]. Meth-
ods of converting data presented by authors into a format 
suitable for meta-analysis have been well developed for 
effect sizes based on categorical representation of expo-
sure. Our focus here, however, was on continuous meas-
ures of exposure, for which such methods are somewhat 
limited [2].

Our particular interest was in re-expression of results 
so that they could be included in a meta-analysis that 
could best inform a risk assessment. More specifically, 
the element of a risk assessment that we focused on in 
this work was meta-analysis to support a dose–response 
assessment [3]. Dose–response assessment in risk assess-
ment is conducted so that the risk associated with any 
specific amount of an exposure can be examined [4]. 
When a dose–response evaluation is based on meta-
analytic results, such results are more straightforward to 
relate to a specific exposure level if derived from mod-
els with exposure on an absolute, untransformed value. 
While our analyses also speak to matters related to the 
hazard assessment element of a risk assessment, these are 
addressed in our discussion. At any event, in conduct-
ing meta-analysis of exposure effects that might inform a 
risk assessment, often one encounters some original data 
reports where models of outcome were fitted in relation 
to log of exposure and others fitted in relation to absolute 
exposure, posing challenges to synthesis.
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Various approaches to the problem of inconsistently-
expressed effect estimates have been recommended or 
used in practice [5–8]. Obtaining the raw data or asking 
authors to re-analyze their data are the ideal solutions, 
though not always practical. When these options are not 
feasible, the results from studies using the less-frequent 
approach have been be excluded from the meta-analysis 
[6], or preferably the results of studies that used trans-
formed and original units are analyzed separately [7, 8], 
and then synthesized without meta-analysis (SWiM) [5]. 
Some authors, however, have recently used re-expression 
methods to address the problem [9, 10]. The validity of 
these re-expression methods, however, has not been 
evaluated in detail. Here we consider methods of re-
expressing regression coefficients from linear models fit 
to a log-transformed exposure variable as the coefficient 
that would have been obtained had the authors left the 
exposure in its original units. We refer to this process as 
re-expression of β to an untransformed basis.

An algebraic method of re-expressing regression 
coefficients was recently described and evaluated using 
one simulated data set and one set of parameters [11]. 
Rodriguez-Barranco et  al. found that in the setting of 
a log-transformed lognormally distributed independent 
variable, when the β coefficient from a model fit to the 
transformed data was re-expressed to what they would 
have gotten had the model been fit to the untrans-
formed data, the re-expressed coefficient was half the 
size of the true (fitted) coefficient. They recommended 
caution in applying their method when the distribution 
of the independent variable was markedly asymmet-
ric. More recently, other authors have developed com-
putational methods of re-expressing coefficients from 
models fit to a log-transformed independent variable 
to approximate what would have been obtained if the 
model had been fit with the original unit continuous 
independent variable [9, 10]. The basic principle is to 
minimize the difference between the y predicted from 
y = β·log(x) and the y predicted from a y = β·x (over 
the same range of x) by varying β in the second equa-
tion. Figure  1 may aid visualization of the task, where 
y from y = β·log(x) is shown with a light blue dotted 
line, and the difference in y from a straight line is mini-
mized over a range of x. When Steenland et  al. origi-
nally described the procedure it was for a fixed range 
of x, applicable to a specific exposure, and the validity 
of their method was not evaluated. Dzierlenga et  al. 
(2020) used the same basic principle as Steenland et al. 
with a modification of the method to be more flexible 
with respect to the range of the exposure variable and 
found that it performed well when evaluated using 
data from five studies of one exposure. In addition to 
the above re-expression methods, we developed a third 

(“Alternative”) estimator that is algebraic but different 
than that of Rodriguez-Barranco et al., and introduce it 
below, in the methods section.

The goal of the present project was to evaluate the 
validity of re-expression of regression coefficients to an 
untransformed basis for three methods using a wide vari-
ety of simulated and real data examples. To provide a con-
text for interpretation of our results we have designated 
an amount of relative bias that we considered important. 
We note that an acceptable magnitude of bias is often 
not quantitated in reports like ours (e.g., [12, 13]). Reluc-
tance to define general-use cutoffs for acceptable bias is 
also reflected throughout the epidemiologic literature; for 
example see ROBINS-E material on confounding [14]. 
Nonetheless, Freidrich et  al. (2008), in their simulation 
study, defined bias as a ≥ 5% difference from an estimand 
[15]. A well-regarded textbook, Modern Epidemiology, 
3rd Ed., p 261: gives a 5–10% difference in effect estimates 
as an amount that might be considered important, but 
they note (p. 262) that “the exact cutoff for importance is 
somewhat arbitrary but is limited in range by the subject 
matter” [16]. At any event, for the purposes of the present 
investigation, we considered a bias of ≥ 5% as reflecting an 
undesirable property of an estimator.

Methods
In this section, we present the simulation study that was 
used to evaluate the three estimators, and then describe 
the real datasets that were used to further evaluate the 
estimators. Our description of the simulation study fol-
lows the “ADEMP” format recommended by Morris et al. 
(2019), where ADEMP stands for Aims, Data generating 
mechanism, Estimand (target of analysis), Methods, and 
Performance measures [17]. The methods subsection of 
the ADEMP gives a detailed specification of the estima-
tors and is thus relatively long.

Description of the simulation in ADEMP format
Aims
To examine bias in and coverage of the estimated regres-
sion coefficients (regression coefficient that would have 
been obtained had the original analysts not log-trans-
formed exposure before fitting a regression model) calcu-
lated by three methods.

Data generating mechanism (DGM)
An independent random variable x with a log nor-
mal distribution used to define the dependent variable 
y = βDGM·logb(x) + e. The model parameters, possible val-
ues, and rationale for the chosen values are shown in 
Table 1 [18]. A βDGM = 0 was not studied in the simula-
tions because it caused instability in the relative bias per-
formance measure. A range of σ, the standard deviation 
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of the log-transformed exposure values, was chosen to 
cover the approximate range observed in the 15 real data 
studies. A factorial simulation design was used with the 

parameter values indicated in Table 1. Specifically, every 
possible combination of parameter values was used, for a 
total of 960 simulation scenarios (each with nsim = 2000).

Fig. 1  Plot of simulated values of y as a function of x from y = ln(x)(curve), along with slopes obtained by four methods (diagonal lines). The gold 
solid line represents a slope (βEstimand) fitted with the model y = α + βx. The three dashed lines are estimates of βEstimand obtained by the re-expression 
methods described in the text. Vertical lines indicate the first and third quartiles of the x-values. The intercepts of the diagonal lines have been 
adjusted to emphasize the similarity of the slopes in the interquartile range

Table 1  Values of parameters used in the simulation and rationale for their choice. Number of simulations = 2000

a SDe was calculated using the following method: SDe =|βDGM * log(median + 2) * MultSD| where βDGM and median are from the table above and MultSD is a multiplier 
to prevent extremely large variability. For each median, the MultSD was as follows: median 0.25, MultSD 1; 0.5, 0.886; 1, 0.771; 2, 0.657; 4, 0.543; 8, 0.429; 16, 0.315; 32, 
0.120). MultSD was selected based on values that will introduce enough error to result in r2 values around 0.2 (similar to many epidemiological studies) for estimation 
of βEstimand

Parameter Possible values Rationale for the choice

nobs 162, 8474 Quantiles (10th, 90th) of the distribution of sample sizes for the 15 real data examples

e Selected from a normal distribution 
with mean = 0 and SD = SDe

a
Standard deviation selected to result in an R2 ~ 0.2, to make realistic models 
(Aslibekyan et al., 2014) [17]

βDGM -15, 0.5, 1, 10, 30 Broad range of effect sizes encompassing those in the real data examples

Logbase 2, e, 10 Log bases used in the 15 real data examples

σ 0.25, 0.45, 0.65, 0.85 Selected values cover the approximate range of σ values in the 15 real data examples

Median 
(µ = log(median))

0.25, 0.5, 1, 2, 4, 8, 16, 32 Selected values cover the range of median exposure in the 15 real data examples
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Estimand
The β coefficient from fitting y = βEstimand·x + e with an 
ordinary least squares (OLS) model.

Methods
The three estimators evaluated were: 1) as described by 
Rodriguez-Barranco et al. (2017), 2) as described by Dzi-
erlenga et  al. (2020), and 3) an approach we introduce 
below and call the Alternative estimator. We refer to 
these as βRB, βDz, and βAlt, respectively.

An algebraic method for re-expression of β to an 
untransformed exposure was first presented by Rodri-
guez-Barranco et al. (2017). Equation 1 below shows their 
formula (see Model B in Table 1 of their publication):

In Eq. 1, βRB is the re-expressed β coefficient using the 
Rodriguez-Barranco method, b is the log base used to 
transform x, c is the absolute change in exposure x (c = 1 
unit of exposure in the present study), E[X] is the mean 
of the exposure, and β… is the regression coefficient from 
the model using the log-transformed exposure. The same 
formula was applied to the confidence limits of β from 
the log(x) model.

A computational method for re-expression of β to an 
untransformed exposure was developed by Steenland 
et al. (2018), who described their method as

… iteratively minimizing the squared deviation of 
a new linear curve from the original logarithmic one, 
over a scale of 0 to 10 ng/ml PFOA [perfluorooctanoic 
acid], typical of studies in the general population. We 
also minimized squared deviation of a linear upper and 
lower confidence limit from the original logarithmic con-
fidence interval curves. For any given study, the iteration 
was conducted by minimizing the sum of squares of the 
difference between the candidate linear curve and the 
logarithmic curve reported in the literature, across 10 
points, at 1, 2…. through 10 ng/ml. Iteration began with 
an educated guess for a candidate linear curve that would 
approximate the logarithmic curves and proceeded 
by varying the candidate linear curve until the sum of 
squares of the differences were minimized.

Dzierlenga et al. (2020) used this same principle to cal-

culate βDz, though it modified it so that the method was 
more flexible with respect to the range of the exposure 

(1)βRB = logb

(
1+

c

E[X]

)
∗ βfrommodely=β·log(x)

variable. The modification used an algorithmic optimiza-
tion over 6 points from the 25th to the 75th percentiles 
(25th, 35th…75th) of the estimated exposure distribution.

The Alternative method of algebraic re-expression that we 
developed for this report was based on the principle of cal-
culating, on the untransformed scale of exposure, the incre-
ment that represented a doubling, a 2.718-fold increase, or a 
tenfold increase (i.e., one log unit, with a base of 2, e, or 10). 
This was done by subtracting or adding 0.5 units on the log 
scale to the log(median exposure), back-transforming the 
results, and taking the difference (see Eq. 2).

In Eq. 2, I is the increment used to re-express β from 
log to linear and b is the logarithm base. Then

The same formula was applied to the confidence limits 
of β from the log(x) model. R scripts/functions and data 
files for applying each of these three re-expression meth-
ods are available in the supplemental materials (Supple-
mental_Code.zip).

Performance measures
We focused on relative bias, coverage probability, and the 
Monte Carlo standard error of the relative bias for each 
estimator. An example of the formula for the mean rela-
tive bias for a given scenario is:

where, e.g., βRBi refers to the β coefficient obtained from 
the Rodriguez-Barranco et al. estimator for the ith repeti-
tion, βestimandi refers to the β coefficient obtained from the 
ordinary least squares estimator on the untransformed, 
simulated data, and nsim is the number of simulations 
conducted. Absolute value of the βestimand is used as the 
denominator in order to generate the correct sign for the 
absolute bias when both β values are negative. βestimand 
is used rather than βDGM to calculate the relative bias in 
Eq.  4 so that the results reflect the performance of the 
estimator(s) in specific datasets. An example formula for 
the Monte Carlo standard error of the relative bias for a 
given scenario is:

Evaluation of the determinants of relative bias using the 
simulated data.

(2)I = blogb(median)+0.5 − blogb(median)−0.5

(3)βAlt = βfrommodelwithlog(x)/I

(4)Relative Bias =
1

nsim

nsim

i=1

βRBi − βestimandi

|βestimandi
|

(5)Monte Carlo SE of Relative Bias =

√√√√ 1

nsim(nsim − 1)

nsim∑

i=1

(
βRBi − βestimandi∣∣βestimandi

∣∣ −mean of relative bias

)2
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After running the simulations using the parameter val-
ues shown in Table 1, for each estimator we fit ordinary 
least squares models of the relative bias as a function of 
median, σ, b (log base), nobs (number of observations), 
and βDGM, and interaction terms between σ and these 
variables. A both-directions stepwise approach was taken 
where the multiple of the number of degrees of freedom 
used for the penalty (k) was set to a value ~ 3.84 (p < 0.05 
in Chi-square test) and the optimal model was selected 
by minimization of the AIC value [19]. Each observation 
in the dataset analyzed was the average result from 2000 
simulations. Use of the average rather than the data for all 
1,920,000 (960·2000) observations resulted in essentially 
the same models and produced more interpretable plots.

Evaluation of the validity of the three estimators using real 
data
To further evaluate the validity of re-expression meth-
ods and guide our simulations, we sought examples for 
various types of outcomes (dichotomous, log-continuous, 
untransformed continuous) and a variety of environmen-
tal agents with exposure measured using a biomarker. 
Environmental exposures measured with a biomarker 
frequently are used in risk assessment and often have 
skewed distributions with a long tail to the right. We first 
identified a series of published analyses based on data 
that were publicly available. Second, we identified a simi-
lar series of published analyses that did not have raw data 
available but that presented regression results obtained 
with and without log transformation of the exposure.

For the example data that involved our re-analysis of 
published results, we chose results that could efficiently 
be replicated to a reasonable degree of accuracy using 
the originally described methods. When the authors pre-
sented results for more than one outcome or more than 
one exposure in a report, in general we arbitrarily chose 
one result that was statistically significant for inclusion 
in our evaluation; the exception was data from Xu et al. 
(2020), for which we included two results. Xu et al. (2020) 
showed results for two different outcomes, one continu-
ous, and one dichotomous, that were examined in rela-
tion to the same exposure; the regression coefficients 
were statistically significant for both. A more detailed 
description of the methods of identifying the real data 
examples is in Suppl. Methods Sect. 1.

For each real data example, we calculated the rela-
tive bias for each of the three estimators (compared to 
the coefficient from models using the untransformed 
exposure), and then for the 15 examples calculated the 
median, quartiles, and range of relative bias values for 
each estimator.

In the two example datasets where the relative bias in 
the three estimators was largest, we explored whether 

the exclusion of influential observations affected the 
accuracy of the re-expression using βDz. In two addi-
tional examples datasets where the relative bias was 
typical of other studies, we also examined the effect of 
excluding influential points on the validity of the re-
expression with βDz. Influential observations were iden-
tified with a difference in β analysis (change in β with 
each observation excluded one at a time) performed on 
the regression using untransformed exposure. A t-test-
like statistic was used to identify the 5% of points that 
were unusually influential (|DFBETAS|> 2/√n) [20]. In 
addition, to evaluate whether our results were sensi-
tive to the specific results selected as real data exam-
ples from the 15 reports, in each report we enumerated 
all results eligible for inclusion in our analysis, and 
selected one at random (regardless of statistical signifi-
cance); when only two such results were available, how-
ever, we selected the one not previously selected. We 
refer these additional results below as the second set of 
real data examples. Please see Suppl. Methods Sect.  2 
for more details.
Adjustment for bias in the estimators
The regression equations we developed to evaluate 
the determinants of relative bias in the simulated data 
(Sect. 2.2) were used to predict the relative bias in each 
estimator based on σ and other parameters, as needed. 
The predicted relative bias was used to estimate what 
the value of the estimator would have been were it not 
biased, e.g., βAlt,adjusted = βAlt/(1 + predicted relative bias 
of βAlt). We applied this to the real datasets, to see if the 
adjustment resulted in an estimator with less relative 
bias.

Results
Simulations
A simplified example simulation with data generated by 
y = βDGM·loge(x) and parameters βDGM = 1, median = 1, 
σ = 0.5, SDe = 0 is depicted in Fig. 1. In this scenario βRB 
slightly undershot the slope estimated from the fitted 
regression line, whereas the βDz and βAlt estimators over-
shot the fitted slope, by a slightly greater magnitude. The 
range of parameter values in the simulation and origi-
nal set of real data examples overlapped substantially 
(Table 1, Suppl. Table S1).

The relative bias of βRB was a function of σ and the 
median exposure level (Fig.  2A). When x was signifi-
cantly skewed (e.g., σ = 0.65) and the median was 1, the 
relative bias was close to zero, but with other combina-
tions of σ and median the range of bias was substantial. 
The coefficients for the model of relative bias in βRB are 
shown in Table S2.

The relative bias of βDz was primarily a function 
of σ (Fig.  2B, Table S2). Within the parameter space 
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Fig. 2  Plots of relative bias as a function of skewness (σ) in the exposure x, by type of estimator. Individual points represent the average result 
(nsim = 2000) for each simulation scenario. A total of 890 of the possible 1,920,000 observations (960 scenarios × 2000 simulations) were not used 
in the calculation of the average results because βestimand was < 0.0001 (essentially zero). Lines represent quadratic fits to the data for a specified 
prediction equation and set of values of independent variables (see text). Note that data have been artificially spread along the x-axis 
for visualization purposes, all actual x-values are the closest black vertical line (0.25, 0.45, 0.65, or 0.85). Figures A-C show points for 768 simulation 
scenarios (βDGM > 0, see Figure S1 for plots including βDGM < 0); Figure D shows points for a subset of scenarios (n = 32) chosen because they 
demonstrate differences among the estimator properties. A Rodriguez-Barranco estimator, B Dzierlenga estimator, and C Alternative estimator. 
D Shows all 3 estimators in the same plot with a subset of the data of the simulation data where βDGM = 0.5, log base = 2 or 10, and median 
value = 0.5 or 8
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investigated, the absolute difference in relative bias due 
to the interaction of σ and nobs was, with nobs = 8474 (cf. 
nobs = 162), < 0.05 (not shown).

 The relative bias of βAlt was primarily a function of σ 
and log base (Fig. 2C, Table S2). When log base was 10, 
at a given value of σ the relative bias was lower than when 
log base was 2 or e. When log base was 2 or e, βAlt per-
formed similarly to βDz.

As noted earlier, the models of relative bias for each 
estimator were fit to datasets with an n of 960, where 
each of the 960 observations was the average of 2000 
simulations for each scenario (parameter set). When the 
same models were fit to all of the original data points 
(960·2000) the model fit statistics were essentially the 
same (Table S3).

Figure  2D shows the relative bias after restricting the 
parameter set for the simulation to best display the key 
properties of each estimator: all depend on σ, βRB addi-
tionally depends on the median, and βAlt additionally 
depends on the log base. The overall interpretation based 
on the figure was that in the simulations in general, with 
σ > 0.45 the estimators were substantially biased except 
for specific circumstances where βRB did well. Another 
way to summarize the overall findings was by the per-
formance measures presented in Table  2, based on the 
results for all simulation scenarios with |βEstimand|> 0. 
The median Monte Carlo standard error (MCSE) across 
all three estimators was 0.002. Thirty percent of the 
2880 simulations (960 scenarios ·3 estimators) had an 
MCSE > 0.005. More than 95% of all 2880 simulations 
had an MCSE that was ≤ 0.02 (relatively small compared 
with the average relative bias). Among the < 5% with an 
MCSE > 0.02, the nobs was 162 and the log base was 10 in 
all instances. The maximum MCSEs were: βRB, 0.196; βDz, 
0.320; and βAlt, 0.262. The coverage probabilities were 
substantially below 95%, reflecting how infrequently the 
estimators performed well. Compared with βRB, the other 

two estimators, on average, had larger positive bias, but 
with higher coverage probabilities.

Because the regression analysis indicated that the main 
determinants of bias were σ, median, and log base for one 
or more of the estimators, for each estimator we exam-
ined coverage in relation to two values of these three 
parameters (Table  3). In general, as the average relative 
bias increased, the coverage decreased. The coverage 
tended to be better with exposure re-expressed by the 
original authors using a log base 10 than log base 2.

The real data and application of the estimators to it
We identified nine published analyses of data for which 
the raw data were publicly available and that met our cri-
teria for selection (Table S4, Table S5 for second set of real 

Table 2  Performance measures based on simulations with all 
possible values for each parameter for a total of 960 simulation 
scenarios with 2000 simulations per scenario (n = 1,919,110)a

a A total of 890 of the possible 1,920,000 observations were not used in the 
calculations because βestimand was < 0.0001 (essentially zero)
b Calculated as the sum of the replicates where the re-expression method 
confidence interval included the observed β (βestimand) divided by the total 
number of 1,919,110 replicates

Estimator Average absolute 
relative bias

IQR of absolute 
relative bias

Average 
coverage
probability 
(%)b

βRB 0.362 0.120–0.499 36.5

βDz 0.430 0.112–0.597 39.4

βAlt 0.389 0.090–0.558 45.5

Table 3  Performance measures based on simulation scenarios 
with stated values of σ, median, and log base for a total of 8 
simulation scenariosa (nsim = 2000 per scenariob)

a For all scenarios used in this table the nobs was 162 and the βDGM was 1
b The median Monte Carlo standard error of the relative bias was ≤ 0.003 for all 
estimation methods
c Calculated as the sum of the scenarios where the re-expression method 
confidence interval included the observed β (βestimand) divided by the total 
number of scenarios (960)

σ Median Log base Estimator Average 
relative 
bias

Average 
coverage 
probability (%)c

0.45 2 2 βRB -0.008 99.1

βDz 0.199 78.7

βAlt 0.2 78.6

0.45 2 10 βRB 0.021 99.9

βDz 0.231 99.9

βAlt 0.019 99.9

0.45 16 2 βRB 0.182 81.9

βDz 0.195 79.5

βAlt 0.195 79

0.45 16 10 βRB 0.21 100

βDz 0.224 99.9

βAlt 0.012 100

0.85 2 2 βRB 0.655 2.4

βDz 0.901 0.2

βAlt 1.003 0

0.85 2 10 βRB 0.678 56.7

βDz 0.927 37.4

βAlt 0.676 57.1

0.85 16 2 βRB 0.979 0

βDz 0.898 0.1

βAlt 1 0

0.85 16 10 βRB 0.987 31.4

βDz 0.91 36.9

βAlt 0.658 56.9
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data) [21–28]. The results of our re-analyses were gener-
ally the same order of magnitude as those originally pub-
lished (Tables S4 and S5). The specific finding that we used 
in the analysis and its location in the original publication 
are listed in Supplementary Material Table S6 (Table S7 
for second set of real data), as are the median, quartiles, 
and mean of the exposure distributions, which were esti-
mated in some cases as indicated by table footnotes. We 
identified six published analyses of data where the origi-
nal authors presented regression results using exposure 
with and without a log-transformation (Table S8, Table S9 
for second set of real data) [10, 29–33]. Five of these were 
included in the assessment of validity by Dzierlenga et al. 
(2020) [9]. Among the fifteen example studies, a variety of 
outcomes and exposure variables were examined, though 
in two thirds of the studies the exposure was a perfluoro-
alkyl substance (either PFOA, perfluorohexanesulphonic 
acid, or perfluorooctane sulfonic acid).

When β was re-expressed as if it had been fit to 
untransformed exposure data, the range in relative bias 
across all three estimators was -0.5 to 16.8 (Table 4) and 
the interquartile ranges in relative bias were relatively 
wide. In the comparison of results for specific studies 

across re-expression methods, the relative bias was, for 
most of the studies, similar across methods (Table  4). 
These were studies where the median exposure was > 4 
units (Table S6) – as would be expected based on Fig. 2D. 
For the Lee et  al. (2020) and the two Xu et  al. (2020) 
results [22, 24], however, βRB had a much smaller relative 
bias than the other two methods. In these three instances, 
the median of the exposure variable was less than one, 
which was not the case for the other studies (see Supple-
mentary Materials Table S6) and the σ was > 0.8 – which 
is the setting where the relative bias in βRB was expected 
to be relatively small compared with the other estimators.

Our results for Odebeatu et  al. (2019) and Pilkerton 
et al. (2018) were the ones with the greatest discrepancy 
between the re-expressed β coefficients and the β fitted 
to the untransformed exposure [23, 26] (Table  4). This 
discrepancy suggested that there may have been obser-
vations that were influential, and that the influence was 
affected by whether the exposure had been log-trans-
formed. Thus, we conducted an analysis of whether 
exclusion of influential points affected the accuracy of 
the re-expression. For comparison, similar analyses were 
conducted using the data from Cheang et al. (2021) and 

Table 4  Comparison of fitted and re-expressed β coefficients and relative bias in β for three methods of re-expression

a  Using the notation of Rodriguez-Barranco et al., k = base of log transformation used; c = 1
b  Proportional difference between β in column to the left compared with the one from the analysis of raw data, calculated using the same method as in previous table 
((beta in column to left – beta from analysis of raw data)/beta from analysis of raw data). Note that the β in column to the left was calculated using β with different 
units in denominator than for the raw data analysis shown in the table
c  Let the log unit increment I in untransformed units = b(log

b
(median) +0.5)-b(log

b
(median) – 0.5), where b = 2, e, or 10, depending on the base. For observed βo with units of 

∆y/∆logb(x), to get re-expressed βr with units ∆y/∆x, calculate βr = βo/I. If the units of βo are ∆y/∆x, to get βr with units ∆y/∆logb(x), calculate βr = βo· I

First author, year βEstimand from analysis of raw data βRB
a Relative Biasb βDz Relative Biasb βAlt

c Relative Biasb

Abraham, 2020 [28] -0.0636 loge/ ng·ml−1 -0.0324 -0.49 -0.0368 -0.42 -0.0384 -0.40

Apelberg, 2007 [29] -12.9 g/(ng/ml) -11.7 -0.10 -13.2 0.03 -13.2 0.03

Bulka, 2021 [21] 0.015 loge(OR)/ ng·ml−1 0.043 1.87 0.0512 2.41 0.0531 2.54

Cheang, 2021 [27] 0.192 mg·dl/pmol·g−1 0.335 0.74 0.352 0.83 0.353 0.84

Chen, 2012 [32] -11.3 g/(ng/ml) -16.3 0.44 -17.9 0.58 -17.8 0.58

Darrow, 2013 [33] -2.3 g/(ng/ml) -1.95 -0.15 -2.02 -0.12 -2.00 -0.13

Hamm, 2010 [31] 1.5 g/(ng/ml) 3.66 1.44 3.92 1.62 3.85 1.57

Lee, 2020 [22] 1.444 loge(OR)/μg·dl−1 1.31 -0.09 3.30 1.28 3.46 1.4

Odebeatu, 2019 [23] 6.86 × 10–4 loge(OR)/ng·ml−1 0.0114 15.69 0.0122 16.82 0.0116 15.86

Pilkerton, 2018 [26] -0.0049 loge/ng·ml−1 -0.0207 3.22 -0.0302 5.17 -0.0306 5.24

Steenland, 2009 [10] 0.00105 loge/ ng·ml−1 0.00116 0.11 0.00127 0.21 0.00126 0.20

Stein, 2016 [25] -0.0039 loge/ng·ml−1 -0.00676 0.73 -0.0069 0.77 -0.00694 0.78

Washino, 2009 [30] -10.94 g/(ng/ml) -11.4 0.04 -12.1 0.10 -10.0 -0.08

Xu, 2020a [24] 0.513 loge(OR)/ ng·ml−1 0.508 -0.01 0.962 0.87 1.01 0.96

Xu, 2020b [24] 29.3 mg·dl/ng·ml−1 25.4 -0.13 48.1 0.64 50.4 0.72

Median 0.11 0.77 0.78

First quartile -0.095 0.155 0.115

Third quartile 1.09 1.45 1.485

Minimum -0.49 -0.42 -0.40

Maximum 15.69 16.82 15.86
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Xu et  al. (2020) (dichotomous outcome), which showed 
smaller relative differences between the re-expressed and 
fitted βs. The analyses with and without the inclusion of 
especially influential points in the real data sets showed 
that the accuracy of the re-expression estimators was 
affected by their exclusion (Table S10). The relative bias 
was affected by the influential points more so for Ode-
beatu et  al. (2019) and Pilkerton et  al., (2019) than for 
Cheang et al. (2021) and Xu et al. (2020), but even with 
the exclusion of influential observations the re-expres-
sion methods still had a high relative bias.

As was true for the original set of real data examples, 
the range of parameter values in the simulation and sec-
ond set of real data examples overlapped substantially 
(Table 1, Suppl. Table S1). When the relative bias of the 
re-expressed ϐ coefficients was examined using the sec-
ond set of real data examples (Suppl. Materials, Table S1), 
the range of relative bias (-18.1 to 10.7) was greater than 
in the original set of real examples (-0.5 to 16.8), and the 
interquartile ranges were narrower for βRB than for βDz 
and βAlt. In general, however, these distributions were all 
relatively wide, as in the original set of real data examples. 

For some studies the relative bias was similar across esti-
mators (e.g., Abraham et al., 2020; Bulka et al., 2021; Dar-
row et  al., 2013; Pilkerton et  al., 2018; and Stein et  al., 
2016). As with the original set of data examples, agree-
ment in degree of bias across re-expression methods 
tended to be higher when the median exposure was > 4. 
As before, a tendency for βRB to have the lowest bias 
occurred when the median exposure was < 1 (Lee et  al., 
2020), especially when σ was > 0.8 (Odebeatu et al., 2019; 
Xu et  al. 2020b). Similarly, βDz and βAlt tended to have 
a smaller relative bias than βRB when the median expo-
sure was > 1 and σ was < 0.8 (e.g., Apelberg et al., 2008; Xu 
et al. 2020a). But median exposure and σ did not perfectly 
predict the lowest-bias estimator, and few results had a 
relative bias that was in the range of 0 ± 0.05.

When we used the regression equations (Table S2) to 
predict the relative bias in the estimators when applied 
to each of the real data examples, and then adjusted 
the re-expressed β to remove the bias, the adjusted βs, 
on average, showed less relative bias, but as before, the 
interquartile range of the adjusted relative bias was 
wide (Table 5).

Table 5  Comparison of fitted and re-expressed β coefficients and proportional difference in β for three methods of re-expression, 
adjusted by their OLS describing the relationship between sigma and relative bias

a  Using the notation of Rodriguez-Barranco et al., k = base of log transformation used; c = 1
b  Proportional difference between β in column to the left compared with the one from the analysis of raw data, calculated using the same method as in previous table 
((beta in column to left – beta from analysis of raw data)/beta from analysis of raw data). Note that the β in column to the left was calculated using β with different 
units in denominator than for the raw data analysis shown in the table
c  Let the log unit increment I in untransformed units = b(log

b
(median) +0.5)-b(log

b
(median) – 0.5), where b = 2, e, or 10, depending on the base. For observed βo with units of 

∆y/∆logb(x), to get re-expressed βr with units ∆y/∆x, calculate βr = βo/I. If the units of βo are ∆y/∆x, to get βr with units ∆y/∆logb(x), calculate βr = βo· I

First author, year βEstimand from analysis of
raw data

βRB
a Relative Biasb βDz Relative Biasb βAlt

c Relative Biasb

Abraham, 2020 [28] -0.0636 loge/ ng·ml−1 -0.0202 -0.68 -0.0214 -0.66 -0.0214 -0.66

Apelberg, 2007 [29] -12.9 g/(ng/ml) -10.6 -0.18 -9.41 -0.27 -9.37 -0.27

Bulka, 2021 [21] 0.015 loge(OR)/ ng·ml−1 0.0339 1.26 0.0303 1.02 0.0301 1.01

Cheang, 2021 [27] 0.192 mg·dl/pmol·g−1 0.224 0.17 0.288 0.50 0.290 0.51

Chen, 2012 [32] -11.3 g/(ng/ml) -14.8 0.31 -12.8 0.14 -12.8 0.13

Darrow, 2013 [33] -2.3 g/(ng/ml) -1.69 -0.27 -1.56 -0.32 -1.56 -0.32

Hamm, 2010 [31] 1.5 g/(ng/ml) 3.79 1.52 3.24 1.16 3.24 1.16

Lee, 2020 [22] 1.444 loge(OR)/μg·dl−1 0.957 -0.34 1.79 0.24 1.79 0.24

Odebeatu, 2019 [23] 6.86 × 10–4 loge(OR)/ng·ml−1 0.00374 4.45 0.00361 4.26 0.00364 4.30

Pilkerton, 2018 [26] -0.0049 loge/ng·ml−1 -0.021 3.26 -0.0232 3.74 -0.0231 3.71

Steenland, 2009 [10] 0.00105 loge/ ng·ml−1 0.00088 -0.16 0.00090 -0.14 0.00090 -0.14

Stein, 2016 [25] -0.0039 loge/ng·ml−1 -0.00527 0.35 -0.00542 0.39 -0.00542 0.39

Washino, 2009 [30] -10.94 g/(ng/ml) -11.6 0.06 -9.34 -0.15 -9.40 -0.14

Xu, 2020a [24] 0.513 loge(OR)/ ng·ml−1 0.380 -0.26 0.535 0.04 0.534 0.04

Xu, 2020b [24] 29.3 mg·dl/ng·ml−1 19.0 -0.35 26.7 -0.09 26.7 -0.09

Median 0.06 0.14 0.13

First quartile -0.265 -0.145 -0.140

Third quartile 0.805 0.760 0.760

Minimum -0.68 -0.66 -0.66

Maximum 4.45 4.26 4.30



Page 10 of 12Linakis et al. BMC Medical Research Methodology            (2024) 24:6 

Discussion
In the simulations, the bias in each of the three estima-
tors was evaluated in relation to the median of the expo-
sure variable, the skewness in the exposure variable, the 
log base used to transform the exposure variable, the β 
in the model generating the data, and the nobs simulated. 
For all three re-expression methods, the relative bias was 
more positive as the skewness of the exposure distribu-
tion increased. The relative bias in βRB was also deter-
mined by the median of the exposure distribution, and 
the relative bias in βAlt was also affected by the base of the 
log used to transform the exposure variable. Although a 
few specific circumstances were found where the rela-
tive bias in a given re-expression method was lower, in 
general, when the skewness of x was large enough that a 
log transformation might be applied, the methods gave 
results that were sufficiently biased that their use would 
not be advisable. The results from applying the re-expres-
sion methods to real datasets generally agreed with those 
from the simulation, but the relative bias was greater 
than predicted based on the simulations. The relative bias 
in the real data was not much affected by the exclusion of 
influential observations. The especially high relative bias 
of the re-expression methods in the case of the Odebeatu 
et al. (2019) data may have been due to the small size of 
the slope being re-expressed.

Rodriguez-Barranco et  al. (2017) recognized the 
importance of skewness in causing bias in their estimator, 
though the degree of skewness in their simulations was 
not specified and only one median value was used. For 
the re-expression method proposed by Steenland et  al. 
(2018), apparently it was assumed that if an exposure dis-
tribution had an upper bound near 10 units, their empiri-
cal re-expression method would be sufficiently accurate 
[10]. Our results suggested that the range of exposure 
was predictive of the validity of the re-expression only for 
the RB estimator. In a previous evaluation of bias in the 
Dzierlenga estimator [9], little bias was found. The five 
empirical data examples in that previous evaluation were 
all included in the present analysis. The relatively small 
number of empirical data studies in the previous evalua-
tion may have led to an overly-optimistic appraisal of the 
method.

In this report we focused on re-expressing regression 
coefficients from linear models fit to a log-transformed 
exposure variable. We could have also addressed the 
opposite: re-expression of regression coefficients from 
linear models fit to the untransformed exposure vari-
able. To simplify the manuscript, we did not address 
this opposite type of re-expression. In risk assessment, 
results based on untransformed exposure are usually of 
greatest use, hence our focus on expressing all results in 
absolute units.

The real data examples used to inform the parameter 
space in the simulations represented a limited range of 
subject matter. In other fields the parameter space may 
differ from what we investigated. For example, if the nobs 
in a study exceeded 8474, then the interaction between 
nobs and σ might have a larger effect on the relative bias 
of the Dzierlenga estimator than noted here. Further-
more, the informal nature of our process for identifying 
real data examples to inform the parameter space (Suppl. 
Methods Sects. 1 & 2) precludes generalizing our simu-
lation results to all environmental epidemiology studies 
with exposure measured with a biomarker. Nonetheless, 
the range of parameter values was broad enough it seems 
likely that the results may apply to many environmental 
epidemiology and perhaps other studies where relatively 
little variance in the outcome is explained. Similarly, the 
results of using the re-expression methods on the real 
data examples cannot be generalized to all environmen-
tal epidemiology studies with exposure measured with 
a biomarker. Examination of results for the real data 
examples, however, provided insights into the behavior 
of the re-expression methods not provided by the simu-
lations alone and suggested that in practice, none of the 
re-expression methods were likely to work well. We also 
recognize that the focus on outcome-exposure relations 
considered here was a simple linear relationship, and that 
the dose–response relation in a given study might be bet-
ter represented with a quadratic or other function.

How best to synthesize the results of the log-trans-
formed and absolute exposure evidence streams remains 
an open question and may depend on the scientific disci-
pline, scale of the outcome, and other considerations. In 
fields such as economics and psychology, meta-analysis 
of correlation coefficients is a well-recognized approach 
that could be applied to the evidence synthesis prob-
lem discussed here [12]. Regression coefficients would 
need to first be re-expressed as correlation coefficients 
[13]. Meta-analysis of correlation coefficients when both 
the outcome and exposure are continuous variables is a 
widely used approach in some fields [34]. However, Pear-
son correlation coefficients depend on the variance of the 
outcome and exposure [35], which can vary across stud-
ies. In epidemiology, meta-analysis of correlations has 
been criticized because they can distort the results [36]. 
In the field of randomized clinical trials, meta-analysis 
of correlation coefficients has received scant discussion, 
while Synthesis Without Meta-analyses (SWiM) is well-
accepted [2]. Our particular interest was in re-expression 
of results so that they could be included in a meta-anal-
ysis that could inform a risk assessment. In that context, 
the two relevant elements of a risk assessment are hazard 
identification and dose–response assessment. As noted 
in the introduction, when a dose–response evaluation 
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is based on meta-analytic results, such results are more 
straightforward to relate to a specific exposure level if 
derived from models with exposure in absolute, untrans-
formed units. For hazard identification the results of 
epidemiologic studies with exposure that has been log-
transformed and those with exposure in absolute units 
are both informative and use of SWiM might be the best 
solution to the synthesis problem. For a dose–response 
assessment in environmental epidemiology the re-
expression methods studied in the present work appear 
to cause more bias than would be acceptable. A more 
general discussion of issues in evidence synthesis meth-
ods has been addressed elsewhere [37] and is outside the 
scope of the present work.

The results of this assessment of validity have implica-
tions for systematic reviewers and meta-analysts consid-
ering or using these re-expression methods. The bias due 
to re-expression with the three methods evaluated was 
affected by the skewness of the exposure variable, and, 
for some estimators, the median exposure or the type of 
transformation used. Even with adjustment for the bias 
these re-expression methods, the estimates, on average, 
were too biased, and too variable in their degree of bias, 
to justify their use to support meta-analyses used in risk 
assessment. Future studies comparing different meth-
ods of synthesis across evidence streams might clarify 
the settings in which distortion of results might be most 
likely to occur, quantify the magnitude of distortion, and 
explicate their strengths and weaknesses.
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