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Abstract
Background  Dengue infection ranges from asymptomatic to severe and life-threatening, with no specific treatment 
available. Vector control is crucial for interrupting its transmission cycle. Accurate estimation of outbreak timing and 
location is essential for efficient resource allocation. Timely and reliable notification systems are necessary to monitor 
dengue incidence, including spatial and temporal distributions, to detect outbreaks promptly and implement 
effective control measures.

Methods  We proposed an integrated two-step methodology for real-time spatiotemporal cluster detection, 
accounting for reporting delays. In the first step, we employed space-time nowcasting modeling to compensate 
for lags in the reporting system. Subsequently, anomaly detection methods were applied to assess adverse risks. To 
illustrate the effectiveness of these detection methods, we conducted a case study using weekly dengue surveillance 
data from Thailand.

Results  The developed methodology demonstrated robust surveillance effectiveness. By combining space-time 
nowcasting modeling and anomaly detection, we achieved enhanced detection capabilities, accounting for reporting 
delays and identifying clusters of elevated risk in real-time. The case study in Thailand showcased the practical 
application of our methodology, enabling timely initiation of disease control activities.

Conclusion  Our integrated two-step methodology provides a valuable approach for real-time spatiotemporal 
cluster detection in dengue surveillance. By addressing reporting delays and incorporating anomaly detection, it 
complements existing surveillance systems and forecasting efforts. Implementing this methodology can facilitate 
the timely initiation of disease control activities, contributing to more effective prevention and control strategies for 
dengue in Thailand and potentially other regions facing similar challenges.
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Background
One of the most prevalent vector-borne infections is 
dengue fever with an estimated annual global burden of 
390 million infections, of which 96 million present clini-
cally [1]. The disease is caused by dengue virus principally 
transmitted by Aedes mosquitoes which are commonly 
found in tropical and sub-tropical regions. In addition, 
dengue has surpassed other infectious diseases such as 
malaria to be the most prominent vector-borne disease 
globally in terms of morbidity and cost of treatment [2]. 
The impact of dengue is a great burden on public health 
costs in South-East Asia and the burden of this infection 
in Thailand is among the highest in the world [3].

Dengue infection is commonly asymptomatic but when 
clinical manifestations occur, they can vary from mild to 
severe and life-threatening. Severe dengue, in particu-
lar dengue hemorrhagic fever (DHF) and dengue shock 
syndrome (DSS), is an important cause of hospitalization 
and death in Thailand [4]. The mild form of infection may 
be infectious and spread the virus in the community. The 
only available vaccine for dengue has limited efficacy and 
can only be administered to people who have previously 

been infected with challenges of pre-vaccination screen-
ing and suboptimal test performance [5]. Due to these 
limitations and the absence of any specific treatment, 
vector control has remained a focus of public health 
interventions to interrupt the infection cycle. Estimat-
ing when and where an outbreak will occur is an impor-
tant goal to effectively allocate prevention and control 
resources. Therefore, efficient and reliable notification 
systems are vital to monitor dengue incidence including 
spatial and temporal distributions to detect outbreaks in 
order to initiate timely and effective control measures.

Effective communicable disease surveillance systems 
are a prerequisite to ensure early detection of health 
threats and their timely control. Delay in infectious dis-
ease reporting might hamper timely outbreak interven-
tions. In general, public health surveillance of diseases 
relies on the notification system which is a result of a 
chain of events from infection through reporting to pub-
lic health services, be they local, regional or national. The 
general flow of surveillance information in Thailand is 
depicted in Fig. 1. Delays in the system arise at different 
stages: different health-seeking behaviors (community), 

Fig. 1  Flow chart of disease surveillance system with possible reporting delays in different parts of the system
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laboratory and follow-up tests (health care facility), the 
reporting system, and communications between differ-
ent health providers (surveillance response), including 
hospitals, the district officer and the insecticide sprayer 
operatives, as well as people in targeted areas. Dengue 
surveillance in many countries including Thailand relies 
on passive reporting which is susceptible to delays. The 
lag in the surveillance system is therefore a vital issue for 
disease control planning as incomplete and delayed infor-
mation can undermine any efforts to deliver early warn-
ing and real-time outbreak detection required to trigger 
an effective response to public health threats.

Influenced by healthcare provider adherence and 
patient access, lagged reports exhibit variations across 
locations. Recent methodologies (examples [6–10]) aim 
to estimate current disease incidence by addressing noti-
fication lags, primarily focusing on systematic delays. 
However, these approaches overlook cluster detection, a 
crucial aspect in the decision-making process for disease 
outbreak control. While a prior effort offered a valuable 
framework for reporting delay correction in dengue con-
trol in Thailand [11], the correction alone falls short of 
the ultimate surveillance goal: informing public health 
actions to reduce morbidity and mortality [12]. Conse-
quently, in this study, we went beyond delay correction, 
also implementing and comparing the performance of 
cluster detection methods with case nowcasting.

>
Reporting system time lags hinder timely cluster 

identification, impeding the initiation of effective dis-
ease control interventions. Therefore, we introduced an 
integrated two-step methodology for spatiotemporal 
real-time cluster detection, specifically tailored to cor-
rect reporting delays. The first step involved adopting 
space-time nowcasting modeling to account for report-
ing system lags. Subsequently, anomaly detection meth-
ods assessed adverse risks, demonstrated using weekly 
dengue surveillance data in Thailand. We also further 
evaluated effectiveness with various metrics compared 
different methods, revealing similarities and differences 
among detection techniques with optimal thresholds. 
This advancement offers valuable insights for informing 
additional public health actions to reduce dengue mor-
bidity and mortality in Thailand.

Methods
Dengue surveillance data
In this study, we analyzed dengue case data obtained 
from the routine surveillance system of the Bureau of Epi-
demiology, Thai Ministry of Public Health. The dataset 
consisted of reported cases from various healthcare facil-
ities, including governmental hospitals, clinics under the 
universal health coverage scheme, and private hospitals, 
all of which reported cases to district health surveillance 

data centers. To examine the influence of reporting 
delays and outbreaks, our study focused specifically on 
the data collected from the 50 districts of the Bangkok 
metropolitan area. The years 2010–2011 were chosen as 
they presented a significant and illustrative case study for 
our research objectives. During this period, widespread 
dengue outbreaks were observed across the country, with 
particular intensity in Bangkok. Notably, the response to 
these outbreaks exhibited notable delays. Therefore, this 
timeframe serves as a relevant case study to investigate 
the impact of reporting delays and outbreak occurrences.

The dengue case types considered in our analysis 
encompassed dengue fever, dengue hemorrhagic fever, 
and dengue shock syndrome. Our primary goal was to 
achieve real-time detection, enabling prompt identifica-
tion of dengue infection clusters and facilitating timely 
intervention to prevent further disease transmission. 
Consequently, we combined the number of cases across 
all dengue types in our analysis. Figure  2 illustrates the 
temporal trend of dengue incidence in Bangkok during 
the years 2010–2011. Notably, reporting delays tended 
to increase during the high season, which corresponds to 
the rainy period, potentially leading to substantial delays 
in the availability of data. Such delays can hinder the early 
detection of possible outbreaks, underscoring the signifi-
cance of improving the timeliness of surveillance systems 
to enhance outbreak response capabilities.

Ethics declarations
Ethics Committee of the Faculty of Tropical Medicine, 
Mahidol University waived for informed consent of par-
ticipants. This study was approved by the Ethics Com-
mittee of the Faculty of Tropical Medicine, Mahidol 
University. The submission number was TMEC 22–054 
and the number of ethical approval certificate was 
MUTM 2022-057-01. All methods were carried out in 
accordance with relevant guidelines and regulations.

Nowcasting for lagged reporting
A key challenge for infectious disease surveillance in 
countries with developing infrastructure including Thai-
land is the time lag before reports are delivered at differ-
ent levels in the notification system. The report structure 
of surveillance data with reporting lags can be seen as the 
lag triangle presented in Fig. 3. As described in [11], let 
yitd  be the number of disease incidence which occurred 
during calendar week t in district i (i = 1,…, I = 50) but 
arrived in the surveillance database in week d (d = 1,…, D) 
weeks after the onset date. This signifies the problem that 
cases have been recorded but have not yet been entered 
into the database. Note that the event that the cases 
were in the surveillance system in the same week as the 
date of diagnosis was denoted as d = 1. The current time 
point of interest is indexed as t = T and the maximum 
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possible delay that can happen in the surveillance sys-
tem is labelled as D, i.e., full data were delivered into the 
system from T + D weeks onwards. Theny∗

it =
∑D

d=1 yitd

can be defined as the estimated number of dengue cases 
that truly occurred by summing predicted reporting lag 
fractions happening at week t,yitd , over the possible lag 
range. The goal here was to correct the reported cases by 
nowcasting the actual weekly fractions of dengue cases 
for each district, y∗

it , in a real-time manner.
To address spatiotemporal reporting lags, a frequently 

adopted approach in small area health studies is to model 
case counts as conditionally independent Poisson vari-
ates. The likelihood function for this is defined as

	
f (y|µ) =

µy

y!
exp (−µ) � (1)

where the mean and variance are both equal toµ . That is, 
for our modeling, we assumed i.e.yitd ∼ Poisson(eitθitd)
whereθitd was the relative dengue case risk adjusted 

for the offset,eit , as the baseline level at risk. There are 
a number of ways to adjust for the baseline (see exam-
ples [13–15]), however a common practice for dis-
ease mapping [16] is to calculate the expected rate as 
eit =

∑
i

∑
t nit∑

i

∑
t popit

popit , wherenit andpopit are the true 
number of disease incidence and population at risk for 
each location and time. Since we performed the analy-
sis at a weekly scale, the number of populations was 
assumed to be constant over the study period. Then 
the expected rate used in the analysis was computed as 
eit = ei =

∑
i

∑
t nit∑

i

∑
t popi

popi , ∀t . Another main parameter of 
interest is θitd and the most common approach to model 
this is to assume a logarithmic link to a linear combina-
tion of space-time random effects. First, we structured 
the model-based lag reporting correction by using infor-
mation across neighboring districts and time periods to 
incorporate spatiotemporal smoothing. The convolution 
model (see examples [15–18]) was employed to capture 
spatially correlated and unstructured extra variation in 
the model. Both structured and unstructured random 

Fig. 3  Surveillance reporting lag format. The blue cells represent completely observed data in the system for each district at week t and partially ob-
served cases are in green cells. The yellow cells represent the unobserved data. d is the lag index with D maximum delays, i.e. delays beyond D were not 
considered

 

Fig. 2  Plot of weekly dengue incidence in Bangkok, Thailand, 2010–2011. Grey lines represent reported dengue incidence for each district, while black 
and red lines depict true (no delays, black) and reported (with delays, red) dengue cases averaged over all districts for specific weeks
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effects were included to capture various forms of unob-
served confounding. The uncorrelated random effect 
is described by a zero mean Gaussian prior distribu-
tion. The spatially correlated effect is assumed to have 
the intrinsic conditional autoregressive model [19]. To 
capture the time series trend, the first-order random 
walk model was applied. All random interaction terms 
among space, time and delay dimension were specified 
by a Gaussian distribution with zero mean. All precision 
(reciprocal of variance) parameters were assumed as a 
Log-Gamma distribution with hyperparameters as 1 and 
0.0005, and 1 and 0.00005 for the conditional autoregres-
sive model, and for uncorrelated and random walk ran-
dom effects.

To address the variability in dengue incidence, the Neg-
ative Binomial distribution, which incorporates an over-
dispersion parameter, can be considered as an alternative 
to the Poisson likelihood. Typically, issues of dispersion 
can be tackled through models like Negative Binomial 
and Quasi-Poisson, both having an equal number of 
parameters and suitability for overdispersed count data 
[20]. In our exploration of modeling choices for report-
ing lags in this study, we also considered the Generalized 
Poisson model as an alternative base count distribution. 
This model not only accommodates dispersion but also 
possesses a heavier tail with the same first two moments, 
offering increased flexibility for a broader range of data 
compared to the Negative Binomial [21].

The Generalized Poisson model can be seen as a char-
acterization, operating as an alternative Poisson mixture 
model to the Negative Binomial distribution for over-
dispersed count data, as emphasized in a study cited in 
our original submission [21]. Moreover, another study 
suggests that generalized Poisson regression models can 
serve as viable alternatives to negative binomial regres-
sion [22]. Despite the typical preference for the Nega-
tive Binomial distribution when evidence of dispersion 
is present relative to the Poisson, a Negative Binomial 
model had previously shown similar performance to the 
Poisson in a scenario involving delay correction with mild 
overdispersion [11]. Additionally, during our extended 
study period, we noted similarities in temporal patterns 
and magnitudes compared to the previous study period. 
Consequently, we chose to compare only Poisson and 
Generalized Poisson models in this study.

The generalized Poisson distribution used in this study 
follows the form introduced in previous works [23, 24], 
represented as

	
f (y|µ, ϕ, δ) =

µ(µ + ϕµδ−1y)y−1

(1 + ϕµδ−1)yy!
exp

(
−µ + ϕµδ−1y

1 + ϕµδ−1

)
� (2)

.Givenδ = 1 , we have the mean and variance equal toµ
andµ(1 + ϕ)2, ϕ > 0 . Whenϕ → 0, the generalized 

Poisson approaches the Poisson distribution with mean 
and variance equal toµ . The mean is also linked to the 
linear predictor with the logarithm function as in the 
Poisson.

Space-time cluster diagnostics
Space-time cluster diagnostics in epidemiology often 
employ scan statistics and various refinements of scan 
statistics have been proposed (for example [25–27]), 
including the version implemented in SatScan software 
[28]. However, a fundamental challenge lies in interpret-
ing p-values and establishing a threshold for defining 
‘significance’ [29]. Therefore, we alternatively based our 
approaches in this study to cluster detection within the 
model-based framework.

In the context of this framework, it becomes crucial 
to define what constitutes a cluster. In infectious disease 
surveillance, it is important to effectively identify local-
ized case anomaly that deviate from expected baseline 
patterns in both space and time, prompting further inves-
tigation. This concept is akin to anomaly detection, where 
we employ the goodness of fit of a model to quantify 
unusual events within a set of space-time observations. 
Measures of goodness of fit help summarize the differ-
ences between observed local case counts and the values 
expected under the model or baseline for each location 
and time. In our study, we thus explored and compared 
various model-based measures for anomaly detection, 
including exceedance probability, information criteria, 
and leave-one-out cross-validation.

Exceedance probability
A number of diagnostic tools are available to evaluate 
the local anomalies. However, it is a natural idea to con-
sider a cluster as any isolated locations or geographically-
bounded regions that display an excess of disease risk or 
incidence in a particular time. The excess of disease risk 
can be examined by comparison with the expected rate 
previously described. So, an approach for space-time 
anomaly detection is to calculate P (θit > a), exceedance 
probability (EXC), from the number of estimates in the 
posterior sample which exceed a threshold [30, 31]. Usu-
ally the limit is assumed to be a= 1 which means we apply 
the level of the expected rate as the baseline.

Information criteria
An aim of diagnostic checking is to compare observed 
data with the fitted model in such a way that it is pos-
sible to detect any discrepancies. Forms of model assess-
ment involve measuring the goodness-of-fit (GOF) to 
evaluate whether the particular data in space and time 
provide an adequate fit to the model. A set of common 
GOF measures is the information criteria. The deviance 
information criterion (DIC) [32] has been widely used 
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for overall model fit in the Bayesian setting generalized 
from the Akaike information criterion (AIC) in the Fre-
quentist framework. Another is the widely applicable or 
Watanabe-Akaike information criterion (WAIC) [33] 
which can be viewed as an improvement on DIC. WAIC 
is fully Bayesian in which this measure applies the entire 
use of posterior distribution. Unlike DIC, WAIC is robust 
to different parametrizations and is also valid for singular 
models [34].

While the global information criteria have been pri-
marily used as an overall measure of model fit, they 
can be partitioned into contributions from individual 
observations in space and time to provide finer details 
of model discrepancies [35, 36]. The partitioning of the 
DIC for the observed data, local DIC, can be written as 
DICit = D̄(θit) + pDit  [36] whereD̄(θit)is the mean 
deviance for nowcasted cases at district i and week t and 
pDit is the effective number of parameters, amount of 
information used for the particular observation for each 
location and time. Likewise, local WAIC, which is a direct 
result of pointwise predictive density, can be defined 
as WAICit = lppdit + pWAICit  [34] where lppdit

(log pointwise predictive density) = −2 log
(
f̄ (y∗it|θit)

)

andpWAICit = 2 var (log (f (y∗it|θit)))calculated over 
the posterior sample. Since the range of informa-
tion criteria is on the positive real line, we adopted the 
transformed values on a unit interval as 1-e−DIC and 1- 
e−WAIC . This similar transformation was also utilized as 
model probability in model selection and averaging [36, 
37].

Leave-one-out cross-validation
Another set of metrics widely used to estimate the model 
fit error is cross validation. In a general setting of cross-
validation, the data are repeatedly divided into a training 
set and a test set. Then the model is fitted using the train-
ing set and the cross-validation error is calculated from 
the test set. However, we restricted our attention here to 
leave-one-out cross-validation (LOO-CV), the special 
case with all partitions in which each test set represents 
a single data point. Among LOO-CV methods, the con-
ditional predictive ordinate (CPO) [38] and probabil-
ity integral transform (PIT) [39] are commonly used to 
detect extreme observations in statistical modeling. The 
CPO detection in our case for the delay-corrected den-
gue incidence at district i during week t can be computed 
as CPOit =

∫
f (y∗it|y∗−it, θit)π(θit|y∗−it)dθit . For each 

observed case, its CPO is the posterior probability of 
observing that dengue case when the model is fit using 
all data except y∗it . Large CPO values imply a good fit 
of the model to observed data, while small values suggest 
a worse fitting of the model to that observed data point 
and, perhaps, that it should be further explored.

On the other hand, PIT measures the probabil-
ity of a new value to be less than the actual observed 
value:PIT it = π(ynew

it � yit|y−it) where y−it is the 
observation vector with the it-th component omitted. 
This procedure is performed in cross-validation mode 
meaning that in each step of the validation process the 
ensuing leave-one-out posterior predictive distribu-
tion is calculated. However, in our data which are dis-
crete (disease count) data, the estimate was adjusted 
asPIT adjust

it = PITit − 0.5 × CPOit , and unusually large 
or small values of PIT indicate possible outliers or sur-
prising observations not supported by the model under 
consideration [40].

Evaluation and computation of anomaly diagnostic methods
Surveillance systems for infectious diseases must strike 
a balance between outbreak detection accuracy and the 
efficient allocation of disease control resources. The 
concepts of optimal criteria, accuracy (Acc), sensitivity 
(Se), specificity (Sp), positive predictive value (PPV), and 
negative predictive value (NPV) serve as valuable metrics 
for comparing and assessing the validity of cluster detec-
tion methods. In this study, these five evaluation metrics 
were employed for method comparison and performance 
evaluation. An anomaly was considered alarmed when 
the anomaly diagnostic value from space-time cluster 
diagnostics, computed for each case count, exceeded a 
predefined cutoff. We then systematically evaluated the 
performance of the cluster diagnostics across different 
threshold values.

The key evaluation components are defined as fol-
lows. The true positive (TP) was calculated as instances 
where a method correctly indicates the presence of a 
disease anomaly. True negative (TN) was the count 
where a method correctly indicates the absence of a dis-
ease anomaly. False positive (FP) was the count of cases 
where a method incorrectly suggests the presence of an 
anomaly. False negative (FN) was the count of instances 
where a method incorrectly indicates the absence of an 
anomaly. Then sensitivity, specificity, and predictive val-
ues are expressed as follows: sensitivity = TP / (TP + FN); 
specificity = TN / (FP + TN); positive predictive value = TP 
/ (TP + FP); negative predictive value = TN / (TN + FN); 
accuracy is defined as the proportion of correct detec-
tions among the total number of detections, i.e., Acc = 
(TP + TN) / (TP + TN + FP + FN).

In order to efficiently apply this methodology in real 
surveillance situations, one essential characteristic that 
should be considered in real-time surveillance systems is 
computational practicability. Using all the data history is 
perhaps unnecessary while the most recent information 
might be adequate to capture the disease pattern needed 
to detect an outbreak. To reduce computing resource, we 
partitioned the surveillance data into sliding windows 
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to optimize computational competence of the system. 
Rather than the full likelihood, the working likelihood 
was partitioned as ΠT

t=T−w+1Π
D
d=1Π

I
i=1f (yitd|θitd)where w 

is the length of sliding window. The sliding window tech-
nique then investigates only the most recent w and hence 
the surveillance might be more efficient and practical for 
real-time applications. However, the partition can be a 
trade-off between computing efficiency and estimation of 
precision. We then also examined the effect of different 
window sizes in the case study.

Estimates derived from the models and diagnostic 
methods are typically computed from converged poste-
rior samples using sampling-based algorithms like Mar-
kov Chain Monte Carlo (McMC). However, real-time 
estimation in infectious disease surveillance requires 
timeliness. With the setup of a multidimensional model 
and accumulating surveillance data over time, the param-
eter space can rapidly expand, demanding exponential 
computational resources. To address this, a more effi-
cient approach for inferring parameters is the Integrated 
Nested Laplace Approximation (INLA) [41]. This method 
is particularly suitable for the rapid estimation of param-
eters in a real-time context. The proposed model was 
implemented using the numerical Laplace approximation 
within the R-INLA package, available at www.r-inla.org. 
All computations were conducted using RStudio version 
2020.07.0. Computing information using INLA with R 
code was provided in supplementary document S1.

Results
The data employed to demonstrate anomaly detection 
consisted of weekly dengue incidence in Bangkok, the 
location with the highest annual incidence in the coun-
try. Results, averaged across study areas and detection 
thresholds, are presented in Table  1, detailing estimates 
of sensitivity, specificity, accuracy, and their correspond-
ing predictive values for anomaly detection. Without 
delay correction, the accuracy of detection methods 
under both likelihood assumptions ranged from 0.4791 
using PIT to 0.6092 using WAIC. DIC and EXC per-
formed best under a General Poisson model while WAIC 
and EXC had the best outcome with a Poisson model. 
The highest accuracy with reporting delay was the Pois-
son model with WAIC. With nowcasting correcting for 
reporting lags, EXC performed best across the evaluation 
metrics with accuracies of 0.7221 and 0.6916 under both 
Poisson and Generalized Poisson models. The accuracies 
with corrected delays using the proposed spatiotemporal 
nowcasting technique were improved about 22.7% and 
17.52% under Poisson and Generalized Poisson assump-
tions respectively.

We further examined the optimal threshold and effect 
of different window sizes in order to apply the cluster 
detection in real situations. The focus was limited to the 
test characteristics of EXC since the detection had the 
best performance across the evaluation measures and 
likelihood assumptions. The best threshold was defined 
as the cut-off value with the maximum accuracy. Table 2 

Table 1  Comparison of model-based cluster detection methods with and without nowcasting for reporting lags under evaluation 
metrics and likelihood assumptions. The bold numbers represent the highest value in each category
Likelihood Delay Cluster Evaluation metric
model correction detection Se Sp NPV PPV Acc

EXC 0.8723 0.6123 0.8394 0.6531 0.7221
CPO 0.8241 0.2324 0.6895 0.4863 0.5237

Yes PIT 0.4025 0.5579 0.5291 0.4308 0.4874
DIC 0.8611 0.2313 0.6671 0.4822 0.5172
WAIC 0.8661 0.2326 0.6929 0.4869 0.5247

Poisson EXC 0.1135 0.9833 0.5716 0.8502 0.5885
CPO 0.7063 0.4141 0.7201 0.5336 0.5921

No PIT 0.4146 0.5804 0.5439 0.4511 0.5051
DIC 0.7562 0.4672 0.6975 0.5413 0.5984
WAIC 0.7778 0.4689 0.7175 0.5491 0.6092
EXC 0.8611 0.5021 0.8291 0.6296 0.6916
CPO 0.8477 0.1951 0.6467 0.5116 0.5325

Yes PIT 0.3862 0.4337 0.4779 0.4403 0.4618
DIC 0.8589 0.1928 0.6464 0.5112 0.5319

Generalized WAIC 0.8577 0.1951 0.6466 0.5116 0.5325
Poisson EXC 0.0161 0.9889 0.5716 0.8502 0.5885

CPO 0.7771 0.4281 0.6691 0.5634 0.5981
No PIT 0.3129 0.6369 0.4939 0.4501 0.4791

DIC 0.7777 0.4286 0.6699 0.5638 0.5987
WAIC 0.7779 0.4281 0.6691 0.5634 0.5981

http://www.r-inla.org
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shows the cut-off points with the highest accuracy using 
different computing window lengths. These comparisons 
were computed on a Dell computer with 64-bit Windows 
system, 8GB RAM and Intel i5-3570 S CPU @ 3.10 GHz. 
The optimal threshold varied in a range of 0.95–0.99 for 
Poisson and 0.93–0.99 for Generalized Poisson models 
with the maximum accuracy of approximately 72%. The 
computing times ranged from 0.5376 min per calculation 
with 5-week window size to 48.6852 min per calculation 

with 30-week window size under Poisson model, how-
ever the accuracy increased less than 1%. On the other 
hand, the Generalized Poisson model required slightly 
more computing time of 0.5487  min for 5-week and 
53.2669  min for 30-week window sizes. The improved 
accuracy was also similarly small at less than 1%. The 
posterior summary of overdispersion parameters with 
their corresponding credible intervals (CrI) for both 
delay correction and anomaly detection indicated a mild 

Fig. 4  Maps of crude incidence (top row), standardized incidence (middle row), and cluster detection (bottom row) using exceedance probability of 
complete dengue reported cases in Bangkok. Left column: data with nowcasting. Middle column: data without nowcasting. Right column: data with 
nowcasting during week 102 of the study period
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overdispersion in the observed data with posterior means 
of 0.0861–0.0937 (95% CrI: 0.041–0.167) and 0.1466–
0.1636 (95% CrI: 0.041–0.384). These implied that the 
Poisson likelihood assumption with space-time random 
effects might be adequate to capture the case variability 
in our data set.

Figure  4 compares dengue incidence, standardized 
incidence and exceedance probability at week 102 during 
the high season in year 2011. Note that the result of other 
periods (weeks 96–104) was provided in supplementary 
document S2. The complete (true) incidence depicted 
in the left column showed a possible disease cluster in 
the southwest of Bangkok and hot spots in the center. 
Exceedance probabilities also revealed the same pattern 
of high-risk areas using complete and nowcasted data. 
In contrast, those clusters and hot spots did not appear 
in data with reporting delays. The reporting lags are cru-
cial for infectious disease surveillance as the infection 
can actually spread during the lag period while anomaly 
detection with nowcasting could accurately recover and 
detect potential outbreaks in the case study. The devel-
oped methodology hence demonstrated an advantage in 
revealing the true disease pattern properly for real-time 
public health intervention planning.

Discussion
Efficient surveillance is paramount for early infectious 
disease outbreak detection, particularly for diseases 
like dengue with no effective vaccines or specific treat-
ments. As vector control remains the primary interven-
tion, timely outbreak detection is crucial. In this study, 
we devised an integrated approach to assess risks while 
addressing reporting lags, comparing anomaly detection 
measures in a dengue surveillance case study in Thailand. 
Unlike prior efforts that often focus solely on delay cor-
rection, we extended our investigation to include and 
compare cluster detection methods, augmenting the 
decision-making process for disease outbreak control.

Spatiotemporal cluster detection typically necessi-
tates complex models, especially when modeling specific 

localized space-time behaviors. Real-time infectious 
disease surveillance requires effective clustering meth-
ods capable of promptly detecting deviations from nor-
mal background variation. To accommodate space-time 
reporting variations, we modeled dengue case counts 
using a count likelihood with a spatiotemporal latent 
random-effect structure. While a Poisson distribution is a 
common choice, our investigation also included a Gener-
alized Poisson assumption, offering flexibility for a wider 
range of data compared to the negative binomial [21].

The dispersion parameter, indicative of data variabil-
ity, demonstrated mild dispersion across scenarios and 
window sizes. The use of a Generalized Poisson model, 
known for its flexibility in handling dispersion, proved 
effective in capturing complex multidimensional cor-
relations, though at the expense of increased computing 
time. Considering the real-time surveillance context, the 
feasibility of model computation should be a key con-
sideration. Experiments with different moving window 
lengths revealed marginal improvements in accuracy, 
suggesting that small sliding windows can yield reason-
ably good performance, capturing data variation ade-
quately within the model specification.

A number of measures of adverse risks were com-
pared and investigated. The exceedance probability 
outperformed followed by information criteria and leave-
one-out cross validation. PIT had the lowest overall per-
formance but higher specificity than information criteria. 
Information criteria and CPO appeared to have high sen-
sitivity but low PPV. This may imply that PIT yielded con-
servative detection while CPO and information criteria 
may produce more false positives. EXC appeared to have 
highest specificity and PPV without lag nowcasting and 
had the best values across evaluation metrics with cor-
rection for delays. Although WAIC has been suggested 
lately as an alternative to DIC, which has a long histori-
cal development in Bayesian statistics, in our case study 
both WAIC and DIC had very similar results and perfor-
mance in various assessment measures. The choice of the 

Table 2  Detection characteristics and parameters with different sliding window sizes and likelihood assumptions
Likelihood Detection Window size (weeks)
model characteristic 5 10 15 20 25 30

Max accuracy 0.7143 0.7214 0.7175 0.7234 0.7209 0.7202
Poisson Cut-off (percentile) 0.97 0.98 0.95 0.93 0.98 0.98

Time 0.5376 2.1435 6.5293 14.6618 28.5325 48.6852
Max accuracy 0.7081 0.7158 0.7145 0.7214 0.7227 0.7222
Cut-off (percentile) 0.93 0.95 0.94 0.95 0.98 0.98

Generalized Time (min) 0.5487 2.2986 6.7418 15.8412 30.8942 53.2669
Poisson Overdispersion delay 0.0862 0.0848 0.0937 0.0861 0.0923 0.0918

95% CrI (0.041, 0.124) (0.051, 0.135) (0.055, 0.167) (0.094, 0.191) (0.092, 0.148) (0.091, 0.129)
Overdispersion cluster 0.158 0.1636 0.1551 0.1534 0.1478 0.1466
95% CrI (0.045, 0.374) (0.046, 0.384) (0.042, 0.371) (0.042, 0.364) (0.042, 0.353) (0.041, 0.351)
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most appropriate measure should consider the specific 
requirements and objectives of the surveillance system.

Timeliness is a critical aspect of real-time surveillance. 
One of the key advantages of our proposed framework is 
its minimal data requirement, as it solely relies on past 
surveillance data on incidence reporting using a sliding 
window partition. This flexibility allows the system to be 
readily adaptable to various disease systems, particularly 
in cases where other variables such as climatic or clinical 
confounders are not available in real-time for inclusion in 
the model. Nevertheless, our unified approach has been 
designed to accommodate the inclusion of such covari-
ates through the link function, providing a comprehen-
sive framework for capturing additional factors.

Despite its advancements, it is important to acknowl-
edge several limitations in this study. Firstly, the devel-
oped methodology does not explicitly include prediction, 
which is a significant aspect of disease surveillance and 
planning. However, to support real-time disease con-
trol activities, our development effectively complements 
existing disease prediction efforts. The incorporation of 
lag-corrected nowcasting into forecasting can enhance 
the effectiveness of surveillance in disease control 
activities.

Another limitation is the exclusive testing of the devel-
oped platform using dengue data from Thailand. Gener-
alizing its applicability to other diseases and settings may 
require further validation. Nevertheless, the developed 
platform demonstrates potential for a broad spectrum 
of applications, extending beyond dengue clustering sce-
narios to address challenges in infectious or emerging 
disease surveillance. The versatility and robustness of our 
approach render it applicable to various disease surveil-
lance problems, providing public health practitioners 
with an effective tool for enhancing real-time monitor-
ing, control, and prediction of infectious diseases.

Conclusions
Effective disease surveillance systems are crucial for 
timely detection and control of health threats. However, 
reporting lags in infectious disease surveillance systems 
can hinder the prompt implementation of outbreak con-
trol measures. Existing methods for estimating disease 
incidence often overlook anomaly detection in the pres-
ence of reporting delays. In this study, we introduced 
an integrated approach that addresses this challenge by 
enabling accurate real-time cluster detection, even in the 
presence of reporting delays. While further research and 
collaboration are necessary to enhance the methodology 
and its development, our approach offers flexibility by 
relaxing disease-specific assumptions, making it adapt-
able to various disease settings. By incorporating anom-
aly detection, our method can effectively identify disease 
clusters in real-time, contributing to timely initiation 

of disease control activities. Furthermore, the efforts 
made in this study can complement existing surveillance 
systems and forecasting methods. By integrating our 
approach into the existing infrastructure, we can enhance 
the overall surveillance effectiveness and facilitate the 
timely implementation of disease control measures.
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