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Abstract 

Background Selective reporting of results from only well-performing cut-offs leads to biased estimates of accuracy 
in primary studies of questionnaire-based screening tools and in meta-analyses that synthesize results. Individual par-
ticipant data meta-analysis (IPDMA) of sensitivity and specificity at each cut-off via bivariate random-effects models 
(BREMs) can overcome this problem. However, IPDMA is laborious and depends on the ability to successfully obtain 
primary datasets, and BREMs ignore the correlation between cut-offs within primary studies.

Methods We compared the performance of three recent multiple cut-off models developed by Steinhauser et al., 
Jones et al., and Hoyer and Kuss, that account for missing cut-offs when meta-analyzing diagnostic accuracy studies 
with multiple cut-offs, to BREMs fitted at each cut-off. We used data from 22 studies of the accuracy of the Edinburgh 
Postnatal Depression Scale (EPDS; 4475 participants, 758 major depression cases). We fitted each of the three multiple 
cut-off models and BREMs to a dataset with results from only published cut-offs from each study (published data) 
and an IPD dataset with results for all cut-offs (full IPD data). We estimated pooled sensitivity and specificity with 95% 
confidence intervals (CIs) for each cut-off and the area under the curve.

Results Compared to the BREMs fitted to the full IPD data, the Steinhauser et al., Jones et al., and Hoyer and Kuss 
models fitted to the published data produced similar receiver operating characteristic curves; though, the Hoyer 
and Kuss model had lower area under the curve, mainly due to estimating slightly lower sensitivity at lower cut-
offs. When fitting the three multiple cut-off models to the full IPD data, a similar pattern of results was observed. 
Importantly, all models had similar 95% CIs for sensitivity and specificity, and the CI width increased with cut-off 
levels for sensitivity and decreased with an increasing cut-off for specificity, even the BREMs which treat each cut-off 
separately.
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Conclusions Multiple cut-off models appear to be the favorable methods when only published data are available. 
While collecting IPD is expensive and time consuming, IPD can facilitate subgroup analyses that cannot be conducted 
with published data only.

Keywords Multiple cut-offs meta-analysis, Individual participant data, Depression screening accuracy, Sensitivity, 
Specificity, Selective reporting bias

Background
The accuracy of a screening test when compared with 
a reference standard is measured by its sensitivity and 
specificity [1]. For continuous or ordinal tests, sensi-
tivity and specificity are inversely related as a function 
of the positivity threshold, or cut-off; for tests where 
higher scores are associated with increased likelihood the 
underlying target condition is present, as the cut-off is 
increased, sensitivity decreases, and specificity increases.

For questionnaire-based screening tests, which have 
ordinal scores and multiple possible cut-offs, authors of 
primary studies often only report sensitivity and specific-
ity for a standard cut-off or for an “optimal” cut-off that 
maximizes combined sensitivity and specificity accord-
ing to a statistical criterion (e.g., Youden’s J) [2]. Some-
times results from other cut-offs close to the standard or 
optimal cut-off are also reported. This selective cut-off 
reporting has been shown to positively bias estimates 
of accuracy of screening tests in primary studies and in 
meta-analyses that synthesize results from primary stud-
ies [2, 3].

Researchers have used several approaches to meta-
analyze results from test accuracy studies with miss-
ing results for some cut-offs. Some have meta-analyzed 
studies at one or several cut-offs selected in advance [4] 
by including reported accuracy estimates at those cut-
offs from individual studies [5, 6]; this approach may lead 
to overestimated accuracy, however, if primary studies 
selected the cut-offs to report based on maximized test 
accuracy [2]. Others have combined primary studies 
using accuracy estimates from a single cut-off from each 
primary study, presumably the best-performing cut-off, 
combining results from different cut-offs across stud-
ies [7]; this method would also lead to even greater bias 
and to a clinically meaningless summary receiver operat-
ing characteristic (SROC) curve and combined accuracy 
estimates [8]. More recently, individual participant data 
meta-analyses (IPDMA) [9–12], have evaluated sensitiv-
ity and specificity at each cut-off, separately, using the 
bivariate random-effects model (BREM) of Chu and Cole 
[13], as discussed in Riley et al. [14, 15], which overcomes 
the selective cut-off bias problem but ignores correlations 
between cut-offs within the same primary study.

Statistical methods [16–19] that take the correlation 
between cut-offs into consideration and do not require 

the same number of cut-offs or identical cut-off values 
to be reported in each primary study have recently been 
proposed to simultaneously model data from multiple 
cut-offs in diagnostic test accuracy studies. Steinhauser 
et al. [16] proposed a class of linear mixed-effects models 
to model negative or positive test results as a linear func-
tion of cut-offs. Hoyer et  al. [17] proposed approaches 
based on survival methods that are random-effects mod-
els and consider missing cut-offs between two observed 
cut-offs as interval censored. Jones et  al. [18] proposed, 
in a Bayesian framework, a generalised nonlinear mixed 
model based on multinomial likelihood that employs a 
Box-Cox or logarithmic transformation to describe the 
underlying distribution of a continuous biomarker. Most 
recently, Hoyer and Kuss [19] extended Hoyer et  al.’s 
method [17] by suggesting the family of generalized F 
distributions for describing the distribution of screening 
test scores.

Recently, Benedetti et  al. [20] compared the perfor-
mance of BREMs [13], Steinhauser et al. [16], and Jones 
et  al. [18] methods when applied to data consisting of 
published primary study results with missing data for 
some cut-offs versus individual participant data (IPD) 
with complete cut-off data for a commonly used depres-
sion screening tool, the Patient Health Questionnaire-9 
(PHQ-9; 45 studies, 15,020 participants, 1972 major 
depression cases). The PHQ-9 uses a standard cut-off 
of ≥10 to detect major depression, and missing cut-offs 
in primary studies tended to be scattered symmetrically 
around this standard cut-off. When applied to published 
data with missing cut-offs, the Steinhauser et  al. [16] 
and Jones et  al. [18] models performed better than the 
BREMs [13] in terms of their ability to recover the full 
receiver operating characteristics (ROC) curve – which 
unlike the SROC curve uses the separate cut-offs instead 
of the primary studies in the meta-analysis as a unit of 
analysis – from the full IPD. When all methods were 
applied to the full IPD, the Steinhauser et  al. [16] and 
Jones et  al. [18] methods produced similar areas under 
the curve (AUC) and ROC curves as the BREMs [13], but 
pooled sensitivity and specificity estimates were slightly 
lower than those from the BREMs [13].

The aim of the present study was to empirically com-
pare three multiple cut-off models – the Steinhauser 
et  al. [16], Jones et  al. [18], and recently proposed 
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Hoyer and Kuss [19] (which was not included in Bene-
detti et al. [20]) models – to conducting BREMs [13] at 
each cut-off separately using data from primary stud-
ies that assessed the screening accuracy of the Edin-
burgh Postnatal Depression Scale (EPDS). Unlike the 
PHQ-9, the EPDS does not have a single standard cut-
off, and cut-offs from ≥10 to ≥13 are sometimes used; 
therefore, the distribution of missing cut-offs may be 
less symmetrical around a single cut-off [3]. Unlike the 
study of Zapf et al. [21], that considered the Hoyer et al. 
[17] model, we aimed to [1] use the latest, generalized, 
and better-performing model of Hoyer and Kuss [19], 
and [2] compare the multiple cut-off methods applied 
to published individual study results with missing cut-
offs data to the BREM applied to IPD with complete 
cut-off data, in the context of diagnostic accuracy 
studies of depression screening tools. First, to repli-
cate standard meta-analytic practice and compare it to 
IPDMA, we fitted BREMs to published cut-off results 
and compared results with BREMs fitted to the full IPD 
dataset for all relevant cut-offs. Second, to compare 
the ability of the multiple cut-off methods to recover 
the ROC curve from the full IPD dataset, we compared 
the multiple cut-off models when applied to published 
primary study results with missing data for some cut-
offs to BREMs applied to the full IPD with results for 
all cut-offs. Third, we compared the three multiple cut-
off models and BREMs when applied to the full IPD 
to describe each model’s performance in the absence 
of missing cut-offs. Fourth, we fitted the three multi-
ple cut-off models to both the full IPD dataset and to 
published primary study results and compared results 
across models to evaluate differences between the mod-
els due to data types.

Methods
This study uses data from an IPDMA of the accuracy of 
the EPDS for screening to detect major depression among 
pregnant and postpartum women [12]. A PROSPERO 
registration (CRD42015024785) and a published protocol 
[22] were available for the original IPDMA. The present 
study was not included in the original IPDMA protocol, 
but a separate protocol was prepared and posted on the 
Open Science Framework (https:// osf. io/ 5hf6t/) prior 
to study initiation. Because of the overlap of methods in 
the present study with methods from previous studies, 
we adopted those methods, including the description of 
our data and data collection methods [3, 12] and descrip-
tions of the statistical models we compared, which were 
described in Benedetti et al. [20] (except the Hoyer and 
Kuss model [19]). We followed guidance from the Text 
Recycling Research Project [23].

Identification of eligible studies for the main IPDMA
Eligibility criteria for the main IPDMA of the EPDS were 
based on how screening would occur in practice. In this 
article, the same eligibility standards as the main IPDMA 
of the EPDS were used [12], including administration 
of the EPDS and a validated diagnostic interview – that 
identified diagnostic classifications for current Major 
Depressive Disorder (MDD) or Major Depressive Epi-
sode (MDE) – within 2 weeks of each other. If the original 
data allowed for the identification of eligible participants, 
datasets where not all participants were eligible were 
included [12]. Our criteria for defining major depression 
also followed that of Levis et al. [12] and Benedetti et al. 
[20].

Search strategy and study selection
A medical librarian, using a peer-reviewed search strat-
egy [24], searched Medline, Medline In-Process & Other 
Non-Indexed Citations and PsycINFO via OvidSP, and 
Web of Science via ISI Web of Knowledge from incep-
tion to October 3, 2018. The complete search strategy 
was published with the original IPDMA [12]. We also 
reviewed reference lists of relevant reviews and que-
ried contributing authors about non-published studies. 
Search results were uploaded into RefWorks (RefWorks-
COS, Bethesda, MD, USA). After de-duplication, unique 
citations were uploaded into DistillerSR (Evidence Part-
ners, Ottawa, Canada) for storing and tracking search 
results.

Two investigators independently reviewed titles and 
abstracts for eligibility. If either reviewer deemed a study 
potentially eligible, full-text article review was done by 
two investigators, independently, with disagreements 
resolved by consensus, including a third investigator, as 
necessary.

Data contribution and synthesis
De-identified original data contributions from authors 
of suitable datasets were requested [12]. Data at the par-
ticipant level included EPDS score and the presence or 
absence of major depression. We applied the supplied 
weights when datasets had necessary statistical weighting 
to account for sampling techniques, and we created the 
necessary weights based on inverse selection probabili-
ties in cases where the original study did not weight [12].

Data used in the present study
Since the purpose of the present study was to compare 
statistical methods for multiple cut-off meta-analy-
sis using published data versus IPD, we required that 
included studies for the present analysis published sen-
sitivity and specificity for at least one cut-off in addition 
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to meeting the inclusion and exclusion criteria for the 
main IPDMA. We did not consider any data from pub-
lished studies for which the IPD could not be retrieved. 
Consistent with our previous work [3], to make the 
data close enough to the actual data used in the original 
reports, we excluded studies for which the difference in 
sample size or major depression cases between the pub-
lished data and our IPD exceeded 10%. We also excluded 
studies if they reported diagnostic accuracy for a broader 
diagnostic category than major depression (e.g., any 
mood disorder) if diagnoses other than major depression 
comprised more than 10% of cases. For the eligible data, 
we constructed a dataset composed of 2 × 2 tables (true 
positives, false positives, true negatives, false negatives) 
for only published cut-offs for each study, and we refer 
to this as the published dataset. We refer to the data-
set that included results for all cut-offs for each eligible 
study, rather than just published cut-offs, as the full IPD 
dataset.

Differences between primary study results, full IPD dataset, 
and published dataset
Because of the criteria for inclusion and exclusion criteria 
employed in our EPDS IPDMA [12], data that had previ-
ously been included in the published main studies occa-
sionally differed from those used in the current analysis. 
First, rather than applying the eligibility standards for the 
EPDS IPDMA [12] at the study level, they were consist-
ently applied to all participants. Due to this, a subset of 
the individuals in some of the original studies matched 
the inclusion requirements for the EPDS full IPD data-
set. For instance, we only included data from individuals 
who completed the EPDS and reference standard within 
a two-week time frame, for adult women who completed 
assessments while pregnant or within a year of giving 
birth, and for individuals who were not recruited because 
they were undergoing psychiatric evaluation or treat-
ment or suspected of having a depressive disorder. Par-
ticipants who fulfilled these requirements were included 
from every primary study, while those who failed to, 
were not [12]. Second, we defined the outcome as “major 
depression.” Some original studies, nevertheless, pro-
vided accuracy scores for diagnoses of depression wider 
than major depression, including “major + minor depres-
sion” or “any depressive disorder.” Third, we created suit-
able weights based on inverse selection probabilities for 
cases where sampling techniques called for weighting, 
but the primary study did not. This happened, for exam-
ple, when the diagnostic interview was given to all those 
who received positive screening results but only to a ran-
domly selected group of individuals with negative screen-
ing results [12]. Fourth, we compared findings calculated 
using the raw datasets with published information on 

participants and diagnostic accuracy outcomes during 
our data validation procedure. We detected and fixed 
errors in conjunction with the primary research investi-
gators where the primary data that we obtained from the 
investigators and the original publications conflicted [12]. 
After making the aforementioned changes and exclusions 
for the published dataset, we only estimated specificity 
and sensitivity for the cut-offs that were included in the 
original studies [20].

Statistical analyses
First, to replicate conventional meta-analytic practice, we 
fitted BREMs [13] to the published dataset, separately for 
each cut-off, and obtained pooled sensitivity and speci-
ficity with 95% confidence intervals (CIs). We evaluated 
results for all possible EPDS cut-offs (0 to 30) and pre-
sented results for those in a clinically relevant range (7 to 
15) as we did in our main EPDS IPDMA [12]. We com-
pared these results to BREMs using IPDMA with data 
from the full IPD dataset.

Second, we fitted the three multiple cut-off meth-
ods (i.e., the Steinhauser et al. [16], Jones et al. [18], and 
Hoyer and Kuss [19] models) to the published dataset 
and compared to the BREMs [13] fitted to the full IPD 
dataset to evaluate how well each model recovered the 
ROC curve from the full IPD.

Third, we fitted the three multiple cut-off models [16, 
18, 19] to the full IPD dataset and compared results 
across these models and the BREMs [13], also applied to 
the full IPD dataset, to assess whether any differences in 
results were due to differences in modelling approaches 
instead of differences in data type (published data with 
missing cut-offs versus full IPD).

Fourth, to evaluate whether differences in results were 
due to data types, we compared results across the three 
multiple cut-off models [16, 18, 19] applied to both the 
full IPD dataset and to the published dataset.

The BREM [13] is a two-stage random-effects meta-
analytic approach that estimates pooled logit-trans-
formed sensitivity and specificity simultaneously, 
accounting for the correlation between sensitivity and 
specificity across studies and for the precision by which 
sensitivity and specificity are estimated within studies. 
The BREM is fitted separately at each cut-off. It does not 
account for the correlation across cut-offs within a study 
or make any assumptions about the shape of the associa-
tion between cut-offs and sensitivity or specificity. The 
AUC of the full ROC curve was obtained by numerical 
integration based on the trapezoidal rule, and a 95% CI 
for the AUC was estimated using bootstrap resampled 
data at the study and participant level [25].

The Steinhauser et al. [16] approach is a bivariate lin-
ear mixed-effects approach that models a study-specific 
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logit-transformed proportion of negative test results (1 
– sensitivity, specificity) at each cut-off through random-
effects to account for the heterogeneity across studies in 
the meta-analysis. We used restricted maximum likeli-
hood (REML) criteria [26, 27] to choose among the eight 
linear mixed-effects models proposed by Steinhauser 
et al. [16], which differ in their random-effects structures. 
Accordingly, the “different random intercept and differ-
ent random slope” model [16] was found to fit both the 
published dataset and the full IPD dataset well.

The Jones et  al. [18] approach is a Bayesian random-
effects model that describes the variability in the test 
results between cut-offs by the exact multinomial dis-
tribution. The model assumes the logistic distribution 
for the distribution of the Box-Cox or natural logarithm 
transformed test results in cases and non-cases group, 
and accounts for within-study correlation due to multi-
ple cut-offs. To describe the variation in sensitivity and 
specificity across studies, the model assumes that the 
means and scale parameters of the test results in the case 
and non-case populations follow a quadrivariate normal 
distribution with a common mean vector of length four 
and a four-by-four variance-covariance matrix. We fit-
ted the model to both the full IPD dataset and the pub-
lished dataset by estimating the Box-Cox transformation 
parameters directly from the data instead of assuming 
the log-logistic distribution for the natural logarithm-
transformed screening results since the 95% credible 
intervals for the Box-Cox transformation parameters did 
not include 0.

Hoyer and Kuss [19] use an accelerated failure time 
model by assuming positive test results (sensitivity, 1 – 
specificity) as the events of interest and the screening 
test scores as an interval-censored time variable. The 
family of generalized F distributions, which includes the 
Weibull, lognormal, log-logistic, generalized gamma, 
Burr III, Burr XII, and generalized log-logistic distribu-
tion, is used to describe the distribution of the loga-
rithm of screening test scores. In the accelerated failure 
time framework, after log-transformation of the screen-
ing test scores, bivariate normally distributed random 
intercepts in the linear predictor are used to account for 
within-study correlation across screening test scores for 
different cut-offs and to account for the inherent corre-
lation between sensitivity and specificity across studies. 
Sensitivity and specificity of a test are predicted from 
the survival functions of the respective distributions at 
a specified cut-off threshold. The Bayesian Information 
Criterion (BIC) [28] is used to choose the best-fitting 
model. Accordingly, the Burr III and the GF models were 
best fitting and used for the published dataset and the 
full IPD dataset, respectively.

For each method and at each step, we estimated cut-
off-specific pooled sensitivity and specificity and corre-
sponding 95% CIs and the AUC across the full range of 
EPDS cut-offs (0 to 30). We compared point estimates, 
95% CI widths, and AUC between methods and datasets.

We fitted the BREMs [13], Steinhauser et al. [16], and 
Jones et al. [18] models in the R [29] programming lan-
guage via RStudio [30] using the R packages lme4 [27], 
diagmeta [31], and R2WinBUGS [32], respectively. The 
Hoyer and Kuss [19] model was fitted in SAS using the 
NLMIXED procedure to obtain the maximum likelihood 
estimates of model parameters via the Gauss Hermite 
quadrature.

Results
Search results and dataset inclusion
A total of 4434 unique titles and abstracts were identi-
fied from database searches; of these, 4056 were excluded 
after reviewing titles and abstracts and 257 after review-
ing full texts, resulting in 121 eligible articles with data 
from 81 unique participant samples, of which 56 (69%) 
contributed datasets. Two additional studies were con-
tributed by primary study authors, resulting in a total of 
58 studies that provided participant data. We excluded 25 
studies that did not publish accuracy results for any EPDS 
cut-off and 11 studies for which the difference in sample 
size or number of major depression cases between the 
published data and our IPD exceeded 10%, leaving data 
from a total of 22 primary studies that were included in 
the present study (38% of 58 identified studies that pub-
lished accuracy results; see Fig. 1).

Description of included studies
The 22 studies included 4475 participants and 758 major 
depression cases in the full IPD dataset. These numbers 
vary by cut-off in the published dataset, which is a subset 
of the full IPD dataset with results only from cut-offs in 
the primary studies for which results were published (see 
Table  1). The aggregate distribution of published EPDS 
cut-offs by the primary studies included in the published 
dataset is depicted in Appendix Fig. A1. The overall dis-
tribution of EPDS scores among participants with and 
without major depression is shown in Appendix Table A1 
and Fig. A2.

Comparison of sensitivity and specificity
In Appendix Tables A2 to A5 we present the sensitivity 
and specificity estimates with their corresponding 95% 
CIs (Steinhauser et al. [16], Hoyer and Kuss [19], BREMs 
[13]) or credible intervals (Jones et  al. [18] model) for 
both the published dataset and full IPD dataset for cut-
offs 7 to 15.
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Figure 2 depicts pooled sensitivity and specificity by 
cut-off when the BREMs [13], Steinhauser et  al. [16], 
Jones et al. [18], and Hoyer and Kuss [19] models were 
fitted to the published dataset and when the BREMs 

[13] were fitted to the full IPD dataset. The BREMs [13] 
fitted to the published dataset yielded lower sensitiv-
ity estimates for most cut-offs compared to the BREMs 
[13] fitted to the full IPD dataset, with mean absolute 

Fig. 1 Flow diagram of study selection process
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difference between the two models of 0.05 (range: 0.00 
to 0.09). The right-hand panel of Fig. 2 shows that the 
specificity estimated by the BREMs [13] fitted to the 
published dataset was higher than that estimated by 
the BREMs [13] fitted to the full IPD dataset, and that 
the difference decreased as the cut-off increased (mean 
absolute difference: 0.06, range: 0.01 to 0.14).

Compared to the BREMs [13] fitted to the full IPD 
dataset, the Steinhauser et al. [16] and Hoyer and Kuss 
[19] approaches applied to the published dataset had 
lower sensitivity estimates at lower cut-offs and the 
same or slightly higher estimates at higher cut-offs, 
with mean absolute difference of 0.02 (range: 0.00 to 
0.05) and 0.02 (range: 0.00 to 0.04), respectively. On 
the other hand, the Jones et  al. [18] model applied to 

the published dataset generated similar sensitivity esti-
mates to the BREMs applied to the full IPD dataset 
across cut-offs (mean absolute difference: 0.01, range: 
0.00 to 0.02). The Steinhauser et  al. [16], Hoyer and 
Kuss [19], and Jones et al. [18] models fitted to the pub-
lished dataset had higher specificity estimates at lower 
cut-offs but similar or lower estimates for higher cut-
offs compared to those estimated by the BREMs [13] 
fitted to the full IPD dataset, with respective mean 
absolute differences of 0.01 (range: 0.00 to 0.03), 0.02 
(range: 0.00 to 0.03), and 0.01 (range: 0.00 to 0.03).

Figure  3 compares the Steinhauser et  al. [16], Jones 
et al. [18], and Hoyer and Kuss [19] models when fitted 
to the full IPD dataset with the BREMs [13] fitted to the 
full IPD dataset. The Steinhauser et  al. [16] model had 

Table 1 Number of studies, participants, and major depression cases in the full IPD dataset and in the published dataset 

Full IPD dataset Published dataset

Cut-off N Studies N Participants N Major Depression 
Cases

N Studies N Participants N Major 
Depression 
Cases

7 22 4475 758 9 1829 265

8 22 4475 758 11 2336 337

9 22 4475 758 14 3127 460

10 22 4475 758 13 2631 353

11 22 4475 758 14 2782 395

12 22 4475 758 13 2693 370

13 22 4475 758 18 3398 568

14 22 4475 758 10 2326 265

15 22 4475 758 6 1286 131

Fig. 2 Comparing the sensitivity (left) and specificity (right) estimates when the BREMs [13], Steinhauser et al. [16], Jones et al. [18], and Hoyer 
and Kuss [19] models were fitted to the published data with when the BREMs [13] were fitted to the full IPD dataset
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lower sensitivity (mean absolute difference: 0.03, range: 
0.02 to 0.04) and specificity (mean absolute difference: 
0.02, range: 0.01 to 0.04) estimates for all cut-offs com-
pared to the BREMs [13]. The sensitivity and specificity 
estimated by the Jones et  al. [18] model were higher or 
similar at lower cut-offs and lower at higher cut-offs, with 
a mean absolute difference of 0.02 for sensitivity (range: 
0.00 to 0.05) and 0.02 for specificity (range: 0.00 to 0.03). 
The Hoyer and Kuss [19] model generated estimates of 
sensitivity that were higher for all cut-offs (mean abso-
lute difference: 0.03, range: 0.01 to 0.04) and estimates of 
specificity that were lower for all cut-offs (mean absolute 
difference: 0.06, range: 0.02 to 0.08) compared to esti-
mates generated by the BREMs [13].

Compared to the Steinhauser et  al. [16] model fit-
ted to the full IPD dataset, the Steinhauser et  al. [16] 
approach applied to the published dataset had similar 
sensitivity estimates at lower cut-offs but higher esti-
mates at upper cut-offs (mean absolute difference: 0.02, 
range: 0.00 to 0.05), and higher specificity estimates for 
all cut-offs (mean absolute difference: 0.03, range: 0.00 to 
0.06). Compared to the Jones et al. [18] model fitted to 
the full IPD dataset, the Jones et al. [18] model applied 
to the published dataset had lower sensitivity estimates 
at lower cut-offs and higher estimates at upper cut-offs 
(mean absolute difference: 0.02, range: 0.01 to 0.05), 
but similar specificity estimates (mean absolute differ-
ence: 0.00, range: 0.00 to 0.01). Compared to the Hoyer 
and Kuss [19] model fitted to the full IPD, the Hoyer 
and Kuss [19] model applied to the published dataset 
generated estimates of sensitivity that were lower for 

all cut-offs except ≥15 (mean absolute difference: 0.04, 
range: 0.01 to 0.06) and higher estimates of specificity 
for all cut-offs (mean absolute difference: 0.06, range: 
0.05 to 0.07). See Appendix Tables A3 to A5.

Comparison of confidence or credible interval width
As expected, the widths of the estimated 95% CIs for 
sensitivity and specificity using the full IPD dataset were 
narrower than those estimated using the published data-
set for the BREMs [13], (mean absolute difference: 0.07, 
range: 0.01 to 0.12 for sensitivity; mean absolute differ-
ence: 0.02, range: 0.00 to 0.09 for specificity). All four 
modelling approaches had similar 95% CIs for sensitivity 
and specificity when applied to the full IPD dataset, with 
an increasing 95% CI width for sensitivity and decreas-
ing 95% CI width for specificity as the cut-offs increased 
or the number of major depression cases decreased. 
Although estimated 95% CIs for sensitivity using the full 
IPD dataset were narrower than those estimated using 
the published dataset for the Steinhauser et al. [16] and 
Hoyer and Kuss [19] models (mean absolute difference: 
0.05, range: 0.03 to 0.07 and mean absolute difference: 
0.06, range: 0.04 to 0.09, respectively), both models pro-
duced similar estimated 95% CIs for specificity when the 
published dataset or the full IPD dataset was used, with 
a mean 95% CI width of ≤0.01 (range: 0.00 to 0.02 for 
Steinhauser et al. [16], range: 0.00 to 0.03 for Hoyer and 
Kuss [19]) across all cut-offs. The Jones et al. [18] model, 
however, yielded similar estimated credible intervals for 
sensitivity and specificity between the datasets, with a 
mean absolute difference across cut-offs of 0.002 (range: 

Fig. 3 Comparing the sensitivity (left) and specificity (right) estimates when the BREMs [13], Steinhauser et al. [16], Jones et al. [18], and Hoyer 
and Kuss [19] models were fitted to the full IPD data with when the BREMs [13] were fitted to the full IPD dataset
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0.00 to 0.02) and 0.01 (range: 0.00 to 0.02) for sensitivity 
and specificity, respectively. (See Appendix Figs. A3 and 
A4).

Comparison in terms of ROC curves and AUC 
Figure 4 depicts the comparison of the ROC curves of the 
four modelling approaches when applied to the published 
dataset versus the BREMs [13] applied to the full IPD 
dataset (left panel) and when all approaches were applied 
to the full IPD dataset (right panel).

The AUC of the BREMs [13], Steinhauser et  al. [16], 
Jones et al. [18], and Hoyer and Kuss [19] methods when 
fitted to the published dataset were 0.90, 0.87, 0.94, and 
0.82, respectively. The ROC curve from the BREMs [13] 
fitted to the published dataset largely deviated from that 
fitted to the full IPD dataset, whereas the ROC curves 
from the Steinhauser et  al. [16] and Jones et  al. [18] 
approaches fitted to the published dataset were similar to 
the BREMs [13] fitted to the full IPD dataset. The Hoyer 
and Kuss [19] approach resulted in a lower AUC (Fig. 4, 
left panel).

A similar pattern of results was observed when the 
approaches were fitted to the full IPD dataset, though 
ROC curves were more spread out. The AUC of the 
BREMs [13], Steinhauser et  al. [16], Jones et  al. [18], 
and Hoyer and Kuss [19] approaches when fitted to the 
full IPD dataset were 0.90, 0.86, 0.95, and 0.83, respec-
tively. Compared to the ROC curve for the BREMs [13], 
the ROC curves for the Jones et  al. [18] and Hoyer and 
Kuss [19] approaches were lower at lower cut-offs and 
slightly higher at higher cut-offs. The ROC curve for the 

Steinhauser et al. [16] approach remained lower than that 
for the BREMs [13] regardless of the cut-off thresholds 
(Fig. 4, right panel).

Discussion
We compared the performance of three recently devel-
oped multiple cut-off methods by Steinhauser et al. [16], 
Jones et  al. [18], and Hoyer and Kuss [19] that account 
for missing cut-offs when meta-analyzing diagnostic test 
accuracy studies with multiple cut-offs. These methods 
do not require IPD, which is costly and labour-intensive 
to collect [33]. We compared them with BREMs [13] 
when each of the three multiple cut-off models was fit-
ted to both a published dataset with missing cut-offs and 
using IPD from 22 studies on the diagnostic accuracy of 
the EPDS (the full IPD dataset).

Most of the results we found were consistent with the 
findings of Benedetti et al. [20] The BREMs [13] fitted to 
the published dataset resulted in lower sensitivity and 
higher specificity estimates for most cut-offs, and a diver-
gent ROC curve with similar AUC compared to results 
from the BREMs [13] fitted to the full IPD dataset (Fig. 2 
and Table A2), suggesting that results from the BREMs 
[13] fitted to published data are biased due to selective 
cut-off reporting [2, 3].

Compared to the BREMs [13] fitted to the full IPD 
dataset, the Steinhauser et al. [16], Jones et al. [18], and 
Hoyer and Kuss [19] models fitted to the published data-
set produced similar ROC curves; though, the Hoyer and 
Kuss [19] model had lower AUC, mainly due to estimat-
ing slightly lower sensitivity at lower cut-offs (Fig.  2). 

Fig. 4 Comparing ROC curves when the BREMs [13], Steinhauser et al. [16], Jones et al. [18], and Hoyer and Kuss [19] approaches were fitted 
to the published data (left) and full IPD (right) with when the BREMs [13] were fitted to the full IPD dataset
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When fitting the three multiple cut-off models to the full 
IPD dataset, a similar pattern of results was observed 
(Fig. 3). Importantly, all models had similar 95% CIs for 
sensitivity and specificity, and the CI width increased 
with cut-off levels for sensitivity and decreased with an 
increasing cut-off for specificity, even the BREMs which 
treats each cut-off separately (Tables A2 to A5; Figs. A3 
and A4).

The ROC curves estimated by the Hoyer and Kuss 
model [19] had considerably lower AUC than the Stein-
hauser et  al. [16] and Jones et  al. [18] methods (Fig.  4). 
While this may be due to the sensitivity of the model to 
starting values, we used an objective statistical approach 
to choose a starting value that yielded in the best model 
with the smallest BIC. Moreover, in the simulations pre-
sented in Hoyer and Kuss [19], when the Generalized F 
was the true model, the model as specified here under-
estimated sensitivity and overestimated specificity across 
cut-offs, similar to the pattern of results seen when this 
approach was applied to the full IPD dataset. For the 
published dataset, this approach estimated the low-
est sensitivity at lower cut-offs and highest specificity at 
upper cut-offs.

The differences in results between the models when 
fitted to the full IPD dataset were likely due to the vari-
ous assumptions each model makes. Each of the models 
discussed in this paper assume different distributions 
to describe the variation in the screening test results. 
While the recent methods account for the correlation 
across cut-offs between sensitivities and specificities, the 
BREM does not. Except the Jones et al. [18] model, which 
assumes four random-effects, the other models assume 
only two random-effects to describe the variation in sen-
sitivities and specificities across studies and cut-offs. For 
example, as pointed out by Benedetti et al. [20], whereas, 
the Steinhauser et al. [16] model may fit the ROC curve 
at upper cut-offs where more major depression cases 
are observed as it assumes a parametric relationship 
between cut-offs and logit-transformed sensitivities, the 
Jones et  al. [18] model, which additionally assumes the 
Box-Cox transformation estimated from the data, may 
recover the true ROC curve better.

The present study showed that recent methods for mul-
tiple cut-offs meta-analysis with missing cut-off informa-
tion are important approaches that can produce reliable 
estimates in the absence of IPD, unlike standard BREMs 
[13] at each cut-off separately, which may produce mis-
leading results when there is substantial missingness in 
reported results at different cut-offs.

We did not find substantial differences between our 
findings and those of Benedetti et al. [20], suggesting that 
the recent multiple cut-off models are robust to variations 

in data characteristics, although further research, includ-
ing studies with simulated datasets, is needed. Whereas 
we fitted the models to the EPDS data that consisted of 
IPD from 22 studies, 4475 participants and 758 major 
depression cases (Table  1), Benedetti et  al. [20] applied 
the models to the PHQ-9 data that comprised IPD from 
45 studies, 15,020 participants and 972 major depression 
cases. There is also appreciable difference in the distribu-
tion of the published data for the cut-offs 7 to 15 (Table 
A1; Fig. A2), which were used in both studies. Whereas 
the distribution of missing cut-offs was scattered sym-
metrically around the standard cut-off of ≥10 for the 
PHQ-9, the distribution was less symmetrical around the 
commonly used cut-off of ≥13 for the EPDS (Fig. A1).

Strengths of the present study include assessing the 
most recent approach of Hoyer and Kuss [19] in addition 
to those evaluated by Benedetti et al. [20] and the ability 
to compare results from a dataset with missing cut-offs to 
IPD that consisted of line-by-line participant data. Addi-
tionally, our ability to replicate the findings on Benedetti 
et al. [20] on a different dataset with differing character-
istics supports the best-practice standards for developing 
knowledge through replication of existing studies using 
multiple empirical replication studies [34]. A main limi-
tation is the lack of a simulation study upon which the 
methods can be examined using true population param-
eters instead of empirical data, although the in-progress 
simulation study as promised by Zapf et al. [21] is antici-
pated to shed some light on this end. Moreover, we could 
not include data from 36 (62%) of 58 identified studies 
that published accuracy results.

Conclusion
Despite the differences in model assumptions, all three 
recent methods for multiple cut-off diagnostic data meta-
analysis, particularly the Jones et al. [18] model, satisfac-
torily recovered the ROC curve from the full IPD while 
being fitted to only the published data with missing cut-
offs, which demonstrates the importance of such meth-
ods in the absence of IPD. Our results suggest that there 
is not a substantive disadvantage compared to applying 
the BREMs to the full IPD. Furthermore, our results sug-
gest that multiple cut-off models are effective methods 
for meta-analysis of diagnostic test accuracy of depres-
sion screening tools when only published data are avail-
able, although our results may not hold in datasets with 
very different characteristics. However, we note that 
collecting full IPD allows additional analyses not possi-
ble when only aggregate data are collected (such as, e.g., 
conducting subgroup analyses). it is important to note 
that collecting IPD remains an attractive option. Beyond 
reducing bias from selective cut-off reporting, it can 
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reduce heterogeneity among included studies as it allows 
for analysis based on predetermined inclusion/exclusion 
criteria, and it allows for subgroup analysis by important 
participant characteristics for which primary studies may 
not have reported results for, which would not be possi-
ble using the multiple cut-off models.
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