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Abstract 

When multiple influential covariates need to be balanced during a clinical trial, stratified blocked randomization 
and covariate-adaptive randomization procedures are frequently used in trials to prevent bias and enhance the valid-
ity of data analysis results. The latter approach is increasingly used in practice for a study with multiple covariates 
and limited sample sizes. Among a group of these approaches, the covariate-adaptive procedures proposed by Poc-
ock and Simon are straightforward to be utilized in practice. We aim to investigate the optimal design parameters 
for the patient treatment assignment probability of their developed three methods. In addition, we seek to answer 
the question related to the randomization performance when additional covariates are added to the existing rand-
omization procedure. We conducted extensive simulation studies to address these practically important questions.
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Introduction
Randomized controlled trials (RCTs) are critical in 
evaluating the effectiveness of new treatments and 
interventions in clinical research. Randomization is a 
fundamental element of clinical trials, primarily aimed at 
preventing selection bias and enhancing the validity and 
accuracy of the results [1–4]. When sample size is large 
enough, influential factors are more likely to be balanced 
approximately. However, in the case of a large number 
of influential factors, complete randomization (CR) car-
ries a substantial risk of chance imbalance in these fac-
tors [5]. For trials with limited sample sizes, CR can lead 
to significant disparities in the number of participants 
across groups [6–8]. Such chance imbalances in baseline 

covariates and group sample sizes can ultimately under-
mine the statistical power and may present challenges 
in comparing treatment groups and interpreting trial 
results. For instance, in clinical trials involving relatively 
small sample sizes, simple randomization methods have 
been shown to produce an unequal distribution of both 
participants and influential factors across treatment and 
control groups [9, 10].

Stratified block randomization (SBR) is frequently 
employed to mitigate imbalances in baseline covariates 
across groups. In a review article by Lin et  al. [3], they 
found that SBR designs were used in the majority of tri-
als (close to 70%). However, its capability is constrained 
to a limited array of factors. With an extensive num-
ber of strata, the efficacy of SBR in maintaining balance 
among treatment groups can be compromised as some 
strata may end up with very few participants [5, 10, 11]. 
When the global treatment balance is the target of a ran-
domization procedure, some existing designs may be 
utilized, such as the permuted block design (PBD) [12], 

*Correspondence:
Guogen Shan
gshan@ufl.edu
1 Department of Biostatistics, University of Florida, Gainesville 32610, FL, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-024-02151-3&domain=pdf


Page 2 of 12Shan et al. BMC Medical Research Methodology           (2024) 24:22 

Efron’s biased coin design [13], Wei’s urn design [14]. 
Over recent decades, various innovative restricted ran-
domization designs have been developed, building upon 
the biased coin design and the urn design. These include 
the big stick design, the biased coin design with imbal-
ance tolerance, the Ehrenfest urn design and the block 
urn design [15–18]. These recent methods have dem-
onstrated better performance than traditional methods, 
particularly in maintaining a delicate balance between 
imbalance score and allocation predictability.

Covariate adaptive randomization (CAR) is a popu-
lar minimization method to achieve balance over a 
broader spectrum of covariates [19–25]. The concept 
of CAR approach was first introduced with the focus 
on dynamically identifying the treatment that could 
minimize the overall imbalance across covariates [23]. 
Pocock and Simon later proposed a generalized and flex-
ible CAR approach [26]. One of the primary features of 
their method is the incorporation of allocation prob-
abilities [4, 27–29]. After temporarily assigning a newly 
recruited participant to all the available groups, each 
group ends up with its own total number of imbalances. 
Then, instead of strictly assigning the new participant to 
the group with lowest total number of imbalances, the 
participant will be allocated to that group with a prob-
ability [22]. This means that while the option that would 
minimize imbalance is weighted more heavily, there is 
still a chance that the participant could be allocated to 
other groups to improve randomness. The employment 
of the probabilistic element introduces another layer of 
randomization, which can be beneficial for reducing bias 
and confounding [30–33]. Another established method 
for achieving covariate balance is the dynamic hierarchi-
cal randomization which offers an alternative to mini-
mization when there are too many stratification factors. 
Such approaches not only maintain randomness but also 
ensure balance across each covariate level, accommodat-
ing varying degrees of imbalance among different covari-
ates [34].

In this article, we critically examine several research 
questions emerging from the application of Pocock and 
Simon’s (PS) method in ongoing clinical trials [35]. First, 
Pocock and Simon proposed three methods to determine 
the treatment assignment probability after each new 
patient. A pivotal aspect of our research is to identify the 
optimal parameters within these methods that yield the 
best possible performance. Furthermore, our study delves 
into the exploration of the impact on the randomization 
method performance when adding new prognostic fac-
tors to the CAR procedure. Specifically, we aim to explore 
to which extent the overall performance can be enhanced 
through the incorporation of different number of factors. 
This will allow us to ascertain whether the inclusion of 

more factors leads to increasingly accurate and reliable 
results, or if there are diminishing returns beyond a cer-
tain point. In addition, we proactively consider increasing 
the number of study sites to mitigate the risks associ-
ated with low patient recruitment rates. Lastly, our study 
also conduct a comparative analysis of statistical power 
between CR and PS designs.

The structure of this article is outlined as follows. In 
Methods section, we illustrate Pocock and Simon’s mini-
mization method. We describe the three formulas used 
for calculating treatment assignment probabilities, the 
calculation of treatment imbalance score and allocation 
predictability that evaluate randomization procedures. 
Then, in Numerical study section, we first run simu-
lation studies to address the three research questions 
mentioned above. After that, we use data from a trial for 
patients with pleural infection to demonstrate the appli-
cation of CAR designs and further examine our research 
questions. In Discussion section, we provide some com-
ments about potential topics we can explore in the future.

Methods
For a study with K treatments, suppose there are I prog-
nostic factors that need to be balanced to assess the treat-
ment effect properly. We consider categorical prognostic 
factors in this article. Suppose Ji is the total possible level 
of the i-th prognostic factor, where i = 1, 2, · · · , I . 
For the i-th prognostic factor, let Xi be the level value: 
Xi ∈ {1, 2, · · · , Ji} . One example is the disease severity 
with three levels as mild, moderate, and severe.

When the i-th factor is considered, the number of 
already enrolled participants can be organized in a K 
by Ji contingency table. Suppose Nk ,xi|i is the number of 
participants being assigned to treatment k whose i-th 
factor value is xi . Then, K

k=1

Ji
xi=1Nk ,xi|i is the sum of 

all numbers from the K by Ji table, and that is the total 
enrolled participants so far.

When a new participant is recruited for this study, that 
participant is ready for randomization after collecting the 
information of the I prognostic factors: {x1, x2, · · · , xI } . If 
treatment k is assigned to this new participant, Nk ,xi|i is 
increased by 1, and other values in the K by Ji table for 
the i-th factor remain the same. The values at the xi-th 
column of the K by Ji table become

These numbers are then used to calculate the imbal-
ance value for the i-th factor after adding one more par-
ticipant to treatment k. Following Pocock and Simon [26], 
that imbalance value is denoted as dik = D(Y (xi|i, k)) , 
where D is a function to calculate the imbalance value. In 
practice, three methods based on the range, variance, and 
standard deviation of Y (xi|i, k) can be used, and we refer 

Y (xi|i, k) = (N1,xi |i , · · · ,Nk−1,xi |i ,Nk ,xi |i + 1,Nk+1,xi |i , · · · ,NK ,xi |i).
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them to be as the range method, the var method, and the 
SD method to compute the imbalance value. A total of I 
imbalance values dik (i = 1, 2, · · · , I) , can be calculated 
by using one of the three methods. These imbalance val-
ues are then used to calculate the total imbalance score 
for assigning this new participant to treatment k. These 
individual imbalance values can be combined in multi-
ple approaches to obtain the total score. We consider an 
equal weight in calculating the total imbalance score dur-
ing the randomization procedure

These total imbalance scores: Sk (k = 1, 2, · · · ,K ) , are 
sorted from the smallest to the largest, with the associ-
ated probabilities p1 to pK  , where p1 ≥ p2 ≥ ... ≥ pK  , and 
P = {p1, p2, · · · , pK } . A treatment having a small value of 
imbalance score has a high probability in the treatment 
assignment. It should be noted that the computed imbal-
ance score Sk is the covariate imbalance score.

Treatment assignment probability
Three formulas for P were proposed by Pocock and 
Simon [26]. The first two formulas were developed by 
using the ordering of Sk values. The first one is relatively 
simple

To reduce the overall imbalance score, p should be 
larger than 1/K. In the illustrated example in Pocock and 
Simon [26], for a study with 3 treatments, p was chosen 
to be 2/3. Once the value of p is chosen, the treatment 
assignment probabilities are determined. We refer to this 
approach as the PSp approach. The second formula is

where k = 1, · · · ,K  , and q is a constant between 1/K and 
2/(K − 1) . We refer to this as the PSq approach.

In addition to the ordering of Sk values, the third for-
mula used the Sk values in computing the treatment 
assignment probabilities as

where t is a constant between 0 and 1. We refer to this 
approach as the PSt  approach. The last formula is rela-
tively more complicated than the first two formulas. 

Sk =
I

∑

i=1

dik .

p1 = p and pk =
1− p

K − 1
, k = 2, 3, · · · ,K .

pk = q −
2(Kq − 1)

K (K + 1)
k ,

pk =
1

K − t

[

1−
tSk
∑

Sk

]

, k = 1, · · · ,K ,

Once the value of p in PSp or q in PSq is chosen, the prob-
abilities are determined. However, in the last formula, 
the probabilities could be changed as the values of Sk are 
updated after each new patient.

In general, the PSp approach assigns the treatment 
arm with the minimal total imbalance score a probability 
higher than the mean, while the remaining arms equally 
share the leftover probability; the PSq approach distrib-
utes probabilities in a monotonically decreasing pattern 
based on the rank of the total imbalance score with a con-
stant decrement value; the PSt approach assigns treat-
ment probabilities by inversely weighting them against 
the total imbalance scores for each arm and dynamically 
updates the probabilities with each new patient.

In the simulation studies, we included the following 
randomization methods: CR, stratified block randomiza-
tion, the stratified big stick design (SBSD) by Zhao [25], 
and the hierarchical dynamic balancing randomiza-
tion (HDBR) by Heritier et al. [36]. The SBSD design is a 
two-stage CAR randomization method that can improve 
balance and randomness of a trial as compared to the 
traditional stratified permuted block randomization. The 
HDBR design is a dynamic balancing randomization with 
the constraint on the importance ordering of factors [36]. 
The R codes can be downloand from the GitHub page: 
https://​github.​com/​Adapt​iveDe​sign/​CAR_​rando​mizat​ion.

Treatment balance and allocation predictability
In randomized clinical trials, treatment balance and 
allocation predictability are two essential metrics used 
to evaluate the performance of randomization proce-
dures. These two values are traditionally calculated at 
the end of the trial, after all participants have been ran-
domized. Suppose Nk(m) is the number of participants 
being assigned to treatment k after m patients enrolled, 
where k = 1, · · · ,K  and 0 ≤ Nk(m) ≤ m . Then, we have 
∑K

k=1Nk(m) = m . In order to calculate the final treat-
ment imbalance score, we begin by applying the range 
method [37] to compute the imbalance value following 
the enrollment of each individual patient

where m = 1, 2, · · · ,N  . Following the literature [38–40], 
we utilized the treatment imbalance score (IS) as

The value of imbalance score represents the lost infor-
mation  [40]. A randomization procedure with a low 
value of imbalance score is preferable. The treatment 

D(m) = max({Nk(m)}Kk=1
)−min({Nk(m)}Kk=1

),

IS =
1

N

N
∑

m=1

D(m)2

m
.

https://github.com/AdaptiveDesign/CAR_randomization
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imbalance score, IS, is used to compare different rand-
omization methods including the CR in which there is no 
covariate involved.

Allocation predictability (AP) is the probability of accu-
rately predicting treatment assignments from the cal-
culated imbalance score, under the assumption that the 
investigator consistently predicts the treatment with the 
higher likelihood of allocation [11, 36]. AP is a commonly 
used metric for assessing the lack of randomness of an 
allocation process, with a lower AP indicating a more 
unpredictable randomization procedure [8]. When the 
m-th participant is assigned to the treatment group with 
the lowest imbalance score, the guess is correct, denoted 
as Gm = 1 . Otherwise Gm = 0 for wrong guess. For a 
two-arm study designed with complete randomization, 
the probability of P(Gm = 1) is 50%. For a study with K 
treatments, allocation predictability can be defined as

The range of 1
N

∑N
m=1 P(Gm = 1) is from 0 to 1. The 

quantity K
K−1

 is added to the AP calculation to make sure 

AP =

(

1

N

N
∑

m=1

P(Gm = 1)−
1

K

)

K

K − 1
.

that upper limit of AP is 1. For a CR design, the AP value 
will be very close 0. Thus, it is preferable to have a rand-
omization procedure with a low value of AP2.

In the simulation studies, we used rescaled IS and AP 
value (ISr  and APr  ) to calculate the weighted score for 
comparing different methods. The weighted score is 
defined as

When multiple values of the parameter (e.g., p in the 
PSp method) are studied, the computed IS values are 
rescaled to 0 and 1 as the ISr  values. The APr  values are 
calculated by using AP values in a similar approach. A 
randomization procedure having a small weighted score 
� is preferable.

Numerical study
We first run simulation studies to identify the optimal 
parameter of the three treatment assignment methods 
(PSp , PSq , and PSt  ) having a good performance with 
regard to IS, AP and the weighted score � [41].

� =

√

IS2r + AP2
r

2
.

Fig. 1  Imbalance score, allocation predictability, and weighted score of the PS procedure based on three treatment assignment probability 
methods: PSp , PSq , and PSt  . These methods are compared with CR, and SBR with the block size of 6 for a study with 3 treatments and two influential 
factors
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Optimal parameter in the PS randomization procedures
For a study with 3 treatments, let sample sizes per arm 
be: n = 5, 10, 20, 30, 50, 80 , and 100. Two influential fac-
tors are considered: factor 1 that follows a Bernoulli 
distribution with p = 60% , and factor 2 following a mul-
tinomial distribution with three possible outcomes with 
probabilities of (30%, 20%, 50%).

Figure  1 shows the comparison between the three 
treatment assignment methods based on the range 
approach to calculate the covariate imbalance score. 
We used a block size of 6 in the SBR in this figure. For 
each given sample size, SBR could have a lower imbal-
ance score than CR while SBR has larger AP values than 
CR. In the PSp method, the parameter p is from 0.35 to 
0.95 (left side). Imbalance score decreases as p goes up 
for each given sample size. As p gets large, the probabil-
ity of a correct guess on treatment assignment becomes 
high. For that reason, allocation predictability is an 
increasing function of p. For weighted score � consid-
ering both rescaled imbalance and allocation predict-
ability, the optimal p is found to be between 0.4 and 0.6 
to have a good balance between imbalance and alloca-
tion predictability. When sample size is small (e.g., 15 

per arm), the optimal p is near 0.6. That optimal value 
is reduced to 0.5 when n > 100 per arm. In Fig.  1, we 
observed similar results when PSq was used to define 
the probability of treatment assignment. The optimal 
q value is close to 0.60 when n < 100 , and that value is 
reduced to 0.5 when n > 100 as observed. For the PSt  
method, the weighted score is larger than other meth-
ods when sample size is very small (e.g., 15 in a study). 
In other cases, the PSt  method has good performance 
as the computed IS and AP values are almost independ-
ent of the choosing t values. In Fig. 1, we found that t 
near 0.8 provide a good balance between IS and AP for 
the PSt  method.

The findings using other approaches (e.g., the var 
approach, and the SD approach) for the covariate imbal-
ance score calculation, are similar to those observed in 
Fig.  1. In general, the SD approach has lower � values 
than the var approach. The SD approach considers the 
sample sizes in the imbalance score calculation. Based 
on that finding, we focus our comparisons on the range 
approach and the SD approach in computing the covari-
ate imbalance score ( Sk ) in the PS methods to determine 
the treatment assignment during the study. Once the 

Fig. 2  Imbalance score and allocation predictability of the SBR and SBSD methods with the block sizes of 6, 12, and 18. SBR: stratified block 
randomization; SBSD: stratified big stick design
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study is completed, the treatment imbalance score IS is 
computed to compare different methods regarding treat-
ment imbalance.

In Fig. 1, we study the SBR method with the block size 
of 6. We further compare the SBR method with the block 
sizes of 6, 12, and 18, and include the SBSD method in 
Fig. 2 for comparison. The sample size is the same as that 
in Fig. 1. For the two methods, the IS value is a decreas-
ing function of sample size, while that trend is reversed 
for the AP value. The SBR design has lower IS values 
than the SBSD method, and their difference gets larger as 
the block size goes up from 6 to 18. However, the SBSD 
method can improve the randomness of a trial by reduc-
ing a constant AP value for each given sample size. For a 
study with the sample size of 300, their difference in the 
AP value is close to 0.14 from these three plots.

We also studied the effect of the number of study 
sites on weighted score in Fig.  3, with the first factor 
as the number of study sites, and the second factor fol-
lows a multinomial distribution with three possible 
outcomes with probabilities of (30%, 20%, 50%). In gen-
eral, imbalance score is a decreasing function of p or q 
in the PSp or PSq method, while that trend is reversed 
for allocation predictability. A study with a large num-
ber of study sites (e.g., 20 study sites) often has worse 
weighted score � than studies with less number of sites. 

The weighted score decreases more when the number 
of study sites is increased from 2 to 5, than the cases 
when the number of study sites is increased from 5 to 
10 or from 10 to 20.

Additional factors in CAR procedures
Another research question we tried to address in 
this article is to investigate the IS and AP perfor-
mance when additional prognostic factors are added 
to CAR procedures. In Fig.  4, we presented the IS 
and AP values as a function of the total sample based 
on the range method (left) and the SD method (right) 
in calculating the covariate imbalance score Sk for a 
study with 3 treatments: the PSp=0.5 method (rows 
1 and 2), the PSq=0.5 method (rows 3 and 4), and the 
PSt=0.8 method (rows 5 and 6). Here, PSp=0.5 has the 
probabilities as (p1, p2, p3) = (50%, 25%, 25%) while 
(p1, p2, p3) = (42%, 33%, 25%) in PSq=0.5 . In the PSt=0.8 
method, the probability (p1, p2, p3) is not equal for 
each new patient. It can be seen that as compared to 
PSq=0.63 , PSp=0.6 has a higher probability to assign a 
new patient to the treatment having the lowest imbal-
ance score. In addition to the two aforementioned 
influential factors (one binary, one multinominal with 
three levels), we added another four factors having 2 or 
3 levels, with a total of 6 factors.

Fig. 3  For a 3-arm study with the total sample size of 60, imbalance score, allocation predictability, and weighted score are plotted as a function 
of the parameters in the three PS methods, when the number of study sites is increased from 2 to 20
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In Fig. 4, we found that the IS values (rows 1, 3, and 5) 
decrease as sample size goes up. The curves are relatively 
flat for the PSt  method as compared to the other two 
equal allocation methods. When sample size is not too 
small with more than 1 factor, the two equal allocation 
methods have smaller IS values than the PSt  method. 
However, the PSt  method has lower AP values than the 
other two methods. When sample size is 300, the average 
of the IS values are 0.56 and 0.52 for the range method 
and the SD method, respectively. We also found that 
as compared to the range method, the SD method can 
reduce the average of AP values by 20% from these data. 
The SD method generally has better performance than 
the range method.

We further compared the PSt  method and the HDBR 
design in Fig.  5 with regards to IS and AP as the num-
ber of factors increases when the range method was used 

in the covariate imbalance score calculation. The HDBR 
design by Heritier et al. [36] aimed to maintain the mar-
ginal balance over important factors. It is expected that 
the HDBR design can reduce the IS values as compared 
to the PS method. The randomness index AP increases as 
sample sizes go up for the HDBR design. When sample 
size is 100 or above, the AP values of the HDBR design 
are larger than those for the PSt  method. If a low IS value 
is more important than the AP value, the HDBR design is 
a great randomization method to be utilized. Otherwise, 
the PSt  method could be utilized to have low AP values.

Statistical power comparison
We compared the statistical power between CR and 
the CAR designs with PSp=0.6 with the sample size of 
200 per arm in a two-arm randomized trial with the 
expected effect size of 0.4/

√
2 = 0.28 . The sample size 

Fig. 4  Imbalance score and allocation predictability of the three PS methods: the PSp=0.5 method (rows 1 and 2), the PSq=0.5 method (rows 3 and 4), 
and the PSt=0.8 method (rows 5 and 6), as a function of the total sample size and the number factors in the CAR for a study with 3 treatments. The 
range approach (left) and the SD approach (right) are used in the covariate imbalance score calculation
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was determined to detect the effect size of 0.28 to achieve 
the statistical power of 80% when α = 0.05 . Suppose the 
first two factors are: binomial with p=50%, and multino-
mial with 3 outcomes having the equal probability. The 
correlation between the binomial factor and the outcome 
is ρ1 =0.3.

In Fig. 6, the statistical power was presented as a func-
tion of ρ3 which is the correlation between outcome and 
the third factor, with ρ4 from 0.1 to 0.7. The correlation 
between the multinomial factor and the outcome was 
assumed to be ρ2 =0.2 (the first row) and 0.1 (the second 
row). We calculated the statistical power by using the 
PSp=0.6 with 2, 3, and 4 factors as covariates. The simu-
lated power is very close to the nominal level of 80% for 
the CR. When correlation is low (e.g., ρ3 = ρ4 =10%), the 
statistical power of CAR designs is similar to that of CR. 
As correlation goes up ( ρ4 from 0.1 to 0.7), the statisti-
cal power could be increased by more than 10% with the 
simulated statistical power being above 90%.

The statistical power gain using the CAR design with 
two factors can consistently improve more than 2% as 

compared to the CR design. The statistical power of the 
CAR designs including 3 factors or more is an increas-
ing function of ρ3 . When ρ3 goes up to 0.7, the statistical 
power could be above 90% at the nominal level of 80%. 
When ρ4 is small (e.g., ρ4 = 0.1 ), the statistical power 
gain is very limited by adding the fourth factor to the 
model with 3 factors. However, when ρ4 is medium to 
large (e.g., 0.4, 0.7), it may further increase the statisti-
cal power by including that additional factor in the CAR 
design. We observe similar findings in comparing statisti-
cal power based on PSp=0.6 with 2, 3, and 4 factors, as a 
function of ρ3.

We further compare the statistical power as p in the 
PSp method and t in the PSt  method go up in Fig. 7. The 
statistical power was plotted as a function of ρ3 given 
ρ1 = 0.3 , ρ2 = 0.2 , and ρ4 = 0.4 . Five different p values 
(0.55 to 0.8) and 5 t values (0.6 to 0.95) were studied. 
When two factors are used in CAR designs (first row), 
the statistical power is not sensitive to  the value of ρ3 . 
When we have three or four factors (the middle row, and 
the bottom row), the statistical power is an increasing 

Fig. 5  Imbalance score and allocation predictability of the PSt  method and the HDBR method as a function of the total sample size 
and the number factors in the CAR for a study with 3 treatments. HDBR: hierarchical dynamic balancing randomization
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function of ρ3 . When ρ3 = 0.4 , the statistical power 
may be increased by 4% when two additional factors are 
added to a model having two existing factors. For the PSp 
method, the p values between 0.6 to 0.7 have good per-
formance with regards to the statistical power in many 
configurations. For the PSt  method, a high value of t (e.g., 
0.8 or above) is associated with a large statistical power. 
Given the ρ3 value and the number of factors, the statisti-
cal power difference between these considered methods 
is small which is around 2%.

An example
We used data from the Second Multi-centre Intra-pleu-
ral Sepsis Trial (MIST2) to illustrate the application of 
the CAR designs [42, 43]. The MIST2 trial was a four-
arm randomized trial to investigate the efficacy of intra-
pleural tissue plasminogen activator (t-PA) and DNase 
for patients with pleural infection. The primary outcome 
was the change in pleural opacity at day 7 from day 1. 
We used the estimated correlation between the primary 
outcome and three categorical factors: hospital-acquired 
infection ( ρ1 = 0.12 ), large tube size ( ρ2 = 0.16 ), and 
drain present ( ρ3 = 0.27 ). These correlation coefficients 
were presented in the article by Kahan et al. [43].

Suppose we are going to compare a new treatment 
with the gold standard: a randomized two-arm study. To 

detect a medium effect size of 0.39 in an early phase trial, 
the sample size per group is estimated as 105 (a total of 
210 patients) based on the two-sample t-test. Given that 
sample size, the simulated statistical power from 20,000 
simulations is 79.95% in the statistical model without 
controlling for other covariates. For the CAR designs, the 
statistical power is between 81.2% and 82.2% when these 
three factors are considered in the randomization and 
adjusted in the primary analyses. The highest power is 
obtained when the PSq=0.63 approach in conjunction with 
the SD method in calculating the imbalance score is used 
in the CAR design.

Discussion
From simulation studies, we found that the increase in 
statistical power depends on the correlation between 
covariates and the outcome. Specifically, adjusting for 
covariates that are strongly correlated with the outcome 
leads to a greater reduction in the standard errors for the 
treatment effect, and therefore a larger increase in the 
statistical power [44]. When adjusting for key confound-
ers in the context of binary or survival outcomes though, 
it is expected that the standard errors would increase. 
However, this can be counterbalanced by an increase in 
the estimated treatment effect, which ultimately con-
tributes to enhanced power [45–48]. It should be noted 
that in the current study, our focus was exclusively on 

Fig. 6  Statistical power of a two-arm CAR design as a function of ρ3 , given ρ4 from 0.1 to 0.7. In the CAR design, the treatment assignment 
probability was set as 60%. The first and the second row has the correlation ρ2 = 0.2 and 0.1. When the number of factor is zero, it is a CR design
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continuous outcomes. However, binary and survival out-
comes represent areas of significant interest that have not 
been explored in this work. These outcome types could 
serve as a focus for future research endeavors.

Additionally, when we compared the statistical power 
between CAR designs and CR designs, there were some 
methodological disparities that merited attention as we 
implemented different strategies for covariate control. 
Specifically, we did not adjust for any covariates when 
analyzing the statistical power of CR designs, whereas 
for the CAR designs, we did control for a varying num-
ber of prognostic factors. This discrepancy introduces a 
layer of complication to the interpretation of the results, 
as it becomes challenging to determine the exact effect 
of the CAR methods on the observed increase in statis-
tical power. It raises the question of whether the power 
increase is genuinely attributable to the effectiveness of 
CAR designs, or if it is merely the result of the inclu-
sion of additional covariates in the statistical model. 
Therefore, discerning the specific contribution of CAR 

methods to the improvement of statistical power remains 
an intricate issue. Future research could compare the sta-
tistical power by conducting identical data analyses while 
varying only the randomization methods employed. This 
would provide a clearer understanding of the influence of 
different randomization techniques on the resulting sta-
tistical power.
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