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Abstract 

Background Treatment variation from observational data has been used to estimate patient-specific treatment 
effects. Causal Forest Algorithms (CFAs) developed for this task have unknown properties when treatment effect het-
erogeneity from unmeasured patient factors influences treatment choice – essential heterogeneity.

Methods We simulated eleven populations with identical treatment effect distributions based on patient factors. The 
populations varied in the extent that treatment effect heterogeneity influenced treatment choice. We used the gener-
alized random forest application (CFA-GRF) to estimate patient-specific treatment effects for each population. Average 
differences between true and estimated effects for patient subsets were evaluated.

Results CFA-GRF performed well across the population when treatment effect heterogeneity did not influence 
treatment choice. Under essential heterogeneity, however, CFA-GRF yielded treatment effect estimates that reflected 
true treatment effects only for treated patients and were on average greater than true treatment effects for untreated 
patients.

Conclusions Patient-specific estimates produced by CFAs are sensitive to why patients in real-world practice make 
different treatment choices. Researchers using CFAs should develop conceptual frameworks of treatment choice prior 
to estimation to guide estimate interpretation ex post.
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Introduction
Developing patient-specific treatment effect evidence to 
guide individualized treatment decision-making is a cor-
nerstone of patient-centered care [1–3]. The need for 
patient-specific evidence follows from the acknowledged 
breadth of outcome variation across patients receiv-
ing the same treatment. [4–10]. This phenomenon is 
known as treatment effect heterogeneity and is defined as 
“nonrandom variation in the direction of magnitude of 
a treatment effect” [11]. With their restrictive inclusion/
exclusion criteria, randomized controlled trials cannot 
generate appropriate patient-specific evidence for many 
patients [4, 11–14]. As an alternative, observational data 
provide treatment variation within the context of real-
world practice and a diversity of patients well beyond 
those evaluated in RCTs [2, 3, 12, 15, 16]. The traditional 
approach to estimate patient-specific treatment effects 
using observational data is to use parametric estimators 
and assign to each patient an estimated treatment effect 
from a “reference class” of patients [17–22]. Reference 
classes are defined a priori by the researcher based on 
combinations of measured patient factors that are con-
ceptually associated with treatment effect heterogeneity 
[17–22]. The need to specify reference classes a priori has 
been described as “the central problem when using group 
evidence to forecast outcomes (or treatment effects) in 
individuals” [18]. Even with a small number of measured 
patient factors, a patient could be placed in many refer-
ence classes, leaving it unclear which class is best aligned 
to the patient [10, 17, 18].

Causal forest algorithms (CFAs) have been proposed to 
estimate patient-specific treatment effects in a manner that 
essentially assigns patients to reference classes ex post using 
information from the data, thereby eliminating the need to 
assign patients to reference classes a priori [23–33]. Simu-
lation modeling has shown that CFAs can accurately esti-
mate patient-specific treatment effects in scenarios in which 
treatment effect heterogeneity does not influence treatment 
choice [24, 26–29, 34–37]. However, in many real-world 
scenarios it is conceivable that unmeasured patient factors 
associated with treatment effectiveness influence treatment 
choice. This is called essential heterogeneity or sorting on 
the gain in the econometrics literature [38–51]. The proper-
ties of parametric treatment effect estimators under essen-
tial heterogeneity are well known [38–51]. However, the 
impact of essential heterogeneity on patient-specific treat-
ment effect estimates using CFAs has not been evaluated. 
In this paper, we contrast the properties of patient-specific 
treatment effect estimates using the causal forest algorithm 
within the generalized random forests application (CFA-
GRF) across simulation scenarios that vary in the extent that 
unmeasured patient factors associated with treatment effec-
tiveness influence treatment choice.

Methodological background
Assigning patients into appropriate reference classes 
using observational data either a priori with paramet-
ric estimators or ex post through a CFA does not ensure 
that the resulting treatment effect estimates are appro-
priate for each patient. The conventional criticism of 
using observational data to estimate treatment effects 
is the risk of omitted variable bias in which unmeasured 
factors with direct effects on study outcomes are distrib-
uted differently between treated and untreated patients 
[52]. However, even if patients were assigned to appro-
priate reference classes and omitted variable bias risk is 
mitigated through study design, a single treatment effect 
estimate for a reference class may not be appropriate 
for each patient within a class. The econometric litera-
ture has shown that parametric estimators yield average 
treatment effect estimates for patient subsets based on 
treatment choice [38–67]. Under the assumption of no 
omitted variable bias, regression-based estimators yield 
unbiased estimates of the average treatment effect for 
the subset patients who chose treatment or the aver-
age treatment effect on the treated (ATT) [43, 48–50, 54, 
57, 60, 68, 69]. Consequently, if treatment choice in an 
empirical setting was influenced by unmeasured patient 
factors related to treatment effectiveness – essential het-
erogeneity – the parametric estimate of ATT for a refer-
ence class will overstate the true treatment effects for the 
untreated patients in the class [39, 49, 50, 70]. Research-
ers using parametric estimators have learned not to gen-
eralize a single parametric treatment effect estimate to 
all patients in a population [38, 43, 47–51, 53, 55, 56, 58, 
59, 61, 67, 70, 71].

In contrast, the properties of estimated patient-specific 
treatment effects from CFAs under essential heteroge-
neity have not been explored. Simulation research has 
demonstrated that CFAs accurately yield patient-specific 
treatment effects under the broad condition of ignorabil-
ity [24, 26–29, 34–36]. Ignorability assumes that omitted 
variable bias does not exist within an empirical setting. 
However, ignorability also assumes that essential het-
erogeneity does not exist. These dual assumptions can 
be described using potential outcome notation. Define 
 Y1i and  Y0i as the potential outcomes for patient “i” when 
treated and untreated, respectively, and  (Y1i –  Y0i) is the 
true potential treatment effect for patient “i”. Define  Ti as 
the observed treatment choice for patient “i” and  Xi as the 
set of measured patient factors available to the researcher. 
Ignorability is broadly defined as  (Y1i,  Y0i) ⊥  Ti |  Xi or 
conditional on  Xi, treatment choice is independent of 
both potential patient outcomes [72]. As such, ignorabil-
ity implies the following two distinct assumptions.

(1.1)(Y0i) ⊥ Ti|Xi
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Assumption (I.1) says that, within a reference class of 
patients based on  Xi, treatment choice is unrelated to 
untreated potential outcomes across patients. Or stated 
differently, treatment choice is unrelated to unmeas-
ured patient factors associated with  Y0i. Assuming (I.1) 
eliminates the risk of omitted variable bias in an obser-
vational study [52].

Even if assumption (I.1) is true though, treatment 
effects may remain heterogeneous within a reference 
class defined by  Xi. With respect to this heterogeneity, 
ignorability further assumes:

Assumption (I.2) says that, within a reference class of 
patients defined by  Xi, treatment choice within the class 
is not influenced by unmeasured patient factors associ-
ated with treatment effectiveness or there is no essential 
heterogeneity [38, 39, 45]. If ignorability holds within a 
reference class defined by  Xi, only  the treatment varia-
tion that stems from patient factors unrelated to treat-
ment effectiveness will  be used to estimate treatment 
effects within the class. Consequently, CFA simulation 
results which assume ignorability provide no guidance 
on the properties of patient-specific treatment effect 
estimates in real-world scenarios in which essential het-
erogeneity is thought to exist a priori. For example, the 
effectiveness of surgery for patients with shoulder frac-
tures is thought to vary with fracture complexity and 
patient resiliency, which in turn influence surgery choice 
[73–77], but fracture complexity and patient resiliency 
are not measurable in large observational databases such 
as Medicare claims data [73–77]. A study using a causal 
forest algorithm to estimate patient-specific surgery 
effects using Medicare claims data theorized a priori that 
the resulting estimates should be interpreted in terms of 
essential heterogeneity, but evidence was not available 
to guide these interpretations [78]. In addition, under-
standing influence of essential heterogeneity on CFA 
estimates is especially relevant to researchers proposing 
to use CFAs in effectiveness-implementation hybrid study 
designs in which the promotion of a treatment is rand-
omized to satisfy assumption (I.1) but decision makers 
still have the discretion to choose among available treat-
ments based on individual patient factors [79–95].

To provide this guidance, this study modified a 
treatment choice-based simulation method used in 
previous research to assess the impact of essential 
heterogeneity on patient-specific treatment effect 

(1.2)(Y1i − Y01) ⊥ Ti|Xi

estimates from a CFA estimator [43, 48, 53]. Eleven 
patient populations were simulated with the same dis-
tribution of true treatment effects drawn from iden-
tical distributions of simulated patient factors. All 
eleven simulations were specified to satisfy assumption 
(I.1). The simulations varied by plausible differences in 
the extent to which knowledge of true patient-specific 
treatment effects influenced treatment choice. We 
used the causal forest algorithm within the generalized 
random forests application (CFA-GRF) [24–26, 96, 97] 
to estimate patient-specific treatment effects for each 
simulated population. CFA-GRF has been singled out 
as the most appropriate CFA for estimating patient-
specific treatment effects [98]. To tease out the influ-
ence of essential heterogeneity, we applied CFA-GRF 
to each simulated population under conditions of (1) 
fully observed heterogeneity in which all patient fac-
tors associated with treatment effect heterogeneity are 
observed by the researcher and (2) partially observed 
heterogeneity in which only a subset of the patient fac-
tors associated with treatment effect heterogeneity are 
observed by the researcher. Patient-specific treatment 
effect estimates from CFA-GRF were used to calcu-
late the average absolute and average percentage dif-
ferences between true and estimated effects for each 
simulated population and for treatment choice-based 
population subsets.

Methods
Simulation model
Our simulation model follows the general framework in 
the essential heterogeneity literature [39, 43, 45, 48, 53, 
99]. Figure  1 contains a directed acyclic graph (DAG) 
illustrating the conceptual framework of treatment effect 
heterogeneity, treatment choice, and outcome within our 
simulations. Figure  1 was adapted from standard DAG 
approaches to reflect patient factors affecting treatment 
effectiveness and the treatment effect knowledge of the 
decision maker [100, 101]. Outcome  (Yi) equals 1 if 
patient “i” is cured of the medical condition, and 0 if not 
cured. P(Yi|Ti,Si) is the probability of cure for patient “i” 
conditional on treatment choice  (Ti) and patient sever-
ity  (Si). Patient cure probability also varies with accumu-
lated other factors  (Wi). Treatment  (Ti) equals 1 if the 
patient receives treatment and 0 otherwise, which we 
designate as watchful waiting. In all simulations, the true 
absolute treatment effect for each patient “i”  (TEi) on  Yi 
relative to watchful waiting varies with six factors  X1i, 
 X2i,  X3i,  X4i,  X5i, and  X6i based on the following equation:

(1)
TEi X1i,X2iX3iX4iX5iX6i = β1∗X1i + β2∗X2i + β3∗X3i + β4∗X4i + β5∗X5i + β6∗X6i
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X1i,  X2i,  X3i,  X4i,  X5i, and  X6i are binary variables 
distributed Bernoulli for each patient with a proba-
bility of 0.5. Each βx equals the absolute change in treat-
ment effect if a patient has condition “X” (β1 = 0.024, 
β2 = 0.048, β3 = 0.071, β4 = 0.095, β5 = 0.119, β6 = 0.143). 
With these parameter values, simulated patients have 

true treatment effects ranging from 0 to 0.5 with an aver-
age true treatment effect of 0.25 for each simulated pop-
ulation. For example, if the simulated patient factors for 
patient “i”  (X1i,X2i,X3i,X4i,X5i,X6i) were (1,0,1,0,1,0), then 
patient “i’s” true  TEi was.214 = (0.024 + 0 + 0.071 + 0 + 0.
095 + 0). Figure 2 illustrates the identical distribution of 

Fig. 1 Directed Acyclic Graph (DAG) Describing the Conceptual Framework for the Simulation Model in which Patient Factors Affecting Treatment 
Effectiveness Affect Treatment Choice through Decision Maker Knowledge

Fig. 2 Distribution of True Absolute Treatment Effects (TEi) Used in All Eleven Simulated Populations
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simulated treatment effects across all eleven simulations 
in this study.

The true cure probability relationship for each simu-
lated patient “i” signified by the red arrows in Fig. 1 is as 
follows:

α0 equals the untreated patient cure probability at the 
mean severity level and was set to 0.1 in all simulations. 
Patient severity  (Si) was specified as a uniformly dis-
tributed random variable from -0.5 to 0.5. αS equals the 
change in untreated patient cure probability for differ-
ences in severity level and was set to -0.1 in all simula-
tions. As a result, in each simulated population, watchful 
waiting patients  (Ti = 0) had a cure probability ranging 
from 0.05 to 0.15. Treated patients  (Ti = 1) had a cure 
probability ranging from 0.05 to 0.65. All other unmeas-
ured patient factors impacting the probability of a cure 
are found in  (Wi).

The green arrows in Fig.  1 describe the treatment 
choice process that varied across the eleven simulations. 
In each simulation, it is assumed that the treatment deci-
sion-maker observes  X1i,  X2i,  X3i,  X4i,  X5i, and  X6i and 
forms an expected treatment effect for patient “i”. The 
simulations differ by the knowledge available to decision 
makers of the relationship between the six patient fac-
tors and treatment effectiveness, as represented by the 
expected treatment effect function for simulation “j”:

Kj ∈ (0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1) is the proportion 
of patient-specific  TEi knowledge used by decision mak-
ers in simulation “j” that is distinct from the average pop-
ulation treatment effect. Decision makers are more aware 
of each patient’s true treatment effect relative to the aver-
age population treatment effect as  Kj increases from 0 
to 1 across simulations. For example, in the simulation 
in which  Kj = 0, decision makers only have knowledge of 
the average treatment effect across the population (0.25) 
when making treatment decisions for each patient. Alter-
natively, when  Kj = 1, decision makers have exact knowl-
edge of the treatment effect for patient “i” from observed 
 X1i,  X2i,  X3i,  X4i,  X5i, and  X6i.  ETEij(X1i,  X2i,  X3i,  X4i, 
 X5i,X6i,Kj) is used to calculate the expected value of treat-
ment for patient “i” based on the following:

(2)Probability of Yi=P(Yi|Ti, Si )+Wi = (αO + αS · Si + TEi(X1i, X2i, X3i, X4i, X5i, X6i) · Ti)+Wi

(3)ETEij
(

X1i, X2i, X3i, X4i, X5i, X6iKj

)

= Kj ∗ (TEi(X1i, X2i, X3i, X4i, X5i, X6i)− .25)+ .25.

(4)
EVTi

(

ETEij, V, C, Ui

)

= V · ETEij
(

X1i, X2i, X3i, X4i, X5i, X6i, Kj

)

− C+ Ui

EVTi(ETEij,V,C,Ui) sums the expected benefits and 
detriments (e.g., costs) of treatment relative to watch-
ful waiting for patient “i” that is conditional on knowl-
edge  Ki,  X1i,X2i,X3i,X4i,X5i,X6i, direct treatment cost C, 
cure value V, and  Ui other accumulated factors affect-

ing treatment value, which are independent of treat-
ment effectiveness for patient “i”.  ETEij(X1i,  X2i,  X3i,  X4i, 
 X5i,X6i,Kj) equals the decision maker’s expected change 
in cure probability from treatment. To focus this study 
on the impact of essential heterogeneity across simula-
tions, all patients were assigned a cure value V of $800 
and a treatment cost C of $200. These values were cho-
sen because they yield simulated population treatment 
percentages of approximately 50%. V designations 
of $500 and $1100 were also tried, which yielded dif-
ferent population treatment percentages but did not 
influence the interpretation of our results relative to 
the essential heterogeneity.  Ui is the source of treat-
ment valuation that varies across patients, is unrelated 
to treatment effectiveness and is unmeasured by the 
researcher.  Ui values were assigned to patients from a 
normal distribution with a mean of zero and a com-
mon variance σ 2

U
 across simulations. Furthermore, in 

all simulations,  Ui was specified independently of  Wi 
so that the differences in unmeasured factors influ-
encing treatment choice had no relationship with the 

unmeasured factors directly effecting cure so that 
ignorability assumption (I.1) was satisfied.

In all simulations, decision makers chose treatment 
for patient “i” if  EVTi was positive and watchful wait-
ing if  EVTi was negative. In the simulation in which the 
knowledge of patient-specific treatment effect hetero-
geneity is zero  (Kj = 0), only variation in  Ui leads to dif-
ferent treatment choices across simulated patients. As 
 Kj increases across simulations, a larger proportion of 
the variation in treatment choice variation is attribut-
able to treatment effectiveness or sorting on the gain. 
Once a treatment was chosen for each patient, cure  (Yi) 
was simulated using a Bernoulli function of P(Yi|T,Si) 
for patient “i”, given  Ti and  Si. Table 1 summarizes the 
model parameters and values used in the simulations.
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To support large sample properties, we generated 
50,000 patients in each simulation. The blue arrows in 
Fig. 1 describe the variables observed by the researcher 
after each simulation. By varying the knowledge of 
 TEi across simulations with  Kj and the patient fac-
tors observed by the researcher, we can tease out the 
impacts of essential heterogeneity on patient-specific 
treatment effect estimates. In each scenario, researchers 
observe  Ti,  Yi,  Si. We designate “fully observed hetero-
geneity” as the empirical condition in which researchers 
observe all six patient factors  X1i,  X2i,  X3i,  X4i,  X5i, and 
 X6i. We designate “partially observed heterogeneity” as 
the empirical condition in which researchers observe 
only  X1i,  X2i,  X3i, and  X4i. Under fully observed hetero-
geneity, treatment effects are homogeneous within each 
reference class spanned by combinations of the com-
plete set of patient factors. When  Kj = 0, decision-mak-
ers are not knowledgeable of the sources of treatment 
effect heterogeneity, and treatment choice varies only 
with  Ui. Under fully observed heterogeneity with  Kj > 0, 
decision-makers are at least partly knowledgeable of 
the sources of treatment effect heterogeneity, with the 
effect of this knowledge on treatment choice increasing 
with  Kj. Under partially observed heterogeneity, treat-
ment effects are heterogeneous within the reference 
classes defined by the observed set of patient factors. 

Partially observed heterogeneity with  Kj = 0 has been 
dubbed nonessential heterogeneity in the econometric 
literature [38, 39]. Under nonessential heterogeneity, 
treatment choice is not influenced by the unmeasured 
patient factors affecting treatment effectiveness within 
a reference class. Scenarios with partially observed het-
erogeneity and  Kj > 0 represent essential heterogeneity. 
In these scenarios, treatment effects are heterogeneous 
within each reference class, with the influence of treat-
ment effect heterogeneity on treatment choice increas-
ing with  Kj across simulations.

Estimation methods
Simulated population summaries
Treatment effect estimation using observational data 
requires what is called a common area of support or 
overlap between treated and untreated patients or that 
patients with the same measured patient factors must 
be observed to make different treatment choices [102, 
103]. It has been shown that including patients in study 
populations with insufficient overlap can lead to biased 
treatment effect estimates [104, 105]. The treatment 
choice-based simulations used here naturally reduce 
overlap the more that treatment choice is influenced 
by patient factors affecting treatment effectiveness. To 
monitor this influence across simulations, we used the 

Table 1 Summary of simulation model parameters

Parameter Description Value and Distribution

β1 Absolute increase in treatment effect on cure when  X1 = 1 .024

β2 Absolute increase in treatment effect on cure when  X2 = 1 .048

β3 Absolute increase in treatment effect on cure when  X3 = 1 .071

β4 Absolute increase in treatment effect on cure when  X4 = 1 .095

β5 Absolute increase in treatment effect on cure when  X5 = 1 .119

β6 Absolute increase in treatment effect on cure when  X6 = 1 .143

TEi True treatment effect on outcome for patient “i” as a function of  X1i,X2i,X3i,X4i,X5i,X6i Ranges from 0 to .5. Distribution in Fig. 2

Si Patient “i” severity level directly effecting cure but have no effect on treatment effectiveness 
and are unrelated to treatment choice

Distributed Uniform(-.5,.5)

α0 Untreated patient cure probability at mean severity level .1

αS Change in untreated patient cure probability given  Si -.1

V The value patients gain when cured $800

C The cost of treatment $200

Kj The proportion of knowledge of treatment effectiveness that is patient-specific in simulation “j”
(

0, .1, .2, .3, .4, .5, .6,

.7, .8, .9, 1

)

Ui Accumulated unmeasured factors for patient “i” which affect treatment valuation N(0,25)

ETEi Expected treatment effect for patient “i” given knowledge within simulation “j” Kj *  (TEi—.25) + .25

EVTi Expected value of treatment for patient “i” given  ETEi V•  ETEi + C +  Ui

Ti 1 if patient is  EVEi is greater than 1, 0 otherwise

P(Yi|Ti,Si) Probability patient “i” is cured given  TEi,  Ti, and  Si .1 +  TEi•Ti + (-.1)•Si

Yi 1 if patient is cured, 0 otherwise Bernoulli function of P(Yi|Ti,Si)

Wi Unmeasured patient factors causing variation in  Yi given  Ti and  Si
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SAS PROC LOGISTIC procedure to estimate the treat-
ment propensity score for each patient in each simulated 
population under both “fully observed heterogeneity” 
and “partially observed heterogeneity”. Each simulated 
patient was then designated into either the “overlapped” 
subset with a propensity score between 0.05 and 0.95 or 
into the nonoverlapped subset with propensity scores 
either less than 0.05 or greater than 0.95 [104, 105]. We 
then estimated the percentage of patients in each simu-
lated population who were treated, untreated, overlapped 
and treated, overlapped and untreated, nonoverlapped 
and treated, and nonoverlapped and untreated and then 
calculated the true average  TEi in each subset.

Next, for each simulated population, we estimated a 
linear probability model (LPM) of treatment choice  Ti on 
true  TEi using the SAS PROC REG procedure with the 
SCORR1 option. This procedure provides the percentage 
of treatment choice variation within the simulated pop-
ulation that is attributable to variation in the true treat-
ment effect to serve as a measure of the influence of the 
true treatment effect on treatment choice. Last, we esti-
mated the effect of  Ti and  Si on  Yi using a LPM in each 
simulated population. The parametric treatment effect 
literature states that the LPM estimator of the parameter 
on  Ti will yield a consistent estimate of the average abso-
lute treatment effect on the treated in each simulated 
population [43, 48–50, 54, 57, 60, 68, 69].

Casual forest algorithm
We then applied the CFA-GRF [24–26, 96, 97] using the 
“grf” package in R [106] to estimate treatment effects for 
each patient in each simulated population. CFA-GRF 
evolved from standard classification and regression tree 
(CART) and random forest ensemble methods [24–26, 
96, 97]. CART procedures iteratively partition “nodes” 
of observations within a population into subnodes or 
“branches” based on measured factors in a manner that 
maximizes the differences in an outcome across possible 
branches [97]. A tree is formed by viewing all of the sub-
sequent branches of the study population. The final sub-
node or leaf on the end of a branch can be thought of as 
an algorithm-generated ex post reference class for obser-
vations with factors matching the leaf. The random forest 
approach is an ensemble method that generates a “forest” 
of CART trees through resampling from the study pop-
ulation [96]. The estimated outcome for a single obser-
vation is the average outcome across the leaves in the 
trees in the forest containing that observation. CFA-GRF 
extends the random forest approach to the goal of esti-
mating the causal effect of a predictor of interest (e.g., a 
treatment) on an outcome. CFA-GRF partitions observa-
tions based on measured factors in a manner that maxi-
mizes the expected differences in the estimated treatment 

effect on an outcome [24–26]. For each simulated popula-
tion, CFA-GRF was run using 4000 trees, minimum leaf 
sizes of 50 and the “honest” approach suggested by the 
algorithm creators, in which trees were estimated using a 
randomly selected 25% of the simulated population [26]. 
We ran CFA-GRF specifying  X1i,  X2i,  X3i,  X4i,  X5i,  X6i, and 
 Si in the “fully observed heterogeneity” specification and 
 X1i,  X2i,  X3i,  X4i, and  Si in the “partially observed hetero-
geneity” specification. As a result, each patient in each 
simulated population had two treatment effect estimates. 
We assessed the properties of these estimates by evalu-
ating their ability to identify average treatment effect 
parameters for each simulated population and treatment 
choice-based subsets of the population. We calculated 
the average absolute and percentage difference between 
the true treatment effect for each simulated patient  (TEi) 
and estimated treatment effects for the full population 
and subsets of population based on treatment choice and 
propensity score “overlap” status.

Results
Summary information across simulated populations
Table 2 summarizes each simulated population. Column 
A in Table  2 shows the proportion of treatment effect 
expectations  (ETEi) shaped by the true effect for each 
patient  (TEi) in each simulation –  Kj from Eq.  (3). Col-
umn B shows the percentage of treatment choice vari-
ation in each simulation explained by  TEi. Columns C 
and D show the percentage of simulated patients who 
overlapped or had propensity scores greater than 0.05 
and less than 0.95 in the fully observed heterogeneity 
and partially observed heterogeneity scenarios, respec-
tively. Columns E through J show the true average  TEi 
for subsets of treated, untreated, overlapped and treated, 
overlapped and untreated, nonoverlapped and treated, 
and nonoverlapped and untreated patients, respectively. 
These columns also show in parentheses the percentage 
of patients within each subset.

Patient-specific treatment effects  (TEi) do not influ-
ence treatment choice in simulation 1, and as a result, the 
average true  TEi is close to the true population average 
treatment effect of 0.25 for both treated and untreated 
patients. Moving from simulations 2 through 11, though, 
the knowledge of  TEi increases in decision making, and 
 TEi explains a larger portion of the variation in treatment 
choice (column B). Under fully observed heterogeneity, 
all patients are fully overlapped in simulations 1 through 
6. The percentage of overlapping patients falls from 97.0% 
to 68.8% in simulations 7 through 11. Under the partially 
observed heterogeneity, all patients overlapped across all 
simulations. Columns E and F show how the greater influ-
ence of  TEi on treatment choice leads to sorting on the 
gain. The average  TEi for the treated patients in Column 
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E increased from 0.250 to 0.329 as K increased from 0 
to 1, while the average  TEi for the untreated patients in 
Column F fell from 0.251 to 0.172 across this range. Col-
umns G through J stratify treated and untreated patients 
by overlap status under fully observed heterogeneity. 
The average  TEi of nonoverlapped treated patients (col-
umn I) is greater than that of overlapped treated patients 
(column G). Likewise, the average  TEi of nonoverlapping 
untreated patients (column J) is less than that of overlap-
ping untreated patients (column H). Column K of Table 2 
shows the estimated treatment effect for the full popula-
tion in each simulation using a linear probability model 
(LPM). A comparison of these estimates with column E 
confirms that LPM yields estimates of the average treat-
ment effect on the treated (ATT) [57]. When treatment 
effects are heterogeneous, LPM estimates appropriately 
generalize to untreated patients only when  TEi does not 
influence treatment choice, as in simulation 1 [57].

CFA-GRF results under fully observed heterogeneity
Table  3 contains the average percentage differences 
between the true treatment effects and individual treat-
ment effect estimates from CFA-GRF for each of the 
eleven simulated populations under fully observed het-
erogeneity. Estimates are reported for the full population 
in each simulation and treatment-choice-based subsets. 
Table A.1  in the Additional file 1  shows these results in 
terms of average absolute differences between the true 
treatment effect values and estimated treatment effects. 
The percentage differences in Table  3 were calculated 
using the average true treatment effect for each popu-
lation subset found in Table  2 and the average absolute 
differences for each subset in Table A.1. For example, 
the average percentage difference between the estimated 
and true treatment effect values for the full population in 
simulation 1 under fully observed heterogeneity is 100*(-
0.0014)/0.25 = -0.56%. Column E of Table  3 shows that 
under fully observed heterogeneity on average, CFA-GRF 
produces treatment effect estimates that reflect each pop-
ulation across simulations. However, as treatment choice 
becomes more responsive to  TEi, CFA-GRF estimates 
increasingly understate the true treatment effect for 
treated patients and overstate the true treatment effect 
for untreated patients. Simulation 1 under fully observed 
heterogeneity fully satisfies ignorability, and CFA-GRF 
produces patient-specific treatment effect estimates that 
on average reflect the true patient treatment effects for 
the entire population and for both treated and untreated 
patient subsets. In contrast, in simulation 11, in which 
decision-makers have full knowledge of  TEi in treatment 
choice, the treatment effect estimates for treated patients 
are on average 14.74% lower than the truth, and the esti-
mated treatment effects for untreated patients are on 

average 30.99% higher than the truth. These percentage 
differences are not symmetric because untreated patients 
have a lower average true treatment effect. Columns G to 
J in simulations 6 through 11 demonstrate that these dif-
ferences exist for both overlapping and nonoverlapping 
patients but are more pronounced for nonoverlapping 
patients.

CFA-GRF results under partially observed heterogeneity
Table  4 contains the average percentage differences 
between the true treatment effect values and CFA-GRF 
treatment effect estimates for each simulated population 
under partially observed heterogeneity. Under partially 
observed heterogeneity all patients are overlapped so that 
the columns G through J found in Table 3 are unneces-
sary. Under ignorability in simulation 1, CFA-GRF again 
produces estimates that on average are close to true 
patient treatment effects for the entire population and for 
the treated and untreated patient subsets. In simulation 
1, CFA-GRF estimates under partially observed hetero-
geneity had larger standard errors than those under fully 
observed heterogeneity (see Table A.2). Treatment effects 
estimated from CFA-GRF for treated patients closely 
reflect their true values across all eleven simulations. In 
contrast, CFA-GRF estimates for untreated patients are 
higher than their true values across simulations 2 through 
11, with the differences increasing with the level of  TEi 
influence on treatment choice. For example, based on the 
true average treatment effect for untreated patients from 
Table 2 and the average absolute differences for each pop-
ulation in Table A.1, on average, CFA-GRF estimates for 
untreated patients are 2.4% greater than their true values 
in simulation 2 – 100*(0.006)/(0.246)) and 76.3% greater 
than their true values in simulation 11 – 100*(0.1312)/
(0.172). As a result, when  TEi influences treatment choice 
under partially observed heterogeneity, CFA-GRF esti-
mated treatment effects across the whole population are 
on average greater than their true values.

Discussion
Causal forest algorithms (CFAs) have been proposed to 
estimate patient-specific treatment effect evidence using 
observational data [23–33, 107]. To apply CFAs, obser-
vational databases must contain patients with similar 
combinations of measured factors who were observed to 
make different treatment choices. The positive properties 
of CFAs for estimating patient-specific treatment effects 
have been established using simulation models under 
the assumption of ignorability [26–29, 34–36]. Under 
ignorability, only the treatment variation from unob-
served patient factors not associated with treatment effect 
heterogeneity is available to estimate patient-specific 
treatment effects. Therefore, it is unknown whether the 
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positive properties of CFAs extend to real-world clinical 
applications in which patient factors affecting treatment 
effectiveness also influence treatment choice. In many 
real-world clinical scenarios it is plausible and likely that 
observed treatment choices reflect unmeasured patient 
factors related to expected treatment effectiveness for 
each patient – a condition defined in econometric lit-
erature as essential heterogeneity [38, 39, 43, 48–50, 53]. 
This paper used simulations that varied only by the rela-
tionship between treatment effectiveness and treatment 
choice to assess the impact of essential heterogeneity on 
the ability of CFAs to estimate patient-specific treatment 
effects. The causal forest algorithm within the generalized 
random forests application CFA-GRF has been singled 
out as most appropriate CFA estimate patient-specific 
treatment effects and was used here [98]. To tease out the 
impacts of essential heterogeneity, CFA-GRF estimates 
were evaluated in settings in which all patient factors 
associated with treatment effect heterogeneity were fully 
observed by the researcher and in settings in which the 
patient factors associated with treatment effect heteroge-
neity were not fully observed by the researcher.

We replicated the positive properties of CFA-GRF 
in simulation scenarios under ignorability. CFA-GRF 
yielded average population-wide estimates and average 
estimates by patient subsets based on treatment choice 
under ignorability that were closely aligned with their 

true values whether heterogeneity was fully or partially 
observed within the algorithm. As a result, if research-
ers can make a strong conceptual case a priori that treat-
ment effectiveness is unrelated to treatment choice, 
they can be confident that CFA-GRF can yield appro-
priate treatment effect estimates across a population 
of patients. In simulation scenarios in which decision-
makers use patient factors associated with treatment 
effectiveness in making treatment decisions [38, 39, 43, 
48–50, 53], the ability of CFA-GRF to identify patient-
specific treatment effects varied with the influence that 
treatment effectiveness had on treatment choice and 
whether the full range of patient factors associated with 
treatment effect heterogeneity were observed and speci-
fied in the algorithm. When all patient factors affecting 
treatment effect heterogeneity were fully specified, CFA-
GRF produced treatment effect estimates that reflected 
true treatment effects across each population subset 
when the influence of treatment effectiveness on treat-
ment choice was low. As this influence increased, how-
ever, treatment effect estimates showed increasingly 
negative bias for treated patients and positive bias for 
untreated patients. A substantial portion of this bias is 
likely attributable to nonoverlapping patients becoming 
a higher percentage of patients as the influence of treat-
ment effectiveness on treatment choice increases. Under 
partially observed heterogeneity, all patients overlapped 

Table 4 Average Percentage Differences Between the Estimated Treatment Effects and True Treatment Effects from the Causal Forest 
Algorithm within the Generalized Random Forests Application (CFA-GRF) Under Partially Observed Heterogeneity Across Simulated 
Populations Which Differ by the Extent That Treatment Effect Influences Treatment Choice

a The proportion of patient-specific  TEi knowledge used by decision makers in simulation “j” in developing the expected treatment effect for patient “i” that is distinct 
from the population average treatment effect based on the equation  ETEi =  Kj *  (TEi(X1i,X2i,X3i,X4i,X5i,X6i)—.25) + .25
b The percentage of treatment choice variation explained by  TEi using a linear probability model of treatment choice  Ti on true  TEi using SAS PROC REG procedure with 
the SCORR1 option
c Percentage of patients in sample with treatment propensity score greater than .05 and less than .95 when only  X1i,  X2i,  X3i,  X4i factors are specified in the propensity 
score equation

Simulation A B C D E F
Proportion of true  (TEi) influencing 
 (ETEi) at Treatment Choice –  (Kj)

a
% of Treatment Choice 
Variation Explained by 
 (TEi)

b

% of Patients 
 Overlappedc

Average Percentage Difference Between 
True and Estimated Treatment Effects

Full Population Treated Untreated

1 0 .0006 100 -1.16% -1.08% -1.27%

2 .10 .18 100 1.12% -0.20% 2.44%

3 .20 1.4 100 4.12% 0.57% 8.02%

4 .30 5.3 100 6.44% -0.36% 14.87%

5 .40 11.9 100 12.12% 0.72% 27.69%

6 .50 20.1 100 15.08% 0.27% 37.40%

7 .60 27.8 100 18.68% 0.58% 48.22%

8 .70 34.5 100 18.60% -1.51% 53.42%

9 .80 39.8 100 24.36% 1.27% 66.03%

10 .90 44.3 100 22.00% -1.75% 66.51%

11 1.00 48.0 100 25.44% -1.03% 76.28%
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in all simulations. CFA-GRF produced estimates that 
closely reflected the true treatment effect values for 
treated patients across all levels of influence of treatment 
effectiveness on treatment choice. In contrast, CFA-
GRF estimates for untreated patients were biased high, 
with the extent of this bias increasing with the level of 
influence that treatment effectiveness had on treatment 
choice.

As a result, CFA-GRF estimates of patient-specific treat-
ment effects using observational data must be assessed 
through the prism of the assumed reasons why patients 
with similar measured factors in a real-world setting were 
observed making different treatment choices. This requires 
researchers to explicitly develop conceptual frameworks of 
treatment choice to support these assumptions a priori to 
ensure proper interpretation of treatment effect estimates 
ex post. The call for treatment choice conceptual frame-
works to guide treatment effectiveness research using 
observational data has long been stated in economics [44, 
48, 49, 108–110], and the importance of these frameworks 
is now being more widely appreciated [21, 111, 112]. A con-
ceptual framework of treatment choice should describe the 
factors thought to influence treatment choice, the relation-
ship of these factors to treatment effectiveness and whether 
these factors are measured within the available data. Given 
the study findings, it would be important for researchers to 
qualify patient-specific estimates from CFA-GRF in clinical 
scenarios in which essential heterogeneity likely exists. In 
these scenarios researchers should state that patient-specific 
estimates from CFA-GRF are likely biased high for the aver-
age patient with a given combination measured patient fac-
tors and are best aligned to those patients a provider is more 
likely to treat.

This study is limited by its use of only using one of 
the several CFAs available to produce patient-specific 
evidence using observational data. While the CFA-
GRF was singled out as most appropriate for estimating 
patient-specific treatment effects [98], it is possible that 
other CFAs are available that can incorporate and cor-
rect for the conditions associated with treatment choice 
when making treatment effect estimates. To this end, 
the simulated datasets produced here are available from 
the authors for use by other CFA developers to assess 
the impact on treatment effect estimates of the influ-
ence of treatment effect heterogeneity on treatment 
choice. In addition, the simulation approach in this paper 
is reported fully, is straightforward to reproduce, and is 
easy to modify, so researchers can assess the robustness 
of our results to parameter changes.

Conclusion
The acknowledged breadth of treatment effect heterogene-
ity across patients heightens the need to find empirical 
approaches to find patient-specific treatment effect evi-
dence [4–10]. Causal forest algorithms (CFAs) have been 
proposed to analyze the treatment variation found within 
large observational databases to develop patient-specific 
evidence [23–33]. The simulation results in this paper show 
that the patient-specific estimates produced by a CFA are 
sensitive to the reasons why patients with the same set of 
measured factors were observed to make different treat-
ment choices. It is likely in many real-world clinical sce-
narios that decision-makers are cognizant of how patient 
factors affect treatment effectiveness and use this informa-
tion in making treatment decisions [38, 39, 43, 48–50, 53]. 
And many real-world decision makers may know more 
about the list of patient factors affecting treatment effective-
ness than the researchers who collect measures for research 
[22, 113, 114]. As a result, it is foundational that research-
ers using CFAs to estimate patient-specific evidence using 
observational data build conceptual frameworks of treat-
ment choice prior to estimation to guide estimate interpre-
tation ex post.
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