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Abstract 

Sepsis remains a critical concern in intensive care units due to its high mortality rate. Early identification and interven-
tion are paramount to improving patient outcomes. In this study, we have proposed predictive models for early sepsis 
prediction based on time-series data, utilizing both CNN-Transformer and LSTM-Transformer architectures. By collect-
ing time-series data from patients at 4, 8, and 12 h prior to sepsis diagnosis and subjecting it to various network mod-
els for analysis and comparison. In contrast to traditional recurrent neural networks, our model exhibited a substantial 
improvement of approximately 20%. On average, our model demonstrated an accuracy of 0.964 (± 0.018), a precision 
of 0.956 (± 0.012), a recall of 0.967 (± 0.012), and an F1 score of 0.959 (± 0.014). Furthermore, by adjusting the time win-
dow, it was observed that the Transformer-based model demonstrated exceptional predictive capabilities, particularly 
within the earlier time window (i.e., 12 h before onset), thus holding significant promise for early clinical diagnosis 
and intervention. Besides, we employed the SHAP algorithm to visualize the weight distribution of different features, 
enhancing the interpretability of our model and facilitating early clinical diagnosis and intervention.
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Introduction
Sepsis is defined as life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1]. 
Failure to promptly recognize and intervene with treat-
ment can result in multiple organ dysfunction or even 
fatality. Over the last few decades, due to the timely 
administration of antibiotics, fluid resuscitation, and 
multi-organ support therapies, the mortality rate asso-
ciated with sepsis has progressively diminished. Nev-
ertheless, the mortality rate still persists at a high level. 
The Global Burden of Disease report for the year 2017 

revealed a global total of 48.9 million reported cases of 
sepsis, with a mortality rate of 22.5%, accounting for 
nearly 20% of the total global deaths [2–4]. The progres-
sion speed of sepsis can vary due to individual differences 
and the type of infection, but typically, certain signs and 
symptoms might emerge during the initial stages of its 
onset. Acknowledging the non-absolute nature of these 
indicators is paramount, given that diverse patients may 
present varying signs. Moreover, the early symptoms of 
sepsis may sometimes overlap with symptoms of other 
diseases. Therefore, early prediction of sepsis is crucial 
for a comprehensive assessment and diagnosis of the 
condition’s progression.

As sepsis patients advance through various disease 
stages, the precise early prediction of a patient’s potential 
progression to sepsis during the initial phases of inflam-
mation is critically significant for clinical practitioners. 
This significance arises from its dual role in not only 
facilitating the evaluation of disease severity but also in 
enhancing treatment strategies, mitigating unfavorable 
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outcomes, and ultimately prolonging patients’ lives. 
Currently, various clinical scoring systems, such as the 
Sequential Organ Failure Assessment (SOFA) score [5], 
the Acute Physiology and Chronic Health Evaluation 
(APACHE-II) score [6], and the Predisposition, Insult/
Infection, Response, and Organ Dysfunction (PIRO) 
score [7], can assist clinical practitioners in evaluating 
patients’ overall risk and prognosis. Nonetheless, these 
scoring systems are designed for a broader range of criti-
cally ill patients and are not specifically tailored to sepsis. 
To prevent the progression of severely infected patients 
into sepsis, pre-diagnosis and continuous monitoring of 
sepsis are of utmost importance, potentially leading to 
improved patient survival rates.

In recent times, machine learning has played a piv-
otal role in medical research, facilitating the creation of 
predictive models customized to meet specific clinical 
requirements and data attributes. In contrast to tradi-
tional clinical scoring systems, machine learning models 
possess the ability to consistently learn from feedback, 
enabling a gradual enhancement of their performance 
over time—an achievement that traditional scoring sys-
tems might struggle to emulate. The construction of 
existing sepsis prediction models heavily relies on the 
utilization of machine learning models. For instance, 
Calvert et al. [8] introduced the InSight algorithm, which 
utilizes 9 parameters—8 routine vital signs and patient 
age—to predict sepsis which achieved an Area Under the 
Receiver Operating Characteristic curve (AUROC) of 
0.72. Yao et al. [9] found that the xgboost model outper-
forms traditional logistic regression models and SOFA 
scores in both discrimination and calibration in early 
identification of high-risk sepsis mortality patients, with 
AUCs of 0.835, 0.737, and 0.621 respectively. Beyond 
conventional machine learning algorithms, there have 
been endeavors within research to explore enhance-
ments utilizing deep learning algorithms. For a predic-
tion 3 h prior to sepsis onset, Matthieu Scherpf et al. [10] 
exploited a recurrent neural network and achieved an 
AUROC of 0.81.

Nonetheless, most studies face limitations as they 
tend to narrow their focus on only a handful of criti-
cal patient characteristics or depend on data from spe-
cific timeframes or intervals, unintentionally neglecting 
the dynamic evolution of potential clinical features and 
disease conditions. The signs and symptoms observed 
before the onset of sepsis are critically important 
in the development of sepsis. Hence, we propose a 
Transformer-based time-series data prediction model 
that collects clinical features of patients before illness 
onset, assesses the influence of various retrospective 
timeframes, and enhances interpretability with the 
Shap algorithm [11]. This approach aims to investigate 

clinical factors related to sepsis onset, offering clini-
cians guidance for effective intervention measures 
within the early sepsis onset window.

Data collection and preprocessing
Data collection
The eICU Collaborative Research Database is a large, 
multi-center intensive care unit (ICU) database 
(https:// eicu- crd. mit. edu/ about/ eicu/) established 
through a collaboration between the Massachusetts 
Institute of Technology (MIT) and Philips Group [12]. 
The database contains clinical data of over 200,000 
patients from 208 hospitals in the United States, 
recorded between 2014 and 2015. It includes demo-
graphic information, vital signs, laboratory test results, 
treatments, diagnoses, and other data. The data qual-
ity is high, validated through multiple research studies. 
This research does not involve any ethical concerns and 
consent to participate.

Based on the patient table and diagnosis table 
extracted from the eICU database, we conducted essen-
tial patient inclusion and exclusion operations, select-
ing patients whose diagnosis includes the keyword 
"sepsis," and ensuring their diagnostic status is "valid" 
upon discharge. We also ensured that patients were 
18 years of age or older. Furthermore, given that we are 
establishing a time-series model, it was necessary to 
collect data for patients over a specific period. There-
fore, we opted for patients with a hospital stay exceed-
ing one day. We gathered clinical baseline information, 
all test data during their hospitalization, and vital sign 
data (both regular and irregular), which served as the 
foundation for the time-series model. The distinction 
between the control group and the sepsis group lies in 
the absence of any "sepsis" incidents during the hospi-
talization of patients in the control group. Therefore, 
we randomly selected 9,000 samples as the control 
group and excluded patients with missing data exceed-
ing 30% based on the results. In the end, the sepsis 
group included 9,092 individuals, while the control 
group consisted of 8,840 individuals (as illustrated in 
Fig. 1). Additionally, we have collected 38,895 external 
test cases from the MIMIC database following the same 
standards (Non-sepsis: 34,345, Sepsis: 4550) to validate 
the effectiveness of the model.

Using the Python Scikit-learn toolkit (scikit-learn: 
machine learning in Python — scikit-learn 1.3.0 docu-
mentation) [13], we split the entire training dataset into a 
70:30 ratio for the training and testing sets. Additionally, 
we conducted multiple cross-validation tests using k-fold 
(k = 5) [14] to obtain the average performance results of 
the model.

https://eicu-crd.mit.edu/about/eicu/
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Data preprocessing
Due to our study is focused on predicting the occur-
rence of sepsis in advance based on time-series data, 
we use the diagnosis time of sepsis patients as a ref-
erence point and collect patient time-series data in 
forward increments of 12  h, 8  h, and 4  h to establish 
predictive models. The eICU database records data in 
minutes relative to the time of admission, creating a 
timeline of patient data. During the process of handling 
time-series data, we need to establish the aligned time 
intervals. The start time is uniformly set as the times-
tamp of the patient’s first recorded data, while the end 
time is adjusted based on the different prediction time 
windows. Within the specified time range, we have 

established a uniformly spaced time axis to ensure data 
alignment at identical time points.

To control the scale of input data, we implemented 
the following procedures: setting the data sampling 
points to be one hour apart to ensure data alignment 
at the same time points; collecting data from vari-
ous sources, and identifying the closest time point on 
the time axis and aligned the data to that specific time 
point based on the timestamps associated with each 
data point; using a forward-fill approach to supple-
ment missing data that might occur during the align-
ment process when data for a particular time point was 
absent to maintain data continuity and applying mean 
imputation to ensure data completeness for patients 

Fig. 1 Data inclusion and exclusion process
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with entirely missing features. The specific process is as 
follows (Fig. 2):

Utilizing the Python Scikit-learn toolkit (scikit-learn: 
machine learning in Python — scikit-learn 1.3.0 docu-
mentation) [13], we partitioned the preprocessed data 
into training and testing sets, maintaining a 7:3 ratio. This 
ensured that 70% of the data was allocated to the train-
ing set, with the remaining 30% dedicated to the testing 
set. To facilitate unbiased model selection and hyperpa-
rameter optimization, we adopted a fivefold cross-val-
idation approach [14]. It is crucial to note that the test 
set, employed for the final model evaluation, remained 
entirely independent and played no role in the model 
selection or parameter optimization processes.

Model construction
With the widespread adoption of electronic medical 
record systems, healthcare institutions have accumulated 
a vast amount of time-series data, which contains rich 
clinical information. Conventional predictive modeling 
approaches are confronted with the formidable task of 
effectively modeling extensive and intricate time-series 
data. To harness these data more effectively, deep learn-
ing models have emerged, capable of automatically learn-
ing complex patterns and features within the data. Over 
the past few years, RNN (Recurrent Neural Network) and 
their variants, such as LSTM (Long Short-Term Mem-
ory), as well as Transformer models, have been widely 
applied to clinical prediction tasks. By considering the 
temporal dependencies between observed outcomes, 
they effectively model time-series data.

RNN: Recurrent Neural Networks are a type of neural 
network model based on a cyclic structure [15], designed 
for processing sequential data. Their core concept 

involves the transmission and retention of information 
across time dimensions through recurrent connections. 
An RNN consists of recurrent units, with each unit 
receiving input from the current time step as well as the 
hidden state from the previous time step, and it outputs 
the hidden state for the current time step. This architec-
ture enables RNNs to leverage context information and 
capture temporal dependencies within sequences.

LSTM: Long Short-Term Memory networks are an 
improved variant of recurrent neural network architec-
ture designed to address the issues of gradient vanishing 
and exploding gradients in traditional RNNs [16]. LSTM 
introduces gate mechanisms, including the input gate, 
forget gate, and output gate. The input gate determines 
how much new information should be added to the hid-
den state of the current time step, the forget gate controls 
how much of the previous time step’s hidden state should 
be forgotten, and the output gate regulates how much 
information should be output from the hidden state of 
the current time step. Through these gate mechanisms, 
LSTM can effectively capture long-term dependencies 
while mitigating the problems associated with gradient 
vanishing and exploding gradients.

With the introduction of Transformer models [17], 
deep learning has witnessed a significant breakthrough in 
the field of time-series data modeling. Transformer mod-
els, through their self-attention mechanism, can capture 
global dependencies, mitigating the issues of information 
loss and gradient vanishing encountered in traditional 
RNN models. Consequently, they exhibit advantages in 
handling long-term dependencies and large-scale time-
series data.

Traditional Transformer networks, when dealing 
with two-dimensional input matrices, typically embed 

Fig. 2 Data processing workflow
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each element of the 2D matrix into a high-dimensional 
space and then employed the Transformer’s self-atten-
tion mechanism to capture dependencies between 
these elements. In the conventional architecture of the 
Transformer network, the Encoder layer typically com-
mences with an Embedding layer. This Embedding layer 
is responsible for transforming each time-series feature 
into a vector representation, subsequently serving as the 
input for the Transformer. In this experiment, we trans-
form time-series data matrices based on the model’s 
input feature quantity N and a maximum of 300 time 
points, then replace the traditional Embedding layer with 
either an LSTM network or a CNN network to combine 
and extract features from the time-series data to enhance 
feature diversity and richness. Within the Transformer’s 
Encoder module, the input data undergoes self-atten-
tion mechanisms to extract both local and global fea-
tures from the time-series data. Ultimately, classification 
results are derived through the utilization of fully con-
nected layers and a SoftMax layer. The detailed network 
architecture is outlined below (Fig. 3):

The main contribution of this study lies in introducing 
a novel time-series data modeling approach specifically 
designed for sepsis patients. This approach effectively 
accommodates time-series data of varying lengths and 
frequencies. Our goal is to facilitate early and precise 
sepsis prediction, consequently extending the crucial 

timeframe for early intervention and treatment of sepsis 
patients. Furthermore, this method upholds a robust pre-
dictive performance.

Statistics
Categorical variables are presented as counts and per-
centages, and continuous variables are presented as mean 
and standard deviation (SD). Comparisons between 
groups were performed by 2-tailed t-test for continuous 
variables and chi-square test for categorical variables. All 
statistical analyses were performed in the python package 
SciPy (SciPy) [18]. The statistical significance was consid-
ered as P < 0.5.

SHAP‑Visualization
In 2017, Lundberg proposed the SHAP (Shapley additive 
explanations) method. SHAP exhibits additivity consist-
ency in explaining the output results [19], consistent with 
the general notion of regression. For each predicted sam-
ple, the model generates a predicted value, and the SHAP 
value is the assigned numerical value to each feature in 
that sample. Assuming the i-th sample is denoted as xi, 
the j-th feature of the i-th sample is denoted as xij, the 
model’s predicted value for the i-th sample is yi, and the 
mean of all sample predictions is denoted as ybase. Then, 
the SHAP value of  xij follows the following equation:

Fig. 3 The architecture of CNN-Transformer and LSTM-Transformer
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Here, f
(

xi, j
)

 represents the SHAP value of xij. This 
feature ensures that the sum of the contribution values 
equals the final output, thereby eliminating the interpret-
ability differences caused by structural variations among 
different models.

The main idea behind SHAP is derived from the Shap-
ley value in cooperative game theory. Shapley devel-
oped this method to address the problem of allocating 
cooperative benefits among multiple players. In a set 
I = {1,2,…,n} of n participants, if there exists a coop-
erative benefit function v for any subset S of I that sat-
isfies v(∅) = 0 and for any disjoint subsets S1 and S2 of I 
exist v(S1 ∪ S2) ≥ v(S1) + v (S2), then for each participant 
involved, the allocation of their contribution x = {x1,x2,…
,xn} must satisfy the following conditions for cooperation 
to occur: xi = v(i)i = 1, 2, . . . , n , xi ≥ v(i), i = 1,2,…,n. 
In other words, each participant should receive no less 
than their individual contribution in a non-cooperative 
scenario, and the sum of the allocations should equal the 
total benefit. For the benefit function v, the allocation 
ϕ(v) = (ϕ1(v),ϕ2(v), . . . ,ϕn(v)) has been proven to sat-
isfy the following properties:

Here, T is a subset of the set, |T| represents the number 
of elements in the subset, and n represents the total num-
ber of members. SHAP builds upon the Shapley value and 
makes improvements suitable for Machine learning mod-
els. It treats features as players and model outputs as the 
cooperative results. For the K-th data point, the model 
output can be represented as vk(I), The contribution value 
of each feature at that data point, denoted as ϕi(vk) , is 
also known as the SHAP value. Unlike linear models that 
use the magnitude of parameters or coefficients to meas-
ure the contribution of a feature to the model, the SHAP 
algorithm calculates the combined contributions of each 
feature for every sample. In the end, we obtain the contri-
bution of each feature in each sample. If a feature exhibits 
consistent trends across most samples, it indicates that 
the model recognizes the importance of that feature in 
either a positive or negative direction.

Results
Patient characteristics
The cohort included 17,932 ICU patients, of whom 9092 
patients (50.70%) developed sepsis. The mortality rate of 
sepsis patients is significantly higher compared to regu-
lar ICU patients, showing a notable difference (Sepsis: 
14.19% vs. Non-Sepsis: 7.86%). Furthermore, the BMI 

(1)yi = ybase + f (xi, 1)+ f (xi, 2)+ · · · + f (xi, k)

(2)

ϕi(v) =
∑

T ∈ I

i ∈ T

(|T | − 1)!(n− |T |)!

n!
(v(T )− v(T − {i}))

index of sepsis patients is also significantly lower than 
that of regular ICU patients (Sepsis: 15.72 ± 5.29 vs. Non-
Sepsis: 20.67 ± 6.62), highlighting the substantial harm 
that sepsis poses to patient prognosis. Regarding patient 
age, there was no statistical significance (P > 0.05). The 
basic demographic characteristics of the cohort are pre-
sented in Table 1.

Model performance
With a 12-h time window selected, Fig.  4 displays 
the area under the receiver operating characteristic 
(AUROC) curves for these predictive models. Among 
the three models, the LSTM-Transformer exhibited the 
highest performance, reaching up to 0.99. Based on the 
LSTM-Transformer model, the specific model classifica-
tion results are presented using a confusion matrix (as 
shown below). In this investigation, we introduce time 
windows and employ Transformer self-attention mod-
ules to holistically scrutinize their impact on model per-
formance. We scrutinize the clinical metrics obtained 
during the patients’ inaugural hospitalization, and con-
comitantly integrate them with conventional recurrent 
neural networks to formulate our foundational model. 
This culmination yields an AUROC value of 0.58, serving 
as a baseline for our research.

In addition, we employed various statistical metrics to 
evaluate and compare the results among different models 
on the same test dataset, including accuracy, precision, 

Table 1 Base characteristics of the included patients

*  Chi-square test

Variables (mean ± SD) Non-Sepsis Sepsis P

Sex 0.011*

 Female 3980 (45.02%) 4286 (47.14%)

 Male 4860 (54.97%) 4806 (52.86%)

Age(yrs) 65.32 ± 16.05 65.29 ± 16.06  > 0.05

BMI 20.67 ± 6.62 15.72 ± 5.29  < 0.001

Discharge status  < 0.001*

 Alive 8144 (92.13%) 7800 (85.79%)

 Expired 695 (7.86%) 1290 (14.19%)

Unit type  < 0.001*

 Cardiac ICU 569 (6.44%) 802 (8.82%)

 CCU-CTIU 403 (4.56%) 506 (5.57%)

 CSICU 1226 (13.87%) 194 (2.13%)

 CTICU 461 (5.21%) 57 (0.63%)

 Med-Surg ICU 5233 (59.20%) 6044 (66.48%)

 MICU 292 (3.30%) 918 (10.10%)

 Neuro ICU 614 (6.95%) 208 (2.29%)

 SICU 42 (0.48%) 363 (3.99%)

ICU stay 3.27 (2.35) 5.76 (6.74)  < 0.001

Apachescore 64.27 (27.54) 73.87 (27.36)  < 0.001s
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recall, F1 score, and others. Additionally, based on 5-fold 
cross-validation, the average results of the improved 
Transformer-based model indicate a significant enhance-
ment in all performance metrics (Table 2).

By adjusting different time windows and collecting 
time-series data from patients in the 4-h and 8-h peri-
ods before sepsis diagnosis, we compared the predic-
tive performance of different network models. It can be 
observed that our LSTM-Transformer model exhibited 
favorable performance as early as the 12-h window, and 
as we extended the review window, the improvement 
in model performance was not particularly significant 
(Fig. 5A). Based on the prediction model, weight analysis 
is conducted using the SHAP algorithm, which generates 
visual heatmaps. The Fig. 5B displays the activation fea-
ture ranking based on the LSTM-transformer model in 
the 12-h window.

Considering the generalization of the model, we uti-
lized data from MIMIC (Medical Information Mart 
for Intensive Care) for external validation. The over-
all accuracy has experienced a modest decrease, with 

an accuracy of approximately 80% and the AUC value 
still hovers around 0.9 in the time window (advance 4 
fours) + LSTM-Transformer model. The predicted results 
for different time windows are as shown in Fig. 6.

Hospital system integration with predictive models
In our research, we are also exploring integration with 
hospital information systems by collecting real-time 
patient data for model testing, with the goal of provid-
ing meaningful assistance to clinical sepsis patients. 
To achieve this, we have devised the following system 
integration framework, illustrated in Fig.  7: gather-
ing patient’s fundamental information, laboratory test 
results, and vital signs monitoring values since admis-
sion, and consolidating this data in a centralized data 
center. Considering that patients generate time-series 
data every minute, it is impractical to continually assess 
their sepsis risk. Therefore, we propose setting an inter-
val, such as five or ten minutes, to collect patient data 
using a 300 * N time window. This data is then processed 
through an Application Programming Interface (API) to 

Fig. 4 The results of different models and the confusion matrix of LSTM-transformer

Table 2 The outcomes of prediction models(mean ± std)

Model Baseline Time window + RNN Time window + LSTM Time 
window + CNN + Transformer

Time 
window + LSTM + Transformer

Accuracy 0.637 (0.035) 0.653 (0.032) 0.835 (0.023) 0.951 (0.017) 0.964 (0.018)

Precision 0.711 (0.037) 0.715 (0.030) 0.875 (0.047) 0.955 (0.028) 0.956 (0.012)

Recall 0.677 (0.044) 0.691 (0.041) 0.861 (0.011) 0.951 (0.012) 0.967 (0.012)

F1-score 0.667 (0.045) 0.662 (0.039) 0.871 (0.054) 0.954 (0.023) 0.959 (0.014)
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invoke deep learning models, providing predicted out-
comes for 4  h, 8  h, and 12  h back to the patient moni-
toring system. The final decision on whether to clinically 
intervene rests with the doctor, thus completing the 
entire closed-loop process. Currently, we have finalized 
the framework design, however, the implementation of 
clinical applications entails tasks such as data integration, 
system integration, and obtaining ethical approvals. This 
process necessitates some additional time.

Discussion
Machine learning is considered a promising approach for 
sepsis prediction in the ICU. The key to sepsis prevention 
is the early identification and treatment of the underlying 
causes of the inflammatory response. Early diagnosis and 
timely intervention in sepsis patients can significantly 
improve outcomes. Therefore, there is an urgent need 
for an accurate and efficient sepsis bedside early predic-
tion tool. In this study, we constructed a model for early 
prediction of sepsis in ICU patients. By collecting time-
series data from patients in the 4-h, 8-h, and 12-h peri-
ods before sepsis diagnosis and inputting it into different 
network models for comparative analysis, we found that 
the time-series model based on the Transformer archi-
tecture demonstrated outstanding predictive capabilities 
in an earlier time window (i.e., 12  h before onset). This 
finding provides an opportunity for earlier clinical inter-
vention, which has the potential to result in significant 
enhancements in disease management and patient care. 
As the time window gradually shifts backward, tradi-
tional recurrent neural network models also progres-
sively exhibit performance improvements. This implies 
that in the later stages of disease progression, traditional 

models gradually approach the advantages exhibited by 
Transformer-based models in the early stages. It high-
lights the potential of Transformer-based time-series 
models for early prediction, offering a more forward-
looking tool for clinical practice. However, it’s impor-
tant to note that the gradual improvement of traditional 
recurrent neural networks in later-stage prediction may 
stem from their enhanced capability to capture long-term 
temporal relationships. Therefore, by considering the 
strengths of both models, it is possible to develop more 
precise and individualized treatment plans for healthcare 
teams, potentially leading to greater impacts on patient 
health outcomes.

A sufficiently large dataset is key to training machine 
learning models for achieving good performance. The 
inclusion of new tests and technologies can enhance our 
prediction tasks, but their direct integration into exist-
ing machine learning models is often impractical. There-
fore, transfer learning may be a promising and viable 
strategy to maintain the effectiveness of machine learn-
ing models across multi-center deployments. Chen et al. 
improved the performance of LightGBM and MLP mod-
els in predicting sepsis occurrence within 1–5  h using 
Transformer, achieving favorable areas under the receiver 
operating characteristic curve (AUC) within the range 
of 0.96–0.98 [20]. In our study, the process of transfer 
learning effectively enhanced the performance of RNN 
and LSTM models in predicting sepsis occurrence in the 
e-ICU dataset. When predicting sepsis occurrence 12  h 
in advance, compared to traditional RNN and LSTM 
models, the CNN-Transformer and LSTM-Transformer 
models demonstrated a clear advantage. Among these, 
the LSTM-Transformer showed the best area under the 

Fig. 5 A Results of different models at different time windows. B The activation feature ranking based on the LSTM-transformer model in the 12-h 
window
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curve (AUC) of 0.99, accuracy of 95.6%, and recall of 
0.967. Furthermore, transfer learning has been applied 
to similar domains or tasks in multiple medical fields, 
reducing the requirements for target dataset size while 
enhancing training speed and prediction performance 
[21, 22]. The results of this study clearly demonstrate 
the potential benefits of Transformer models in clini-
cal prediction and underscore the critical role of model 
selection within specific time windows. This exploratory 
research not only brings new perspectives to medical 
research but also provides valuable insights for the future 
development of healthcare practices. Sepsis often leads 
to organ dysfunction and damage, and acute respiratory 

distress syndrome (ARDS) can exacerbate acute injuries. 
Therefore, ARDS is typically considered a fatal conse-
quence of severe sepsis, accounting for approximately 
32% of all cases of sepsis [23]. ARDS usually manifests 
as a sudden exacerbation of non-cardiogenic pulmo-
nary edema, severe hypoxemia, and requires mechani-
cal ventilation to improve oxygenation [24]. For patients 
admitted to the ICU due to respiratory system diseases, 
especially COVID-19, respiratory parameters are closely 
related to ICU mortality. Plateau pressure, which is the 
pressure inside the alveoli during breath-holding positive 
pressure ventilation, has been analyzed for its impact on 
the prognosis of ARDS patients [25]. Timely monitoring 

Fig. 6 The external validation results on the MIMIC dataset (0: Non-sepsis, 1: Sepsis)
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of a patient’s respiratory condition plays a positive role in 
improving their prognosis.

Enhancing the interpretability of data-driven models 
can help overcome the barriers to trust and acceptance 
of these machine learning models by practitioners in 
clinical settings. In this study, SHAP analysis served as an 
interpretive tool, aiding healthcare professionals in iden-
tifying key risk factors. In our study, the importance of 
variables showed that heartbeat rate, BNP, AST, respira-
tion, Sao2, and palates were the most important risk fac-
tors that contribute to the predicted occurrence of sepsis. 
The concept of heart rate analysis has been around for 
decades, and with the continuous improvement in com-
puting power, it has become increasingly important [26]. 
Atrial fibrillation (AF) is a common complication of sep-
sis, and continuous heart rate variability monitoring con-
tributes to the rapid diagnosis and early intervention of 
severe sepsis, altering the course of sepsis-related condi-
tions [27]. Additionally, heart rate is another important 
factor in predicting the occurrence of sepsis-related 
acute brain injury [28]. Furthermore, elevated BNP levels 
have practical applications in the early diagnosis, clini-
cal treatment, and prognosis assessment of severe sepsis 
patients. BNP is one of the members of the natriuretic 
peptide family secreted by the heart. It promotes diure-
sis and sodium excretion, effectively dilates blood vessels, 
and anti-natriuretic peptide is an important marker for 
assessing heart damage [29]. The excessive inflammatory 

stress response in sepsis generates more cardiac toxins, 
and infections by pathogenic microorganisms can also 
produce more endotoxins, thereby inducing an increase 
in BNP levels in the body [30]. Sepsis can lead to multi-
organ damage and even failure. During systemic infec-
tion, the cytokine storm and endotoxin production in 
sepsis can damage liver cells, resulting in organ dys-
function. Damaged liver cells release damage-associated 
molecular patterns, triggering a more severe systemic 
inflammatory response, and in severe cases, it can lead 
to death [31]. Abnormal levels of serum aspartate ami-
notransferase (AST) are sensitive indicators of liver cell 
damage [32]. Early testing of liver function parameters 
before the onset of sepsis can improve patient survival 
to some extent. Furthermore, sepsis is associated with 
an increased platelet reactivity [33]. There is evidence to 
suggest that cytokines released during sepsis can directly 
activate platelets [34]. Sepsis is also related to an increase 
in bone marrow platelet release, leading to thrombocy-
tosis, which is mediated by elevated levels of platelet 
growth factors and cytokines such as interleukin-6 [35].

Limitations
The limitations of this experiment include the fact that 
both model training and validation were based on the 
same publicly available dataset. When externally validat-
ing with the MIMIC dataset, there was a certain degree 
of decline observed in its predictive performance. In the 

Fig. 7 The framework of hospital system integration with predictive models
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future, we will consider incorporating data from addi-
tional sources while integrating this model with hospital 
information systems to validate its effectiveness. Addi-
tionally, in terms of model interpretability, we have only 
validated the overall associations between clinical indi-
cators and sepsis occurrence within the predefined 12-h 
window. Visual analysis at specific time points and the 
interpretation of individual patient clinical information 
have not been implemented yet.
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