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Abstract 

Background Sample size calculation is a central aspect in planning of clinical trials. The sample size is calculated 
based on parameter assumptions, like the treatment effect and the endpoint’s variance. A fundamental problem 
of this approach is that the true distribution parameters are not known before the trial. Hence, sample size calculation 
always contains a certain degree of uncertainty, leading to the risk of underpowering or oversizing a trial. One way 
to cope with this uncertainty are adaptive designs. Adaptive designs allow to adjust the sample size during an interim 
analysis. There is a large number of such recalculation rules to choose from. To guide the choice of a suitable adap-
tive design with sample size recalculation, previous literature suggests a conditional performance score for stud-
ies with a normally distributed endpoint. However, binary endpoints are also frequently applied in clinical trials 
and the application of the conditional performance score to binary endpoints is not yet investigated.

Methods We extend the theory of the conditional performance score to binary endpoints by suggesting a related 
one-dimensional score parametrization. We moreover perform a simulation study to evaluate the operational charac-
teristics and to illustrate application.

Results We find that the score definition can be extended without modification to the case of binary endpoints. We 
represent the score results by a single distribution parameter, and therefore derive a single effect measure, which con-
tains the difference in proportions pI − pC between the intervention and the control group, as well as the endpoint 
proportion pC in the control group.

Conclusions This research extends the theory of the conditional performance score to binary endpoints and dem-
onstrates its application in practice.

Keywords Adaptive designs, Sample size recalculation, Performance score, Binary endpoint

Introduction
Sample size calculation is one central design aspect of 
clinical trials. The sample size is supposed to be large 
enough to detect existing effects but at the same time, 
there are multiple reasons why one should not choose 
an unnecessarily large sample size: The more patients 
are recruited, the higher the costs of the trial, the more 
patients are exposed to study-related risks and the longer 
the trial tends to be, which delays the launch of a poten-
tially helpful medication on the market. The sample size 
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needs to be determined before the start of a trial. It is cal-
culated based on different parameter assumptions. Some 
of those parameters, e.g. the effect size, need to be deter-
mined based on previous study results and background 
knowledge. However, knowledge on those assumptions 
is often limited. One way of dealing with those difficul-
ties regarding sample size calculation is to use adaptive 
group sequential study designs with the option to update 
the sample size during an ongoing trial. More explicitly, 
we will consider two-stage adaptive designs with one 
interim analysis. At this interim analysis, the effect size 
is estimated and either the trial can be stopped early 
for futility or efficacy, or the trial can be continued with 
potentially altering the sample size. There exists a great 
variety of sample size recalculation approaches in the lit-
erature [1–7]. Choosing an appropriate sample size recal-
culation approach out of the large number of options is 
a difficult task. Although the sample size recalculation 
approaches are usually published along with some per-
formance assessments, the performance measures and 
the investigated scenarios vary across the literature. Most 
often, investigations are restricted to power and aver-
age sample size considerations. However, there exist also 
other important performance aspects to judge a recalcu-
lation approach, such as the variability of the recalculated 
sample size or the conditional power, which describes the 
probability of correctly rejecting the null hypothesis at 
the end of a trial when knowing the interim result. More-
over, despite pointing out advantages of adaptive designs 
and a whole paragraph on sample size adaptations, no 
explicit advice is given on the choice of sample size recal-
culation rules in the recent FDA guideline [8]. Similarly, 
the EMA reflection paper [9] provides no advice on 
how to select a certain sample size recalculation rule. To 
apply the recalculation rules in practice and to outweigh 
advantages and disadvantages in different approaches, 
the need for a fair and transparent performance compari-
son is of high importance. While Liu et al. [10] were one 
of the first suggesting a performance score for evaluat-
ing different sample size recalculation rules in adaptive 
study designs with respect to total sample size and over-
all power, Herrmann et  al. [11] were the first who con-
sidered the conditional evaluation perspective and also 
scored the variation of conditional power and of recalcu-
lated sample size. The conditional evaluation perspective 
refers to those interim results that suggest a recalculation 
of the sample size and seems therefore very natural when 
comparing different sample size recalculation rules.

Herrmann et  al. [11] defined and applied the condi-
tional performance score to sample size recalculation 
approaches for normally distributed endpoints. In this 
paper, we extend their research to the situation of binary 

endpoints (e.g. [12, 13]). Thereby, we analyze how the 
score definition and the application procedure need to be 
adapted. Furthermore, we apply the same recalculation 
rules considered in [11] to the case of binary endpoints 
with two groups and assess their performance using the 
conditional performance score.

We find that the score definition itself can be extended 
without modification to the case of binary endpoints. 
That is, we can score the expected value and variation 
of conditional power and sample size in the same way 
as for normally distributed endpoints. However, unlike 
for normally distributed endpoints, common test statis-
tics for binary endpoints (e.g., chi-square test, normal 
approximation test) have only asymptotically known dis-
tributions. Accordingly, specifying adaptive designs with 
efficacy stopping can lead to effects on the type I error 
rate. As for such designs the type I error rate depends 
on sample size and event rates [14], we need to analyze 
how these factors influence the type I error rate of the 
analyzed adaptive designs, to find possible limitations of 
their application.

Note that for normally distributed endpoints, the dis-
tribution of the test statistic only depends on a single 
parameter, the standardized treatment effect � , while for 
binary endpoints, the distribution depends on the pro-
portion in the control group pC and the treatment effect 
pI − pC , where pI is the proportion in the intervention 
group. Hence, we derive an alternative parameterization 
of the test statistic by a single parameter, which combines 
pC and pI − pC into a single measure of effect size, fully 
specifying the distribution of the test statistic. Thereby, 
we allow for a simplified one-dimensional presentation 
of the score results and we enable direct comparison 
between the results of binary and normally distributed 
endpoints.

The paper is structured as follows: first, we introduce 
the considered adaptive designs, including the applied 
test statistic and the recalculation approaches. Then, we 
recall the conditional performance score and show how 
it can be extended to clinical trials with binary endpoints. 
Finally, we perform a simulation study, where we apply 
the conditional performance score as well as common 
global performance measures to the recalculation rules 
considered. We end by analyzing the results and giving 
advises for the practical application of the score.

Adaptive designs and sample size recalculation
Test problem
Throughout this work, we consider the situation of a 
randomized, controlled trial comparing an intervention 
group (I) with a control group (C). We focus on binary 
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endpoints, where the respective endpoint distributions 
are given by Bernoulli distributions

Here, pI and pC denote the event probabilities for the 
binary endpoint in the intervention group I and the control 
group C respectively. In this paper, we consider the case of 
equal sample sizes n per group. We denote observations of 
both groups by XI

i  and XC
i  , i = 1, ..., n respectively. With-

out loss of generality, we assume that large proportions of 
the primary endpoint are favourable. The test problem to 
be assessed in confirmatory analysis is thus given by

To test the null hypothesis, we apply the normal approxi-
mation test. The test statistic is defined by

where ¯XI , ¯XC denote the observed proportions. Note 
that the following results can be extended to the use of 
the chi-square test, since the test statistic of the normal 
approximation test is just the square root of the chi-
square test statistic.

We assume a sufficiently large sample size, such that the 
distribution of Z is given by

cf. Appendix A for details.

Parameterization of the test statistic distribution
The distribution of the test statistic given in Eq. (3) 
depends, apart from the per-group sample size n, on two 
distribution parameters pI and pC . Accordingly, we call the 
representation given in (3) a two-dimensional parameteri-
zation of the distribution of Z. In fact, it is also possible to 
parameterize the distribution of Z by a single parameter. 
Appendix B shows the derivation of a one-dimensional 
parameterization of the distribution of Z, which is then 
given by

where � is defined as

XI
i

iid
∼ B(pI ),

XC
i

iid
∼ B(pC).
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(2)Z =

n

2

¯XI
−

¯XC

¯XI
+
¯XC

2
(1−

¯XI
+
¯XC

2
)

,

(3)

Z ∼ N





pI − pC
�

(
pI+pC

2
)(1−

pI+pC
2

)

�

n

2
,
pI (1− pI )+ pC (1− pC )

2(
pI+pC

2
)(1−

pI+pC
2

)



,

(4)Z ∼ N

(

�

√

n

2
, 1−

1

4
�
2

)

,

The one-dimensional parameterization of the distri-
bution of Z is more concise than the two-dimensional 
parameterization. The parameter � can be interpreted 
as the standardized treatment effect for binary end-
points. In the remainder of the paper, we provide 
various formulas (for the conditional power of adap-
tive designs, for the required fixed design sample size, 
...) which all contain the parameter � . This is because 
these formulas are derived from the test statistic dis-
tribution. These formulas only contain � and neither 
pI nor pC . Accordingly, the formulas yield for a given 
� always the same results, irrespective of the concrete 
values of pI and pC . This property has two favora-
ble consequences: First, we can present performance 
results (like power, mean sample size and conditional 
performance score) as a function of a single effect size 
parameter � . This enables us to provide the results for 
a performance measure in a single plot (see Figs. 1 and 
2). If we instead chose to present performance results 
depending on the effect size pI − pC , the results 
would differ, depending on the underlying value pC . 
Hence, we would need to generate separate plots for 
each plausible value of pC . Second, the parameteri-
zation by � enables us to relate our results for binary 
endpoints to the results for normally distributed end-
points by Herrmann et  al. [11]. This is because the 
authors present their results depending on the stand-
ardized treatment effect � for normally distributed 
endpoints, which plays a similar role as the parameter 
� in this paper. However, the parameterization by � 
has the disadvantage of losing some interpretability. 
Clinicians know the meaning of a control group end-
point proportion of pC = 0.3 and a treatment effect of 
pI − pC = 0.12 but might have problems interpreting 
� = 0.25 , which is equivalent. To show which combina-
tions of the control group proportion pC and the treat-
ment effect pI − pC are represented by a certain � , we 
provide Table 1.

The one-dimensional parameterization by � is derived 
from the asymptotic distribution of Z (see Test problem 
section and Appendix B). For the distribution of the test 
statistic Z and the derived parameterization, we assumed 
a large enough sample size to assume normality. Since in 
practice, the sample size is finite and the assumed distri-
bution of our test statistic Z holds only approximately, 
it is necessary to analyse whether the theory of the one-
dimensional parameterization is applicable. This is done 

(5)
�:=

pI − pC
√
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2
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in Appendix E, where we show that our theory of the 
one-dimensional parameterization holds approximately 
even for rather small sample sizes.

Two‑stage adaptive designs
For analyzing the one-dimensional parametrization by � 
in practice, we consider the following setting: 

Fig. 1 Global power and mean sample size for the considered recalculation rules for binary endpoints in the main simulation. The red dashed 
line represents the sample size and power for a fixed design with a target power of 80% for an assumed � = 0.3 . The proportion in the control 
group is set to pC = 0.3 and the first stage sample size is set to n1 = 50 . The global significance level α = 0.025 , efficacy stopping boundaries were 
chosen according to Pocock [15] and the binding futility stopping bound is set to α0 = 0.5 . The maximum sample size is set to nmax = 200 . OCP: 
Observed conditional power approach; restrOCP: Restricted observed conditional power approach; Promising: Promising zone approach; OptFunc: 
Optimization function approach; classicGS: group sequential approach

Fig. 2 Comparison of the conditional performance score (CPS) values between normally distributed endpoints (left panel) 
and binary endpoints (right panel) for the considered sample size recalculation rules in the main simulation. Score values are printed 
for �, � ∈ {0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6} . The first stage sample size is set to n1 = 50 , the maximum sample size is set to nmax = 200 with global 
one-sided significance level α = 0.025 , efficacy stopping boundaries were chosen according to Pocock [15] and binding futility stopping bound 
represented by α0 = 0.5 . OCP: Observed conditional power approach; restrOCP: Restricted observed conditional power approach; Promising: 
Promising zone approach; OptFunc: Optimization function approach; classicGS: group sequential approach
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(1) The adaptive design is planned for two stages with 
one interim analysis. We allow to stop for efficacy 
or futility at interim. If the trial is not stopped, 
recalculation of sample size for the second stage is 
performed.

(2) We assume equal sample sizes in the intervention 
and control group during both stages. We denote 
the per-group sample size at the interim analysis by 
n1 (yielding a total sample size of 2 · n1 at stage one) 
and the per-group second stage sample size by Nrec 
(yielding a total sample size of 2 · Nrec at stage two). 
The according per-group total sample size N is then 
given by n1 + Nrec.

(3) We apply the same kind of test statistic at both 
stages. Accordingly, we denote the test statistic at 
interim by Z1 and at the second stage by Z2 . Both 
test statistics can be derived from the general test 
statistic Z, by specifying the per-group sample size 
n1 for Z1 and Nrec for Z2.

(4) Decisions about stopping for futility or efficacy at 
the first stage are based on Z1 . We only consider 
binding futility stops. Decisions about the accept-
ance or rejection of the null hypothesis at the sec-
ond stage are based on a combination Z1+2 of both 
Z1 and Z2 . The form of Z1+2 will be derived below.

For our combined test statistic Z1+2 , we use the inverse 
normal combination test (cf. e.g. [16]). Due to the 
standard normal distribution of our test statistic Z 
under the null hypothesis, the inverse normal combina-
tion test has the simplified form

Here, w1,w2 are weights, which are fixed before start-
ing the trial. Under the null hypothesis, Z1+2 follows 
the standard normal distribution.

Since we allow for rejection of the null hypothesis at 
the first and second stage, we need to specify the local 
significance levels α1 and α1+2 , such that the null 
hypothesis is rejected if Z1 ≥ q1−α1 or Z1+2 ≥ q1−α1+2

 
and at the same time the global type I error rate α is not 
exceeded. Here, q denotes the quantiles of the standard 
normal distribution. Given, that the covariance is 
asymptotically given by cov(Z1,Z1+2) =

w1
√

w2
1
+w2

2

 and 

knowing that Z1 and Z1+2 are both asymptotically 
standard normally distributed under the null hypothe-
sis, we know the asymptotic distribution of (Z1,Z1+2) 
and can thereby calculate local signficance levels which 
maintain the type I error rate. Here, we choose the Poc-
ock boundaries α1 = α1+2 , such that the global one-
sided significance level α = 0.025 is maintained (cf. e.g. 
[15]). We further choose α0 = 0.5 , such that the trial is 
stopped for futility, if Z1 < q1−α0.

Sample size recalculation
Until now, we introduced n1 and Nrec as the per-group sam-
ple sizes of the first and second stage of the trial. The first 
stage per-group sample size n1 is chosen before the begin-
ning of the trial, while Nrec is chosen after interim results 

Z1+2:=
w1Z1 + w2Z2
√

w2
1
+ w2

2

.

Table 1 Treatment effects pI − pC , corresponding to combinations of pC and � . The table shows which combinations of pC and pI − pC 
correspond to a given value of � . A cell at row i and column j corresponds to the value pI − pC for the i-th value of � and the j-th value of 
pC

pC

0 0.02 0.05 0.1 0.2 0.3 0.4 0.5

�

     0 0 0 0 0 0 0 0 0

     0.05 0.001 0.008 0.012 0.016 0.020 0.023 0.025 0.025

     0.1 0.005 0.017 0.024 0.032 0.042 0.047 0.049 0.050

     0.15 0.011 0.027 0.038 0.050 0.063 0.071 0.074 0.075

     0.2 0.020 0.039 0.053 0.068 0.086 0.095 0.100 0.100

     0.25 0.031 0.053 0.070 0.088 0.109 0.120 0.125 0.124

     0.3 0.044 0.068 0.087 0.108 0.133 0.145 0.150 0.148

     0.35 0.059 0.085 0.107 0.130 0.157 0.170 0.175 0.172

     0.4 0.077 0.103 0.127 0.152 0.182 0.196 0.200 0.196

     0.45 0.096 0.123 0.148 0.176 0.207 0.221 0.225 0.220

     0.5 0.118 0.145 0.171 0.200 0.233 0.247 0.250 0.243

     0.55 0.141 0.168 0.195 0.225 0.259 0.273 0.274 0.265

     0.6 0.165 0.192 0.220 0.251 0.285 0.298 0.299 0.287
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are obtained. In this section, we present common princi-
ples for how to choose Nrec based on the interim results. A 
plausible decision criterion is the conditional power, which 
will be described in the following. After introducing the 
concept of the conditional power, we describe the recalcu-
lation rules applied in the following simulation.

Conditional power
The conditional power is the probability to correctly 
reject the null hypothesis at the second stage, given the 
observed interim data (cf. e.g. [17]). This probability is 
zero, if the trial is stopped early for futility. If the trial 
continues with the second stage, then the conditional 
power (CP) is defined as

This probability depends on the result of the interim 
test statistic Z1 as well as on the recalculated sample size 
Nrec (which affects the distribution of Z1+2 ). Note the use 
of the distribution parameter � in this equation. Here, � 
specifies the distribution of Z and thereby the distribu-
tion of Z1+2.

The conditional power is a plausible criterion to decide 
about the second stage sample size Nrec (cf. e.g. [17]). The 
basic idea is to choose Nrec large enough, such that a tar-
geted conditional power is achieved. However, research-
ers do not know the value of the distribution parameter 
� , which would be required to calculate the (true) condi-
tional power. Following Wassmer and Brannath [18], 
there are multiple ways to estimate the parameter value 
for the conditional power, based on the interim results. 
Regarding our distribution parameter 

� = (pI − pC)/(

√

pI+pC
2

(

1−
pI+pC

2

)

) , it would be possi-

ble to keep the numerator pI − pC fixed as a minimally 
clinical relevant effect and only estimate the denomina-
tor, which corresponds to the endpoint’s standard devia-
tion. Another approach would be to use a Bayesian 
estimation approach to combine prior knowledge with 
the interim results (cf e.g. [19]). A third approach is to 
use the observed standardized treatment effect ˆ� , which 
is given by

We restrict our analysis to recalculation rules relying 
on the observed standardized treatment effect ˆ� . Accord-
ingly, each recalculation rule is based on the observed 
conditional power CP

ˆ�
(Z1,Nrec).

(6)CP�(Z1,Nrec):=P�[Z1+2 ≥ q1−α1+2
|Z1].

(7)
ˆ�:=

¯XI
−

¯XC

√

¯XI
+
¯XC

2
(1−

¯XI
+
¯XC

2
)

.

Considered recalculation approaches
In the following, we present different recalculation 
approaches, which will be applied in the simulation study. 
All the approaches have in common, that we define a cer-
tain maximum per-group sample size nmax , such that the 
recalculated per-group sample size Nrec needs to be lower 
or equal to nmax − n1 . Accordingly, the total sample size 
of the trial is lower than 2 · nmax . We set nmax to the same 
value for each recalculation approach. Recalculation is 
only performed if Z1 lies in an interval, where we neither 
stop for futility or efficacy. This interval is called recalcu-
lation area.

Apart from a constant second stage sample size 
within the recalculation area (classic group sequential 
approach), we consider four other sample size recalcula-
tion approaches in the following simulation study:

• Observed conditional power approach: The 
underlying idea of the observed conditional power 
approach is to update the sample size such that a 
specified conditional power value 1− β is achieved. 
Whenever the recalculated sample size exceeds the 
maximal per-group sample size, Nrec = nmax − n1 is 
chosen instead.

• Restricted observed conditional power approach: 
The restricted observed conditional power approach 
is to be seen as an extension of the observed con-
ditional power approach. It could be considered as 
not being worth the effort to choose the maximal 
sample size if only a conditional power smaller than 
1− βrestrOCP

0
≤ 1− β can be obtained. Whenever 

this is the case, the sample size is not increased and 
the trial stops after the first stage instead.

• Promising zone approach: The promising zone 
approach was proposed by Mehta and Pocock [5] 
and can be seen as a combination of the classical 
group sequential and the observed conditional power 
approach. In the so called “unfavourable zone”, when 
the conditional power for the sample size nGS of the 
classic group sequential study design falls below a 
certain conditional power threshold 1− β

prom
0

 , the 
group sequential sample size nGS is chosen. In the 
“favourable zone”, when the conditional power for 
nGS is larger than 1− β , again the constant sample 
size nGS is chosen. For all conditional power values 
in between 1− β

prom
0

 and 1− β , the called “promis-
ing zone”, the observed conditional power approach 
is applied.

• Optimization function approach: Jennison and 
Turnbull [6] suggested optimizing a function to recal-
culate the sample size. More precisely, they defined a 
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function f in dependence of the recalculated sample 
size, where its scaled deviation from the classic group 
sequential sample size is set off against the gain in 
conditional power. The recalculated sample size that 
optimizes that function f is then chosen as recalcu-
lated sample size. This sample size is again bounded 
from above by nmax.

Detailed descriptions of the recalculation rules can be 
found in [11]. The corresponding formulas are given in 
Appendix C.2.

Evaluation of adaptive designs with sample size 
recalculation
To judge and compare sample size recalculation 
approaches, different performance measures can be used. 
Commonly, the expected sample size and power are used. 
These, however, should always be considered together 
with measures of variation since a design that performs 
on average well, cannot be judged as good if it is always 
missing the target values by far [11]. Hence, measures of 
location and variation of the sample size and power are to 
be included. The definition of target values for the loca-
tion and variation measures is in general not straight-
forward. Liu et  al. [10] and Herrmann et  al. [11] give 
suggestions for their scores. The two performance scores 
differ in that Liu et  al. [10] do not consider variation 
measures in their score definition and they differ with 
respect to their evaluation perspective: Liu et al. [10] con-
sider the global perspective, which refers to any interim 
result that either suggests a continuation or stopping of 
the trial. Herrmann et al. [11] argue that it is natural to 
also consider the so called conditional perspective, which 
refers to all results where the interim test statistic falls in 
the recalculation area when judging the performance of 
a sample size recalculation approach. Both perspectives 
are valid and required simultaneously. In the following, 
we focus on the extension of the conditional performance 
score to binary endpoints and therefore present this score 
in more detail.

Definition of the conditional performance score
The conditional performance score S was suggested by 
Herrmann et  al. [11] and can be used for the compari-
son of different sample size recalculation approaches 
under the assumption of observing an interim effect fall-
ing in the recalculation area, i.e., z1 ∈ [q1−α0; q1−α1 ] . Its 
core underlying idea is to evaluate the conditional power 

and total recalculated per-group sample size (given by 
N = n1 + Nrec ) with respect to location (l) and variation 
(v). These four components are then combined by

where � refers again to the parameterization. Note, that it 
is also possible to choose other weights than the constant 
1/4 for the score components, if one wants to make any 
of the four components more important than the others 
in the evaluation. In this paper, however, we use the con-
stant weights of 1/4 throughout. The score itself as well 
as all of its four components can take values between 0 
and 1, where higher values correspond to a better perfor-
mance. Hence, not only the total score value can be inter-
preted but also a differentiated argumentation regarding 
the four evaluation criteria can be provided. More pre-
cisely, the idea of the location components is to evaluate 
the difference of the expected value (conditional power 
or recalculated sample size) from a corresponding target 
value divided by the maximal possible difference. For the 
conditional power, it is given by

Here, CPtarget,� is the target value for the conditional 
power. It takes different values (namely the aspired 
conditional power 1− β or the significance level α ) 
depending on whether the effect � is large enough to 
conduct a trial with sufficient power while maintaining 
the maximum sample size nmax . Equivalently,

describes the location component for the recalcu-
lated sample size. Here, Ntarget,� is the target value for 
the sample size. It also takes different vales (namely the 
fixed design per-group sample size nfix(�) for a power of 
1− β or the first stage per-group sample size n1 ), again 
depending on whether the effect � is large enough to con-
duct a trial with sufficient power while maintaining the 
maximum sample size nmax . Details of the theory behind 
target values are provided in [11] and explicit values for 
them are given in Table 2.

The variation components evaluate the ratio of the 
observed variances and the maximal possible variance 
with

and

(8)S(�) =
1

4
· lCP(�)+

1

4
· vCP(�)+

1

4
· lN (�)+

1

4
· vN (�),

lCP(�) = 1−
|E[CP(Z1,Nrec)] − CPtarget,�|

1− α
.

lN (�) = 1−
|E[N ] − Ntarget,�|

nmax − n1

vCP(�) = 1−

√

Var(CP(Z1,Nrec))

1/4
,
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We refer to [11] for the derivation of the maximal 
possible variances 1/4 and ((nmax − n1)/2)

2.
As for most kinds of performance scores, a clear 

interpretation of the resulting score values is difficult to 
provide. However, a coarse guideline is given in [11].

Note that the definition of the conditional perfor-
mance score does not impose any requirements with 
regard to the distribution of the endpoints. This means 
that the expected value and variance of N and CP exist 
for normally distributed endpoints, for binary end-
points, time-to-event endpoints and so on. Accordingly, 
the definition itself of the conditional performance 
score, given for normally distributed endpoints by Her-
rmann et  al. [11], does not require any adaption to be 
applied on binary endpoints. What needs to be adapted 
to the other endpoint type is how to calculate the score.

Calculation of the conditional performance score 
for binary endpoints
When a scientist wants to apply the conditional per-
formance score to evaluate a recalculation rule, s/he 
needs to know how to apply Eq. (8). For the target val-
ues CPtarget,� and Ntarget,� , explicit values are provided 
in Table 2. However, to calculate the score, the scientist 
still needs to know how to calculate the expected value 
and the variance of the sample size N and the condi-
tional power CP, as well as the fixed design sample size 
nfix.

To calculate the fixed design sample size nfix , a for-
mula depending on the endpoint distribution param-
eters is required. Appendix D shows how the formula

vN (�) = 1−

√

Var(N )

((nmax − n1)/2)
2
.

can be derived for binary endpoints with the parameteri-
zation based on �.

To calculate the expected value and variance of the 
sample size N, the scientist needs to simulate the dis-
tribution of N. Since N = n1 + Nrec and only Nrec is 
stochastic, the scientist only needs to simulate the dis-
tribution of Nrec . To simulate the distribution of Nrec , s/
he needs to simulate the distribution of the interim test 
statistic and apply the formula of a considered recalcula-
tion rule to calculate Nrec from the interim results. For all 
the recalculation rules considered in this study, formu-
las Nrec = Nrec(Z1) for the respective approaches, which 
only depend on the interim results Z1 , are provided in 
Appendix C.2. Given these formulas and the simulated 
distribution of Z1 , the scientist can simulate the distri-
bution of N and thereby calculate its expected value and 
variance.

To calculate the expected value and variance of the 
observed conditional power, the scientist needs to simu-
late the distribution of the observed conditional power. 
To this end, s/he needs a formula for the observed con-
ditional power

with ˆ� respresenting the observed standardized effect 
size and � being the cumulative distribution function of 
the standard normal distribution. More details can be 
found in Appendix C.1. Given a simulated distribution 
of Z1 , combined with the corresponding distribution of 
Nrec , described in the above paragraph, the scientist can 
generate a simulated distribution of CP

ˆ�
(Z1,Nrec) and 

then calculate its expected value and variance.
Note that for calculating nfix(�) we only need � and for 

the distributions of Nrec and CP
ˆ�
(Z1,Nrec) we only need 

the distribution of Z1 . Hence, we only need � and the 
distribution of Z1 for calculating the conditional perfor-
mance score.

Simulation study
Our simulation study contains two parts. In the first 
part, the simulation setting is similar to the main simula-
tion setting in the study by Herrmann et al. [11], except 
that we apply binary endpoints instead of normally dis-
tributed endpoints. This simulation is meant to show 
the relationship between score results for both end-
point types. We refer to this first simulation as the “main 

(9)nfix(�) =

(

√

2q1−α1+2

1

�
+ q1−β

√

2

�2
−

1

2

)2

(10)

CP
ˆ�
(Z1,Nrec) = 1−�









�

w2
1
+w2

2

w2
q1−α1+2

−

w1

w2
Z1 −

ˆ�

�

Nrec
2

�

1−
1

4
ˆ�2









,

Table 2 Target values, maximal possible deviations from the 
target values, and variances for the conditional performance 
score. CP: conditional power; N: total recalculated sample size; 
1− β : anticipated conditional power value; α : significance level; 
nfix(�) : sample size for � in fixed sample size design; n1 : first stage 
sample size; nmax : maximal sample size

Performance 
measure

target value for 
nfix (�) ≤ nmax 
and � > 0 
(target 
value for 
nfix (�) > nmax ) 
and � ≤ 0

maximal 
possible 
deviation from 
target value

maximal possible 
variance

CP 1− β ( α) 1− α ((1− 0)/2)2

N nfix(�)(n1) nmax − n1 ((nmax − n1)/2)
2
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simulation”. The second part simulates the application 
of recalculation rules and the conditional performance 
score to a real-world trial with binary endpoints, namely 
the APSAC trial [20]. This trial had initially a fixed sam-
ple size design. Our simulation shows, how the trial 
would have been different if, instead of the fixed design, 
adaptive designs with sample size recalculation would 
have been applied. Thereby, we demonstrate the effect 
of sample size recalculation and scoring for a realistic 
trial example. We refer to this simulation as the “APSAC 
simulation”.

Simulation settings
First, we specify all parameter values underlying the main 
simulation for the comparison of performance score 
results for binary and normally distributed endpoints. 
We score adaptive designs relying on the observed con-
ditional power approach, the restricted observed con-
ditional power approach, the promising zone approach, 
the optimization function approach, and the classic 
group sequential approach respectively. We set the ini-
tial per-group sample size to n1 = 50 and the maximum 
per-group sample size to nmax = 200 . The global one-
sided significance level α is set to 0.025 with adjust-
ment for multiple testing according to Pocock [15] (i.e. 
α1 = α1+2 = 0.0147 ) and futility stopping boundary 
α0 = 0.5 . Our targeted conditional power is 1− β = 0.8 . 
Weights of the inverse normal combination test are given 
by w1 = w2 =

√

n1 =
√

50 . In this way, the weight of the 
two stages in the inverse normal combination test corre-
sponds to the sample sizes of the two stages for the group 
sequential design. This choice of weights would then lead 
to the highest power the group sequential design could 
achieve with n1 = n2 = 50 . Specific parameters for the 
sample size recalculation approaches (cf. Considered 
recalculation approaches section and Appendix C.2) are 
given by βrestrOCP

0
= 0.4 for the restricted observed con-

ditional power approach, βProm
0

= 0.64 , nPromini = n1 = 50 
for the promising zone approach. For the optimiza-
tion function approach, we apply the trade-off value 
γ = 0.005/4 between conditional power and sample size 
(see [6] for details). We further set the initially planned 
per-group second stage sample size nOptFuncini = n1 = 50 . 
As a software, we use R [21] (version 3.6.1).

Now, we describe the APSAC simulation. The APSAC 
trial, which we choose as a real-world trial example, 
aimed to measure the effect of APSAC medication com-
pared to Heparin medication for patients with acute 
myocardial infarction [20]. Primary endpoint of the study 
was hospital mortality within 28 days. For sample size 
calculation, a 4% mortality for the APSAC patients and 
a 12% mortality for the Heparin patients were assumed, 
which results in 180 patients per treatment arm for a 

power of 80% and a one-sided significance level of 2.5% . 
While the actual trial had a fixed sample size design, 
a two-stage adaptive design can especially be of inter-
est when there is a high pre-trial insecurity about the 
mortality in the two groups. Therefore, we simulated 
two-stage adaptive designs with a first stage per-group 
sample size of n1 = 90 . We set the maximum per-group 
sample size to nmax = 270 . The assumed mortality rates 
of 4% and 12% correspond to a standardized treatment 
effect of � = −0.295 . Note that, in the definition of the 
test problem, we assumed without loss of generality, that 
the treatment would aim for an increase in the propor-
tion of the primary endpoint. To simulate the APSAC 
trial, where the treatment has a negative effect on the 
endpoint proportion, we needed to switch the role of 
pI and pC in the according equations and in the simula-
tion parameters. Accordingly, the assumed standardized 
treatment effect applied in the simulation was � = 0.295 . 
The remaining simulation parameters were chosen as in 
the main simulation. Only for the optimization function 
approach, we chose γ = 0.0022 . The value was chosen as 
γ = Pow�(nfix)− Pow�(nfix − 1) , where Pow� denotes the 
power of a fixed design for a given sample size. The idea 
behind this choice was to set the “cost” of each unit in 
sample size, such that the optimal sample size according 
to the optimization function approach would approxi-
mately correspond to the sample size needed to achieve 
a power of 80%.

Calculation of performance measures
In the simulation study, we applied three different per-
formance measures: the conditional performance score, 
the global average sample size, and the global power. The 
performance measures were calculated by simulation. 
Below, we provide the respective details.

To calculate the conditional performance score, we 
needed the simulated distribution of Z1 (see Calculation 
of the conditional performance score for binary end-
points section). Therefore, we simulated Nsim = 10.000 
observations of Z1 for each of the three first stage sample 
sizes n1 = 10, 20, 50, 90 . We simulated the exact distribu-
tion of Z1 , based on Bernoulli random numbers and Eq. 
(2). Having simulated the distribution of Z1 , we followed 
the steps in Calculation of the conditional performance 
score for binary endpoints section to calculate the condi-
tional performance score.

The global average sample size was calculated as a by-
product of the sample size component of the conditional 
performance score. Since the calculation of the condi-
tional performance score involves the simulation of the 
total per-group sample size N for each simulation run 
(see Calculation of the conditional performance score for 
binary endpoints section).
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In Appendix C.3, we show that the global power can be 
estimated, via simulation, according to

where Z1,i denote the values of the interim test statistic 
of simulation i ∈ {1, 2, ...,Nsim} . This power calculation 
requires the true conditional power CP�(Z1,i,Nrec,i) . To 
calculate the true conditional power we did not use an 
analytical approach (as such an approach would rely on 
the asymptotic distribution of the test statistic) but simu-
lated the true conditional power. We used the formula

which can easily be derived from Eq. (6). For given Z1 and 
Nrec , we then calculated the conditional power by simu-
lating Z2 and obtained the share of cases where it sur-
passes (q1−α1+2

√

w2
1
+ w2

2
− w1Z1)/w2.

Results main simulation
In the following, we present the results for the global 
sample size, the global power and the conditional per-
formance score for values of the standardized treatment 
effect � ranging from 0 to 0.6. In the main setting below 
we chose a control group proportion of pC = 0.3 . How-
ever, the results for other control group proportions are 
very similar, as can be seen in Appendix E. This similar-
ity can be explained by our thoughts presented in Param-
eterization of the test statistic distribution section.

Before analyzing the conditional performance score 
values in detail, we examine the designs from the global 
perspective. Figure  1 shows the average sample size 
and global power of the five adaptive designs as well as 
the fixed design for an assumed standardized treatment 
effect of � = 0.3 . We can see that the average sample size 
of all the adaptive designs remains constantly below the 
sample size of the fixed design (with power values like-
wise). For very low ( � ≤ 0.1 ) and very large ( � ≥ 0.5 ) 
standardized treatment effects, the difference in power 
between most adaptive designs and the fixed design is 
rather small. This shows benefits of adaptive designs 
compared to the fixed design because sample size is used 
more efficiently for these standardized treatment effects.

A second insight from the global perspective is that for 
� ≤ 0.1 , all the adaptive designs have a low power with 
values below 13%. At the same time, average sample size 
values of these designs are still comparatively high in this 
range (although lower than for the fixed design). The 
combination of comparatively high sample size values 

Pow(�) =
1

Nsim

Nsim
∑

i=1

(1Z1,i≥q1−α1
+ 1q1−α0

≤Z1,i<q1−α1
· CP�(Z1,i,Nrec,i)),

(11)CP�(Z1,Nrec) = P�

[

Z2 >
q1−α1+2

√

w2
1
+ w2

2
− w1Z1

w2

]

,

and low power corresponds to a “waste of sample size” to 
a futile trial. This is important to know as it indicates that 

none of the designs should be used if the true standard-
ized treatment effect is likely to lie in this range.

Now, we switch to the conditional perspective and 
examine the conditional performance score results. Fig-
ure 2 shows the simulation results for binary endpoints in 
comparison with the simulation results from Herrmann 
et  al. [11] for normally distributed endpoints. Table  3 
shows the exact values for binary endpoints underly-
ing the figure. The score results for normally distributed 
and binary endpoints are very similar. There are minor 
shifts, especially for relatively large values of the stand-
ardized treatment effects ( �, � ). However, in general, 
observations for the case of normally distributed end-
points made by Herrmann et  al. [11] can be extended 
to the case of binary endpoints: For example, the group 
sequential design performs best according to the condi-
tional performance score, which can be attributed to the 
lower variation in the sample size, compared to the other 
recalculation rules. Furthermore, the ranking between 

Table 3 Score results S(�) for binary endpoints in the main 
simulation. The values in the table correspond to Fig. 2 for 
binary endpoints. The first stage sample size is set to n1 = 50 , the 
maximum sample size is set to nmax = 200 with global one-sided 
significance level α = 0.025 , efficacy stopping boundaries were 
chosen according to Pocock [15] and binding futility stopping 
bound represented by α0 = 0.5 . OCP: Observed conditional 
power approach; restrOCP: Restricted observed conditional 
power approach; Promising: Promising zone approach; OptFunc: 
Optimization function approach; classicGS: group sequential 
approach

� OCP restrOCP Promising OptFunc classicGS

0 0.488 0.628 0.673 0.485 0.785

0.05 0.463 0.586 0.639 0.452 0.767

0.1 0.437 0.540 0.612 0.418 0.748

0.15 0.417 0.503 0.580 0.394 0.732

0.2 0.400 0.476 0.553 0.373 0.715

0.25 0.387 0.451 0.526 0.356 0.698

0.3 0.624 0.400 0.527 0.585 0.612

0.35 0.573 0.502 0.617 0.562 0.700

0.4 0.542 0.531 0.601 0.532 0.750

0.45 0.532 0.516 0.582 0.525 0.728

0.5 0.530 0.516 0.574 0.520 0.715

0.55 0.539 0.513 0.571 0.531 0.710

0.6 0.547 0.518 0.573 0.541 0.707
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the other designs remains stable for � between 0 and 0.2, 
then changes for � between 0.2 and 0.4 and then changes 
again. For a detailed analysis of the results, we refer to the 
paper by Herrmann et al. [11].

Here, we focus on the new aspect, namely the simi-
larities between the conditional performance score 
for normally and binary distributed endpoints. For 
normally distributed endpoints, Herrmann et  al. [11] 
applied a t-test statistic with an asymptotic distribu-
tion N (�

√

n/2, 1) . In this paper, we applied a nor-
mal approximation test with asymptotic distribution 
N (�

√

n/2, 1− 1/4 · �2) . If we set � = � , the asymptotic 
test statistic distributions only differ by 1/4 · �2 in the 
variance component. Given the values for � examined 
in this study, the difference in variance is between 0.00 
and 0.09. Therefore, the asymptotic distributions of the 
respective test statistics are almost the same. As the 
considered recalculation rules are based on the asymp-
totic distribution of the test statistics, the behavior of the 
designs is similar for both endpoint types. Accordingly, 
the score results are also similar.

Results APSAC simulation
The results of the APSAC simulation are provided in 
Table  4 and Fig.  3. It is remarkable, that the optimiza-
tion function approach and the promising zone approach 
both achieve a higher power and a lower mean sample 
size than the fixed design in the area around the assumed 
standardized treatment effect of � = 0.295 . This pro-
vides some strong arguments for the benefits of adaptive 
designs with sample size recalculation for this practical 
application. However, the global measures power and 
mean sample size do not fully reflect the usefulness 
of a design. By considering variation in the sample size 
and the observed conditional power, the conditional 

Table 4 Score results S(�) for the recalculation rules in the 
APSAC simulation. The values in the table correspond to Fig. 3. 
The first stage sample size is set to n1 = 90 , the maximum sample 
size is set to nmax = 270 with global one-sided significance level 
α = 0.025 , efficacy stopping boundaries were chosen according 
to Pocock [15] and binding futility stopping bound represented 
by α0 = 0.5 . OCP: Observed conditional power approach; 
restrOCP: Restricted observed conditional power approach; 
Promising: Promising zone approach; OptFunc: Optimization 
function approach; classicGS: group sequential approach

� OCP restrOCP Promising OptFunc classicGS

0 0.524 0.684 0.640 0.630 0.737

0.05 0.491 0.624 0.598 0.589 0.714

0.1 0.457 0.566 0.557 0.549 0.687

0.15 0.432 0.514 0.523 0.517 0.666

0.2 0.411 0.467 0.491 0.488 0.645

0.25 0.646 0.366 0.572 0.593 0.644

0.3 0.577 0.508 0.617 0.628 0.749

0.35 0.544 0.495 0.576 0.591 0.706

0.4 0.527 0.470 0.552 0.570 0.681

0.45 0.542 0.482 0.559 0.579 0.680

0.5 0.536 0.480 0.552 0.572 0.669

0.55 0.539 0.487 0.553 0.575 0.667

0.6 0.553 0.509 0.568 0.586 0.671

Fig. 3 Performance measures for the recalculation rules in the APSAC simulation
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performance score leads to a different evaluation of the 
recalculation rules. Here, just like in the main simula-
tion, the group sequential design performs best. This 
result can be attributed to less variation in the sample 
size, compared to the other designs with sample size 
recalculation.

The OCP and the restricted OCP perform worst 
according to the conditional performance score. Also 
with regard to the global performance measures, these 
recalculation rules appear problematic. The OCP 
requires significantly higher mean sample sizes than the 
other recalculation rules. The restricted OCP, on the 
other hand, requires the smallest mean sample size but 
leads to severe underpowering in the area around the 
assumed standardized treatment effect.

Discussion
We found that the performance of recalculation rules 
for binary endpoints can be calculated in the same way 
as for normally distributed endpoints. We can define all 
components of the score (conditional power, recalculated 
sample size, fixed design sample size) for binary end-
points and we can calculate their location and variation 
parameters, which are required for the score definition 
by Herrmann et al. [11], who considered the case of nor-
mally distributed endpoints.

A difference between the case of normally distributed 
and binary endpoints lies in the parameter value used to 
represent the endpoint’s distribution. In the case of nor-
mally distributed endpoints, it is possible to represent the 
endpoint distribution by the standardized treatment 
effect �:=(µI − µC)/(σ ) , where µI ,µC are the expected 
values in the intervention and control group and σ is the 
standard deviation in both groups. For binary endpoints, 
we found that the endpoint distribution can be parame-
terized by the single parameter 
�:=(pI − pC)/(

√

pI+pC
2

(1−
pI+pC

2
)) , which corresponds 

to the standardized treatment effect for binary endpoints. 
For all the considered recalculation rules, the results 
regarding the conditional performance score proved sim-
ilar behavior for binary and normally distributed end-
points with the same standardized treatment effect 
( � = �).

The conditional performance score can now also be 
applied to trial scenarios with binary endpoints. The 
applying scientists need to specify ranges of plausible 
values for pI and pC and compare the score values of the 
considered adaptive designs over these plausible end-
point distributions. The parameterization in � simpli-
fies this step, as ranges for pI and pC are combined into 
a single plausible interval in � . Following our simulation 

approach, the scientists can then calculate the score val-
ues for each � . If a recalculation rule proves to be supe-
rior over the whole interval in dependence of � , this 
provides evidence for the suitability of the rule.

We derived the standardized treatment effect param-
eter � to allow for a one-dimensional parameterization 
of the normal approximation test statistic distribution 
and performance measures of the considered designs. 
For the normal approximation test, neither the expected 
value nor the variance of the asymptotic test statistic dis-
tribution is constant with regard to pI and pC (see Eq. 
(3)). As a consequence, this would require representing 
all performance values in dependence of two param-
eters (expected value and variance) if we had not found 
the one-dimensional parameterization by � . An interest-
ing question is what would change if we did not apply 
the normal approximation test but another test statistic. 
It is possible to apply a test statistic with an asymptotic 
normal distribution and a variance, which is constantly 1, 
for any pI , pC . This would, for example, be the case when 
applying a Wald test [22]. In this case, the asymptotic test 
statistic distribution has already a one-dimensional rep-
resentation (with the expected value of the asymptotic 
normal distribution as the only distribution parameter) 
and the transformations we did in Appendix B to derive � , 
would not be necessary. This presents another statistical 
testing strategy that could be applied in such application 
scenarios. However, it also requires the corresponding 
mathematical derivations for (conditional) power, fixed 
design’s sample size, conditional performance score etc. 
(i.e. all formulas depending on �).

Regarding the definition of the score, we note that the 
four components (location and variation component of 
conditional power and sample size) could be weighted 
differently [23]. For our simulation, we choose an equal 
weighting. Scientists seeing higher relevance in specific 
components could change the weighting scheme in a 
suitable manner.

Furthermore, we presented a real-world trial exam-
ple. We note that for the application it is beneficial to 
complement the conditional performance score with 
global performance measures. In the empirical analysis, 
we have seen that none of the considered recalculation 
rules behaves really favorable if the true effect � is much 
smaller than the assumed effect size (0.3 for the main 
simulation and 0.295 for the APSAC simulation), which 
was applied for the sample size calculation of the fixed 
design. Some of the designs would expose on average 
more than 100 patients per group to the trial, although 
there is little chance of success (global power far below 
50%). Even though, for most of the considered adaptive 
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designs, the average number of patients in such futile 
scenarios is lower than for the fixed design, this still does 
not represent a favorable result. This is a valuable insight 
from the global perspective. Even though sample size 
recalculation offers a variety of possibilities of addressing 
insecurities about the underlying effect size, large devia-
tions can still have a significant impact on their respec-
tive power values.

Regarding further research, an extension of the condi-
tional performance score to other endpoint types would 
likely also be possible, as the underlying criteria (sample 
size and conditional power) are not restricted to specific 
endpoint types. Having examined the case of normally 
distributed endpoints and binary endpoints, an obvious 
question is the extension to time-to-event endpoints. 
For such endpoints, the adaption of recalculation rules is 
likely to be challenging as sample size considerations for 
time-to-event are generally complicated.

In addition, it would also be possible to extend the 
research to the application of further recalculation rules. 
The recalculation rules considered in this paper are a col-
lection of methods which have been suggested in previ-
ous literature. It would be possible to adapt these rules 
(e.g. by changing the parameter estimation approach 
at interim) and to examine additional rules. Also, other 
parameter choices in the applied recalculation rules 
would be possible (e.g. different values for γ and βprom

0
 ). 

The score could theoretically be used for any recalcula-
tion rule, where we can calculate sample size and condi-
tional power. The search for optimal recalculation rules is 
still ongoing.
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