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Abstract 

Background Advancements in linking publicly available census records with vital and administrative records have 
enabled novel investigations in epidemiology and social history. However, in the absence of unique identifiers, 
the linkage of the records may be uncertain or only be successful for a subset of the census cohort, resulting in miss‑
ing data. For survival analysis, differential ascertainment of event times can impact inference on risk associations 
and median survival.

Methods We modify some existing approaches that are commonly used to handle missing survival times to accom‑
modate this imperfect linkage situation including complete case analysis, censoring, weighting, and several multiple 
imputation methods. We then conduct simulation studies to compare the performance of the proposed approaches 
in estimating the associations of a risk factor or exposure in terms of hazard ratio (HR) and median survival times in the 
presence of missing survival times. The effects of different missing data mechanisms and exposure‑survival associa‑
tions on their performance are also explored. The approaches are applied to a historic cohort of residents in Ambler, 
PA, established using the 1930 US census, from which only 2,440 out of 4,514 individuals (54%) had death records 
retrievable from publicly available data sources and death certificates. Using this cohort, we examine the effects 
of occupational and paraoccupational asbestos exposure on survival and disparities in mortality by race and gender.

Results We show that imputation based on conditional survival results in less bias and greater efficiency relative 
to a complete case analysis when estimating log‑hazard ratios and median survival times. When the approaches are 
applied to the Ambler cohort, we find a significant association between occupational exposure and mortality, particu‑
larly among black individuals and males, but not between paraoccupational exposure and mortality.

Discussion This investigation illustrates the strengths and weaknesses of different imputation methods for missing 
survival times due to imperfect linkage of the administrative or registry data. The performance of the methods may 
depend on the missingness process as well as the parameter being estimated and models of interest, and such fac‑
tors should be considered when choosing the methods to address the missing event times.

Keywords Census data, Censoring, Missing data, Record linkage, Survival analysis

Introduction
Publicly available individual U.S. census records spanning 
150  years (1790–1940), which are re-identified 72  years 
after the respective census dates, offer a rich resource for 
studying demographic, social, and economic characteris-
tics of the U.S. population at various points in history, as 
well as changes over time. Census records are particularly 
useful for investigating sociological and epidemiological 
questions when matched with vital records such as birth, 
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death, and marriage certificates from state-run registries 
or other data sources [1]. For example, Beach et  al. [2] 
studied the effect of childhood typhoid exposure in the 
late 1800s on earnings and educational attainment later 
in life, by linking city-year level typhoid fatality rates to 
children in the 1900 census, which are then linked with 
adult records from the 1940 census. In another study, 
Ferrie et al. [3] investigated the impact of lead exposure 
on test scores by using the 1930 census to estimate lead 
exposure for children through water supplies and linking 
it with test scores for World War II enlistees.

However, in the absence of unique identifiers across 
data sources, the linkage between census records and 
vital records is not always successful, resulting in miss-
ing or misclassified data for a substantial portion of the 
census population. Unlike the decennial census which is 
conducted on a national level, vital registries are decen-
tralized and managed on a state-by-state basis. They were 
developed much later and had uneven and sparse cover-
age compared to the national census, especially before 
1933 [4, 5]. Federal agencies such as the National Center 
for Health Statistics (NCHS) were later established to 
collect information from the state registries in a central-
ized database, but coverage may not extend to the earli-
est years of record collection. For example, the earliest 
records in the National Death Index (NDI) date to 1979, 
whereas vital records were kept as early as 1881 in states 
like New York and Pennsylvania. Furthermore, the NDI 
uses a computerized probabilistic scoring algorithm 
to match vital records based on variables such as social 
security number, month, day, and year of birth, first and 
last name, and state of residence, among others. The 
absence or misclassification of any of these variables (for 
example due to changes in name or place of residence) 
reduces the probability of a successful match. Census 
records contain limited information on an individual for 
matching, as not all of the variables needed for successful 
matching are collected, leading to many missing or mis-
matched records.

This poses particular challenges for time-to-event 
analyses using historical census data linked with admin-
istrative death records. First, the event time may not be 
observed for some subjects. As a retrospective analysis, 
it is unknown whether the unobserved event times are 
due to a failed linkage with a vital record, or the individ-
ual being alive at the time of analysis. Second, the linkage 
process itself is prone to error and may result in multiple 
matches and false matches, particularly if the linkage var-
iables available are insufficient for uniquely identifying an 
individual. Many methods exist for handling the former 
issue of missing data in survival analysis, and a handful 
are equipped for addressing the second challenge, but 

to our knowledge methods have not been developed for 
addressing both simultaneously.

Methods for handling missing survival times assume a 
censoring framework for the missing events. With right-
censoring, the individual is lost to follow up before the 
event has occurred. The presence of censoring in time-
to-event data is often dealt with by including censored 
individuals in the likelihood estimation procedure up 
until the time at which they are lost to follow-up. Such 
an approach is used in nonparametric Kaplan–Meier 
estimators, semi-parametric Cox proportional hazards 
regression, and parametric survival models such as the 
accelerated failure-time (AFT) model. However, in our 
context, the census date is the only point of observed 
data collection for each individual and one that is arbi-
trarily assigned relative to each person’s timeline. Thus, 
right-censoring on this date may offer little additional 
information compared to limiting analysis to only com-
pletely observed records.

Missing event times using historical data may also be 
treated as interval-censored, where the event is known 
to have occurred between two observed time points for 
an individual. Methods for this setting include cruder 
approaches such as imputing the event time at the begin-
ning, midpoint or end of the interval [6]. However, this 
can lead to biased inference [7], particularly if the interval 
is large. Multiple imputation methods which make use of 
the information contained in the observed data are also 
used for interval-censoring [8–10]. However, these meth-
ods are not readily applicable to our setting of survival 
analysis where the lifetime of an individual is of inter-
est, as determined using census data linked with death 
records. While we may be willing to assume that all indi-
viduals have died at the time of the analysis (for exam-
ple, if the census occurred 100 years prior to the date of 
analysis), this is a large time interval between the time of 
the census and analysis time for using interval censoring 
methods. Furthermore, the aforementioned methods for 
interval censoring require that the upper bound for the 
interval is fixed and known for each individual. In our 
setting, the upper interval must be determined ad hoc 
(for example, a fixed number of years post-census, or 
the date of analysis). Finally, for some of the proposed 
methods, the imputation is iterative when fitting Cox or 
failure-time models, and do not readily extend to studies 
where there is interest in estimating the median survival 
time. On the other hand, for older individuals, simply 
right-censoring at the date of census is a very conserva-
tive approach, as enough time may have elapsed that the 
event has certainly occurred before the date of analy-
sis. Novel approaches are needed to handle this unique 
framework using historic census records.
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Methods for analyzing linked data should also account 
for uncertainty in the matching process, namely the 
potential for false or equivocal matches among the 
observed records. Failure to do so can lead to an under-
estimation of the variance and/or bias in model estimates 
[11, 12]. Note that we limit the scope of this work to ran-
dom errors in observed matches, meaning the probability 
of a true linkage is independent of the linkage variables. 
Thus, we assume that failure to account for false matches 
impacts only the uncertainty around our estimates.

In this report, we seek to compare methods for han-
dling missing event times in survival analysis using linked 
historical census data. We explore the performance of 
right-censoring (on the census date), inverse-probability 
weighting of the complete data, and two multiple impu-
tation methods for estimating both median survival and 
the association parameters in proportional hazards and 
failure-time models. We are particularly interested in the 
repurposing of restricted mean survival and conditional 
survival for multiple imputation of missing event times. 
To account for the uncertainty in the merging process, 
we incorporate probabilistic scores provided by the vital 
record agency in our analysis. We apply the methods to 
study the effect of occupational and non-occupational 
asbestos exposure on life expectancy in a historical 
cohort from Ambler, PA, based on the 1930 census.

Ambler, PA was home to the nation’s largest asbestos 
manufacturing plant from the early 1900s to the mid-
1980s. Many residents in Ambler experienced daily expo-
sure to large amounts of asbestos in the factory as well as 
in their neighborhood and inside their homes. Although 
the asbestos factory has been closed since 1988, disposal 
of asbestos-containing waste continued through the 
majority of the twentieth century, forming several large 
mounds containing over 1.5 million cubic yards of asbes-
tos waste spread over 25 acres [13]. This led to possible 
continuous community-level asbestos exposure through 
wind and water distribution channels for many years 
after. Several studies [14–16] have shown a clear link 
between exposure to asbestos and debilitating, often life-
threatening, diseases such as pulmonary fibrosis, lung 
cancer, and mesothelioma. While the effects of exposure 
on mortality due to asbestos-related diseases (ARDs) 
have largely been studied in occupational settings, less is 
known about mortality among non-occupationally and 
environmentally exposed individuals. In this historical 
cohort study, census data were linked with death records 
obtained through matching with Ancestry.com and the 
National Death Index (NDI), however, there was substan-
tial ascertainment bias in identifying death records thus 
motivating this work [17].

In the next section, we describe the time-to-event 
setting using historical census data with missing event 

times, followed by the proposed methods to impute the 
missing data. Then we perform a simulation study of the 
methods described, comparing them to a gold standard 
analysis where the outcomes are fully observed, as well 
as a complete case only data analysis. We then apply the 
methods to characterize asbestos-associated mortality in 
a historical cohort from Ambler, PA, and conclude with a 
discussion of the results.

Methods
Setting
We consider data where the outcome of interest is a 
time-to-event variable, Ti . Let Xi represent a binary expo-
sure variable of interest, and Zi represent a covariate, 
where i = 1, . . . , n indexes the n individuals in the census 
cohort. In keeping with the format of historical census 
data, the time variable t ∈ (0,Ti) is defined on the scale 
of years since birth, and Ti represents the lifetime of an 
individual. For each individual, one observation time, Wi , 
occurs corresponding with the date of the census, such 
that Wi < Ti for all i . We also denote the time of analysis 
(end of study) as Vi , which (like Ti) is defined using time 
since birth. Although the census and analysis dates are 
fixed calendar dates, such that Vi −Wi = c (a constant) 
for everyone, because our timescale is age starting at 
birth, Wi and Vi are specific to each individual. The true 
event indicator is denoted δi = I(Ti < Vi).

Following the framework of Goldstein et  al. [11], 
we have a primary data file, known as the file of inter-
est (FOI), that contains linkage variables, exposure Xi 
and the covariate of interest Zi . We also have a second-
ary linkage data file (LDF), which contains linkage vari-
ables and an event time (which may or may not be the 
true event time) for those who are matched. Ideally, if 
linkage with all death records were successful, we would 
observe all event times Ti < Vi in the LDF, and right-
censor those who were not matched with records in the 
LDF at time Vi . However, in our setting, there is imper-
fect linkage. We, therefore, introduce a matching indica-
tor, Ri ∈ {0, 1}, where Ri = 1 if record i from the FOI is 
matched to a record in the LDF, and Ri = 0 if there is no 
match. To the investigator, it is unknown whether Ri = 0 
is due to failed linkage with a death record (i.e., if in fact 
δi = 1 but no match was found) or because the event has 
not yet occurred ( δi = 0). This is illustrated more clearly 
in Fig. 1 below.

Furthermore, there is uncertainty in the linkage pro-
cess, as the wrong record in the LDF file may be selected 
as a match for the FOI record. We denote the event time 
in the matched LDF record as T ∗

i  , which may or may not 
be equal to Ti . We therefore distinguish between une-
quivocal matches, in which there is a high probability 
that T ∗

i = Ti , and equivocal matches, where the equality 
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is uncertain. Often, matched records from an LDF are 
accompanied by a probabilistic score, representing the 
probability that a record matched with i is a true match, 
denoted as pi,match = Pr

(

T ∗
i ∈ (Ti − ǫ,Ti + ǫ)

) . This probability 
ranges between 0 and 1. Thus, the data vector we observe 
for each individual is either {Xi ,Zi ,Wi ,T

∗
i , δi = 1,Ri = 1, pi,match} 

or Xi ,Zi ,Wi ,Ri = 0, pi,match = 0 .
We make two key assumptions within this framework. 

First, we assume that no one alive at the time of analy-
sis (that is, Ti ≥ Vi) is matched with a record in the LDF. 
Second, we assume that only one match is observed for 
any individual, corresponding to the record with the 
highest probabilistic score.

Models and parameters of interest
Our primary interest is the estimation of the following 
quantities: First, the median survival time, defined as 
the value of t for which S (t) ≤ 0.5; Under perfect record 
linkage, it is estimated as the earliest time at which the 
Kaplan–Meier curve, a nonparametric estimator of 
survival distribution over time, falls at or below 50% 
survival. We seek to estimate median survival within 
exposure-group Xi = {0, 1} , denoted by MX , and covar-
iate-specific median survival times within subgroups 
defined by Zi = 0 and Zi = 1 , denoted by MZX . Thus, 
we have Mx = min(t) : SKM(t|Xi = x) ≤ 0.5 , and Mxz =

min(t) : SKM(t|Xi = x,Zi = z) ≤ 0.5 . Secondly, we are 
interested in estimating the parameters of association 
between Xi and Ti when adjusting for Zi , including: (1) 
the log-hazard ratio for exposure Xi , represented by β1 in 
the Cox proportional hazards (Cox PH) model,

�(t) = �0(t)exp(β1Xi + β2Zi),

where no parametric form is assumed for the baseline 
hazard, �0(t) , and (2) the log event-time ratio for Xi , 
represented by α1 in the accelerated failure-time (AFT) 
model,

where ǫ follows an extreme value distribution (i.e. 
f (ǫ) = exp(ǫ − exp(ǫ)) , and it is assumed that.

In Eqs.  1 and 2 above, p is a shape parameter, and 
γ = exp(−(α0 + α1Xi + α2Zi))

p is the scale parameter. α1 
can be interpreted as the log event-time ratio for being in 
the exposed group ( Xi = 1) compared to the unexposed 
group ( Xi = 0 ). Note that under the Weibull distribution, 
α1 in the AFT model has a direct relationship to β1 , the 
log-hazard ratio from the proportional hazards model:

Missing data methods
We compare the performance of various methods 
for estimating M0,M1,M00,M01,M10,M11 , β1 and α1 
in the presence of missing event times due to imper-
fect linkage, assuming missing-at-random (MAR) 
and missing-completely-at-random (MCAR) mecha-
nisms, where P(Ri = 0|Xi,Zi,Ti) = P(Ri = 0|Xi,Zi) or 
(Ri = 0|Xi,Zi,Ti) = P(Ri = 0) respectively. We also seek 
to account for the uncertainty associated with equivo-
cal matches. Note, we do not address the case where 

(1)log(t) = α0 + α1Xi + α2Zi +
1

p
ǫ,

(2)Tij|Xi,Zi ∼ Weibull(γ , p).

(3)β1 = −α1 ∗ p.

Fig. 1 Survival framework for analysis of lifetime data using census information
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missingness depends on unobserved data, which may 
include the missing event times, as this would require 
additional assumptions on the missing-not-at-random 
(MNAR) process, which is outside of the scope of this 
paper. The methods we consider in the current report 
are divided into non-imputation and imputation-based 
methods. The non-imputation approaches include 
weighted and unweighted complete-case analysis. For 
imputation methods, we investigate multiple imputa-
tions based on the restricted-mean (MIRM) function of 
the survival time and the conditional survival function 
(MICS). We describe each of the approaches below.

Complete‑case and IPW
A complete-case approach involves restricting the analy-
sis to individuals for whom Ti is observed ( Ri = 0 ) and 
the match is unequivocal (i.e., pi,match ≥ P ∈ [0, 1] , where 
P is a chosen threshold for the certainty of the match). In 
the MCAR setting, we expect a complete-case analysis to 
yield unbiased, but inefficient estimates for ̂β1 , while in the 
MAR case, a complete-case approach may result in bias.

Inverse probability weighting (IPW)
We can extend the complete case approach to include 
individuals who have both unequivocal and equivocal 
matches (i.e. pi,match < P ∈ [0, 1] ). A weighted analysis is 
then performed, where the contribution of each observa-
tion to the estimator is weighted by the inverse of the esti-
mated propensity for missingness, Pr(Ri = 0|Xi,Zi)

−1 , as 
well as the probabilistic score, pi,match . The weights take 
the following form:

The above weights account for both the MAR and 
MCAR process that determine if a match is observed, 
and the uncertainty associated with a potential mis-
match. Little and Rubin [18] showed that IPW would 
lead to unbiased estimates of ̂β1 in the case of MAR. For 
this and the complete case approach, we do not consider 
censoring, as the data points are limited to those with 
observed matches/event times ( Ri = 1).

Censoring atWi

One way to make use of the full dataset, including true 
matches, equivocal matches, and non-matches, is to 
right-censor all unmatched individuals (that is, those 
with unobserved death times, or Ri = 0 ) at their last 
observed follow-up during the study, which is, in this 
case, the census date, Wi . The validity of this approach 
requires that censoring be unrelated to the failure time, Ti 

(4)
1

P(Ri = 0|Xi,Zi)
∗ pi,match.

(i.e. non-informative censoring) [19]. Since Wi occurs on 
a fixed date, irrespective of Ti or any characteristics of the 
individuals, this assumption is reasonable.

Multiple imputation methods
Imputation is another means of including all data points 
in the analysis, using imputed survival times in place of 
the missing survival times. In a multiple-imputation pro-
cedure, multiple (we denote this number as B ) datasets 
are created by imputing the missing event times B times, 
according to an assumed model for the missing values. 
With the imputed data, we obtain B estimates of median 
survival and log-HR, which are combined using Rubin’s 
rules [20].

In our framework of imperfect linkage, we impute 
event times both for individuals with no match, as well 
as those with equivocal matches (i.e., those with a proba-
bilistic score, pi,match < P ∈ [0, 1] ). Once the event times 
have been imputed, model estimation proceeds using 
both the observed and imputed data. This means that 
individuals who were matched equivocally ( pi,match ≤ P) 
appear twice in the analytic data set: once using the 
matched event time, and another using the imputed 
event time. The matched event time will receive a weight 
of pi,match in model estimation, while the imputed event 
time receives a weight of (1− pi,match) . Individuals who 
were not matched (missing an event time) will contrib-
ute only their imputed event time to the likelihood with 
a weight of 1.

We investigate two multiple-imputation models for the 
missing and equivocal survival times: multiple imputa-
tion of the restricted mean (MIRM) and multiple imputa-
tion of conditional survival (MICS).

Recall, the restricted mean survival time (RMST) is the 
expected or mean value of min (Ti, τ ), where τ is a pre-
specified time limit of interest. RMST is represented as 
the area under the survival curve up to time τ ,

Equation 5 can be thought of as the average life expec-
tancy over a fixed time interval, (0, τ ) , as opposed to a 
more general interpretation of mean survival that does 
not account for temporal differences in event-time distri-
bution [21]. Imputing mean survival restricted to τ is of 
interest in our study context, as we would not expect per-
sons to live beyond a certain age, for example, 100 years. 
Furthermore, Liu, Murray, and Tsodikov [22] introduced 
an algorithm for imputing RMST as a function of covari-
ates. The algorithm first fits a modified AFT model to the 
complete observations (those with Ri = 0 ) that accounts 
for the restricted mean structure, as follows

(5)E[min(Ti, τ )] =

∫ τ

0
S(t)dt
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With the imputation proceeds on the scale of 
log(min(Ti, τ )) . For each of the imputed datasets, 
{

log(min(Ti, τ ))
}nk
i=1

 are generated from a multivariate 
normal distribution with mean equal to the fitted val-
ues from RMST model and the corresponding covari-
ance matrix.

For MICS approach, we recall that conditional sur-
vival is defined as the probability of surviving a further 
u years, having survived up to time t . This is different 
from overall survival, which refers to the probability of 
surviving to t years from time 0. Conditional survival, 
denoted as SC(u+ t|t) , is evaluated as

In the context of missing data, this distribution is 
useful for imputing event times conditional on surviv-
ing to time t [23]. We seek to impute using its related 
cumulative distribution function (CDF),

Since all study participants were observed at the 
date of the census, we could impute the missing death 
times conditional on having survived to time Wi . 
We estimate conditional survival probabilities using 
the observed data under a Weibull AFT working 
model. Specifically, S(Ti|Xi,Zi) = exp(−γiT

p
i ) , where 

γi = exp
(

−
(

α̂0 + α̂1Xi + α̂2Zi

))p . Then

With this distribution, we can impute any percentile 
of the CDF using probability integral transformation. 
We randomly generate percentiles qi as Uniform(0,1) 

(6)E[log(min(Ti, τ ))] = α0 + α1Xi + α2Zi

SC(u+ t|t) =
S(u+ t)

S(t)

(7)Fc(u+ t|t) = 1− Sc(u+ t|t)

(8)F(ui +Wi|Wi,Xi,Zi) = 1−̂SC(ui +Wi|Wi,Xi,Zi) = 1−
̂S(ui +Wi|Xi,Zi)

̂S(Wi|Xi,Zi)
= 1−

exp(−γi (ui +Wi)
p)

exp(−γiW
p
i )

and impute the missing death time, calculated as 
ui +Wi , as follows:

The imputed event times can all be treated as observed, 
or we can apply the right-censoring at the time Vi for 
those with imputed time Timp

i > Vi , to mimic a gold-
standard analysis where all Ti ≤ Vi are observed and 
Ti > Vi are censored. We use the latter approach in our 
simulations and data application.

The approaches described above are summarized in 
Table 1 below.

Simulation study
Design
We conduct a simulation study to evaluate the perfor-
mance of the 5 missing data methods described (CC, IPW, 
CENS, MIRM, MICS) on the estimation of covariate-spe-
cific median survival (i.e. median survival within subgroups 
defined by Xi and Zi , denoted as ( M00,M01,M10,M11) ), 
covariate-averaged median survival (median survival for 
Xi = 0 and Xi = 1 , averaged over the distribution of the 
covariate Zi , denoted as (M0,M1) ) and the effect param-
eters from the Cox PH ( β1 ) and Weibull AFT ( α1) models. 
Data are simulated to reflect the historical census setting 

where everyone in the study population is observed at the 
date of the census, but event times are MCAR or MAR for 
a subset of individuals. The analysis date is set to occur 50 

(9)

F(ui +Wi|Wi,Xi,Zi) = qi = 1−
exp(−γi (ui+Wi)

p)

exp(−γiW
p
i )

⇒ log(1− qi) = γiW
p
i − γi(ui +Wi)

p

⇒ (ui +Wi)
p = W

p
i −

log(1−qi)
γi

⇒ ui +Wi =

[

W
p
i −

log(1−qi)
γi

]1/p
= Timp

Table 1 Weighting schemes for the proposed missing data methods

Weights for unequivocal matches Weights for equivocal matches Weights for 
nonmatches

Complete case (CC)
1 0 0

Inverse probability weighting of all matches (IPW)
1

Pr(Ri=1|Xi ,Zi )
1

Pr(Ri=1|Xi ,Zi )
∗ pi,match 0

Censoring nonmatches at Wi (CENS)
1 pi,match 1 (for Wi)

Multiple imputation for equivocal matches and nonmatches (MIRM and MICS)
1 pi,match(for Ti)

1− pi,match (for T imp
i )

1 (for T imp
i )
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years after the census date, thus for the simulation we have 
Vi −Wi = 50 years. The performance of the missing data 
methods is evaluated in comparison to a gold-standard 
analysis, in which we observe all death times that occur 
before Vi , and those still alive at Vi are right-censored at Vi . 
We denote this gold-standard analysis as ‘Fully Observed’.

We consider five settings, where survival and/or miss-
ingness may depend on the exposure of interest, Xi , or 
covariate Zi , or both Xi and Zi . If missingness depends 
on Zi only, while the outcome model includes Xi only, 
then missingness is MCAR. However, if Zi is also pre-
dictive of survival, or both the survival and missingness 
depend on Xi , then missingness is MAR. Specifically, 
Ti ∼ Weibull(γ = exp(−(α0 + α1Xi + α2Zi))

p, p = 6 ), where 
Xi ∼ Binomial(0.5) and Zi ∼ Binomial(0.5) . The missingness 
indicator is generated as Ri ∼ Binomial(exp(δ0 + δ1Xi + δ2Zi)). 
Values for α are chosen to reflect possible lifetime dis-
tributions in an association study comparing a healthy 
population to an exposed population. In settings where 
survival time and/or missingness depend on only one 
variable, the parameter corresponding to the excluded 
variable is set to 0. This is described in more detail in 
Table 2 below. Age at the time of the census is generated 
as Wi ∼ Uniform(0,Ti).

We further introduce some random error to the match-
ing process in the form of measurement error, using a ran-
domly generated probabilistic score. A probabilistic score, 
pi,match is produced for all observed matches and follows 
a Beta (8,2) distribution. For those with pi,match > 0.8 (i.e. 
true or unequivocal matches), we set the matched event 
time to be equal to their true event time (i.e. T ∗

i = Ti) . 
For those with pi,match < 0.8 we introduce error to the 
matched event time as:

where φi ∼ N
(

0,
(

1.81/pi,match
)2
)

 . Thus, the smaller pi,match 
is, the greater the measurement error. The fifth simulation 

(10)T ∗ = Ti + φi,

setting modifies the pi,match distribution to be dependent 
onZi , such that the likelihood of an unequivocal match is 
lower whenZi = 1 . This is to reflect real world settings 
where the quality and accuracy of linkage variables may 
vary based on individual characteristics (for example, name 
changes for married women, or a lack of available data for 
foreign-born individuals).

In all settings, we include both Xi and Zi in the model for 
the censoring weights in IPW. We assume the correct spec-
ification of the final survival models by including the same 
variables in imputation and analysis as we use in data gen-
eration. For MIRM, values for τ (80 and 120) were selected 
that were (1) sufficiently different so as to show sensitivity 
of performance to τ and (2) were near to the median and 
upper bound, respectively, of the empirical distribution of 
survival times generated (reported in Table 2 above).

Cox PH and AFT models are fit using the 
survival::coxph() and survival::survreg() functions in R 
respectively.

In each of the four settings, we perform K=500 simula-
tions. For the kth iteration, a dataset of size n = 1000 is 
generated, and estimates for the parameters of interest, 
denoted as ̂β

(k)
1 , α̂

(k)
1 , ̂M

(k)
0  , ̂M

(k)
1 , ̂M

(k)
00 ,

̂M
(k)
01 ,

̂M
(k)
10 ,

̂M
(k)
11  

and ̂M
(k)
1 − ̂M

(k)
0  , are obtained using each of the fol-

lowing: the fully observed data (gold-standard), com-
plete cases only (without weighting), IPW, CENS, 
MIRM, and MICS. Empirical mean bias is calculated for 
̂β1, α̂1, ̂M0, ̂M1, ̂M00, ̂M01, ̂M10, ̂M11 and  ̂M1 − ̂M0 overall 
K  iterations with respect to the gold-standard estimates, 
as well as empirical standard errors for ̂β1 and α̂1 . Model-
based standard errors for ̂β(k)

1  and α̂(k)
1  are obtained from 

the outputted covariance matrices of the coxph and sur-
vreg functions in R, respectively.

Association between exposure and outcome
Simulation results for the exposure-outcome associa-
tion parameters (the log hazard ratio and log event time 

Table 2 Simulation study design

Setting 1 2 3 4 5

Missingness MCAR MAR MAR MAR MAR

Data generation Ti ∼ Xi ,
Ri ∼ Zi

Ti ∼ Xi,
Ri ∼ Xi

Ti ∼ Xi + Zi,
Ri ∼ Zi

Ti ∼ Xi + Zi,
Ri ∼ Xi + Zi

Ti ∼ Xi + Zi,
Ri ∼ Xi + Zi

α0,α1,α2 4.4, ‑0.2, 0 4.4, ‑0.2, 0 4.5,−0.2,−0.2 4.5,−0.2,−0.2 4.5,−0.2,−0.2

δ0, δ1, δ2 ‑1, 0, 2 ‑1, 2, 0 ‑1, 0, 2 ‑1, 1, 1 ‑1, 1, 1

β1(Cox PH) 1.2 1.2 1.2 1.2 1.2

pi,match Beta (8,2) Beta (8,2) Beta (8,2) Beta (8,2) Beta (8 – Zi,
2 + Zi)

Median survival (yrs) M1 = 63.3
M0 = 78.0

M1 = 63.3
M0 = 77.9

M1 = 62.9
M0 = 77.6

M1 = 62.8
M0 = 77.5

M1 = 61.5

M0 = 77.6

Max time generated (yrs) 123.5 125.1 130.6 131.0 132.6
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ratio) can be found in Figs. 2 and 3, which show that the 
relative performance of the missing data methods varies 
based on the model used and the setting. When fitting a 
Cox PH model, both the weighted (IPW) and unweighted 
complete case analyses underestimate β1 under all 
MCAR and MAR settings (Fig. 2) when compared to the 
fully observed ‘gold-standard’ analysis, as the IPW only 
improved efficiency. Censoring at Wi produces unbiased 
estimates of β1 when missingness is MCAR or MAR 
with dependence on covariate Zi only. However, when 
missingness is influenced by the exposure variable Xi , 
censoring at Wi overestimates β1 . Imputing based on con-
ditional survival (MICS) reduces bias in all four settings 
and produces narrower confidence intervals compared 
to censoring, complete case analysis or IPW. Results for 
MIRM vary substantially based on the value of the upper 
bound τ , with the less restrictive bound ( τ = 1 20 years) 
yielding less biased estimates compared to τ = 80.

Performance of the methods when estimating α1 from 
an AFT model (Fig.  3) contrast sharply from their Cox 
model results. IPW and the unweighted complete case 
analysis produce the least biased estimates of α1 . Fur-
thermore, IPW improves precision in comparison to 
the unweighted analysis, with similar efficiency gains 
as MICS. MICS again produces estimates with low 
bias, comparable with IPW, but with wider confidence 
intervals. Censoring at Wi leads to severe bias when 

estimating α1 in all settings. Conversely to the Cox model 
results, MIRM performed better with the higher bound 
( τ = 120) compared to τ = 80 in all settings except for 
when pi,match depends on Zi.

Median survival times
In the simulation results for median survival times 
(Figs.  4 and 5), MICS most consistently results in low 
bias when estimating median survival within exposure 
groups Xi = 0 and Xi = 1 , as well as covariate-depend-
ent median survival (i.e., within subgroups defined by 
both Zi and Xi) . This method produces estimates close 
to the fully observed, gold-standard approach, in all 
MCAR and MAR settings. It is, however, outperformed 
by MIRM with large τ when estimating MX in MAR set-
tings. The IPW approach also reduces bias compared 
to the complete case analysis but is outperformed by 
MICS. Censoring at Wi reduces bias in exposure-specific 
median survival, but results in greater bias for more dis-
aggregated estimates. Note that regardless of method, 
the bias in estimating M0 increases when pi,match is 
depends on Zi.

Sensitivity analysis
A sensitivity analysis was performed to better understand 
the importance of imputation model specification on 
the performance of the multiple imputation approaches 

Fig. 2 Empirical bias and model‑based confidence intervals for ̂β1 : (1) MCAR, (2) is MAR with both Ti and Ri dependent on Xi only, (3) MAR with Ti 
dependent on Xi and Zi , while Ri depends on Xi only, (4) MAR with both Ti and Ri dependent on Xi and Zi
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Fig. 3 Empirical bias and model‑based confidence intervals for α̂1 : (1) MCAR, (2) is MAR with both Ti and Ri dependent on Xi only, (3) MAR with Ti 
dependent on Xi and Zi , while Ri depends on Xi only, (4) MAR with both Ti and Ri dependent on Xi and Zi

Fig. 4 Empirical bias for ̂M0 and ̂M1 : (1) MCAR, (2) MAR with both Ti and Ri dependent on Xi only, (3) MAR with Ti dependent on Xi and Zi , while Ri 
depends on Xi only, (4) MAR with both Ti and Ri dependent on Xi and Zi
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(MIRM and MICS). We used misspecified models for 
imputation, including one that omitted covariate Zi, 
and one that had an interaction between Xi and Zi . The 
results (Figures A.1. – A.4 in the appendix) suggest that 
for all methods, the Cox-based hazard ratio as well as 
median survival can be biased under imputation model 
misspecification, while the AFT-based hazard ratio 
was more robust to misspecification. Greater bias was 
observed as a result of covariate omission as opposed to 
inclusion of an interaction term.

Application to historical ambler cohort data
A historical cohort of individuals living in Ambler, PA 
was derived from 1930 census data. The cohort was 
created to study the effects of occupational, paraoccu-
pational, and environmental asbestos exposure on life 
expectancy. Data on 4,514 adult residents from the 1930 
census was publicly available on Ancestry.com, includ-
ing individual demographic information: name, address, 
household identifier, household members, birth year, 
birthplace, race, sex, and occupation. Individuals were 
classified as having occupational exposure to asbestos if 
their listed place of work was one of the following: asbes-
tos, shingles plant, shingle mill, chemical plant, chemical 
works, chemical, chemical manufacturer, mill. Paraoccu-
pational exposure, a form of non-occupational exposure, 
was defined as having the same residential address as an 
individual with occupational exposure. For individuals 

without a listed house number, exposure was classified 
based on the listed familial relationship to the occupa-
tionally exposed individual (e.g., wife, son, daughter).

The outcome of interest was overall mortality, with sur-
vival time operationalized as the age of death. The vital 
status of the individuals in the cohort was first obtained 
through searches on Ancestry.com, which features mor-
tality data from a variety of death-related archives, the 
primary of which include Pennsylvania Death Certificates, 
U.S. Social Security Death Index, and the U.S. Grave 
Index. For individuals whose death data could not be fully 
identified through Ancestry.com, attempts were made to 
match them with National Death Index (NDI) records 
using additional identifiers such as social security num-
bers. Note that the NDI only contains information on 
deaths from 1979 onwards. Where discrepancies in death 
record dates occurred, the NDI record was used if the 
probabilistic matching score variable (a measure of the 
quality of matching provided by NDI [24] exceeded 30.

To estimate the median survival time and association 
parameters for the occupational and para-occupational 
asbestos exposure on life expectancy, Kaplan Meier 
curves, Cox PH and Weibull AFT models were fit using 
a complete-case analysis, IPW, MIRM and MICS. Analy-
sis models adjusted for age, sex, race, and place of birth 
(U.S. vs. non-U.S.). For inverse probability weighting, 
the propensity scores for missingness were modeled as 
a function of birthplace, race, sex, and age. Probabilistic 

Fig. 5 Empirical bias for ̂M00 , ̂M01 , ̂M10 and ̂M11 : (1) MCAR, (2) MAR with both Ti and Ri dependent on Xi only, (3) MAR with Ti dependent on Xi and Zi , 
while Ri depends on Xi only, (4) MAR with both Ti and Ri dependent on Xi and Zi
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matching scores from the NDI were transformed to the 
0,1-scale. On the new scale, a score of 1 was considered 
an unequivocal match. Death dates identified through 
Ancestry.com were also treated as true matches (proba-
bilistic score of 1).

sA total of 4507 individuals were included in the analy-
sis with complete covariate information, in which 87.5% 
of individuals were of white ethnicity and 12.4% were 
black, 49.3% were female and 15.9% were born outside 
of the U.S. The average age was 29.6 years (± 20.3 years). 
10.5% of individuals were occupationally exposed to 
asbestos, while 36.2% had para-occupational exposure. 
Overall, death dates were identified for 2,440 individuals 
(54% of the cohort). Population characteristics stratified 
by exposure type and event time observation are sum-
marized in Tables 3 and 4. As observed by Wortzel et al. 
[17] and confirmed by our results in Table 4, ascertain-
ment bias for death-related data exists for this cohort, 
as those who were U.S. born, older, male, and of white 
ethnicity were more likely to have their death dates iden-
tified. Being male, U.S. born, white and occupational 
exposure were also associated with higher probabilistic 
matching scores (that is, better quality matches). These 
groups were also less likely to be occupationally or para-
occupationally exposed to asbestos (see Table 3). Assum-
ing ascertainment was unrelated to life expectancy, we 
sought to implement the aforementioned methods in 
handling this MAR problem.

Table 5 suggests that the probabilistic scores are asso-
ciated with individual characteristics. Since this impacts 
the relative performance of MIRM with different τ (as 
shown in simulations) and given that median and maxi-
mum survival times among true matches are 71.77 and 
109.8 years respectively, both τ = 80 and τ = 110 were 
used in implementing the MIRM method.

Table  6 shows the median survival estimates for the 
overall cohort and within groups defined by occupational 

exposure, para-occupational exposure, race, and sex. We 
observe that the median survival was lower for black resi-
dents compared to white residents and for males com-
pared to females. Overall and within groups, the median 
survival times were lower among individuals who were 
occupationally exposed or para-occupationally exposed, 
compared to those who were unexposed. In all groups, 
MIRM produced the lowest estimated median survival.

Further analysis using semi-parametric Cox PH models 
(Table 7) and parametric AFT models (Table 8) revealed 
that the observed differences in survival by para-occu-
pational exposure were non-significant, except for the 
MIRM result for black residents. A significant overall 
effect of occupational exposure on survival was observed 
using IPW under the Cox PH model. Similar results were 
observed among the black subpopulation and male sub-
population, with the impact of occupational exposure 
being most severe for black. In all subgroups, MIRM esti-
mates deviated sharply from the other methods, though 
not in a consistent direction.

Table 3 Characteristics of the study population by exposure type (n = 4514)

*Indicates statistically significant difference at the 0.05 significance level, based on Wilcoxon rank‑sum test for age, and chi‑square test for other variables

Occupational Para‑Occupational

Variable Exposed (n = 473) Non‑Exposed 
(n = 4037)

Difference Exposed (n = 1635) Non‑Exposed 
(n = 2875)

Difference

Age at census (yrs) 38.5 ± 14.5 28.6 ± 20.6 9.9* 24.6 ± 18.8 32.5 ± 20.5 ‑7.9*

Males (%)

418(88%) 1867(46%) 42%* 766(47%) 1519(53%) ‑6.0%*

Race (%)

 White 385(81%) 3563(88%) ‑6.9%*
6.9%*

1314(80%) 2634(92%) ‑11.1%*
11.1%* Black 88(19%) 472(12%) 321(20%) 239(8%)

 Other 0 (‑) 2 (‑) ‑ 0 (‑) 2 (‑) ‑

 Non‑U.S. born (%) 195(41.2%) 520(12.9%) 28.3%* 316(19.3%) 399(13.9%) 5.4%*

Table 4 Characteristics of the study population by missing or 
observed death times (n = 4514)

* Indicates statistically significant difference at the 0.05 significance level, based 
on Wilcoxon rank‑sum test for age, and chi‑square test for other variables

Variable Missing 
(n = 2074)

Observed 
(n = 2440)

Difference

Age at census (yrs) 24.94 ± 19.09 33.58 ± 20.39 8.64*

Males (%) 872 (42.1%) 1413 (57.9%) 16.8%*

Non‑U.S. born (%) 372 (17.9%) 347 (14.2%) 3.7%*

Race (%)

 White 1757 (84.9%) 2191 (89.8%) 4.9%*
‑4.8%* Black 311 (15.0%) 249 (10.2%)

 Other 2 (0.1%) 0 (‑) 0.1%

 Occ Exp (%) 214 (10.3%) 259 (10.6%) 0.3%

 ParaOcc Exp (%) 883 (42.7%) 752 (30.8%) ‑11.8%*
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When fitting an AFT model, estimates for event time 
ratios for the effect of occupational or para-occupational 
exposure only reached statistical significance with MICS 
and MIRM in the black subpopulation, and with MIRM 
among female individuals. Overall, this illustrates the 
benefit of improved efficiency of IPW when account-
ing for the missing-data mechanism, as observed in 
simulations.

We assessed the quality of event time imputation using 
MIRM and MICS in Appendix tables A.5 and A.6. Find-
ings showed that MICS overestimated survival times, 
while MIRM approaches produced a narrower range 
of event times. As discussed in the simulation study, 
this may suggest we failed to capture some unmeasured 
predictor(s) of life expectancy in the imputation model, 
though the AFT-based hazard ratio estimates should be 
minimally biased with this misspecification.

Discussion
Historical census data linked to administrative records 
can be a useful resource for epidemiological studies, 
particularly for associations between exposures and out-
comes with historical significance or, as in our use case 
of asbestos exposure, long incubation periods before 
population effects can be observed. However, differen-
tial success in identifying death records based on indi-
vidual characteristics can threaten the validity of results. 
In this paper, we considered the use of historical census 
data and death records in time-to-event modeling, where 
death dates may be missing for some individuals. We 
explored the application of various censoring, weight-
ing, and imputation approaches for handling missing 
event times, in comparison to a gold-standard approach 

which assumes that all events that occurred before the 
date of analysis have been observed. We additionally used 
weighting to account for the uncertainty associated with 
equivocal matches.

We show that for estimating log HRs from a Cox PH 
model, a naïve analysis using only the complete records 
(weighted (IPW) or unweighted) can lead to biased esti-
mates for the log HR, while censoring on the date of 
the census can produce unbiased estimates only if the 
missingness mechanism is independent of the expo-
sure variable of interest, causing severe bias otherwise. 
Imputing event times based on the conditional survival 
distribution can be useful for fitting Cox PH models, 
where point estimates are more robust to the missing-
ness mechanism compared to censoring on the census 
date. MICS similarly results in the least bias when fitting 
AFT models, while censoring produces severely biased 
estimates in all settings. Regarding the precision of the 
estimates, IPW achieves the greatest efficiency for fit-
ting AFT models (while being minimally biased), while 
imputation based on conditional survival was most effi-
cient when fitting Cox PH models. Imputation based on 
conditional survival was also found to be the most accu-
rate among the methods for estimating median survival. 
MIRM similarly reduced bias when estimating median 
survival, but the method’s performance was the least 
consistent, resulting in large bias when linkage qual-
ity is covariate-dependent, but minimal bias otherwise. 
Furthermore, the setting of τ is not straightforward. τ 
set close to the maximum of the distribution led to low 
bias relative to a smaller τ , but performed poorly when 
the matching score was dependent on Zi. performed bet-
ter in Cox regression, but higher τ was preferred for the 

Table 5 Probabilistic score distribution by individual characteristics for matches

Variable Ancestry.com and NDI matches (Ancestry.com 
matches are treated as true matches)

NDI matches only

n Avg. probabilistic score 
(95% CI)

n Avg. probabilistic score 
(95% CI)

% true 
NDI 
matches

Female 1027 0.92 (0.91, 0.93) 273 0.71 (0.68, 0.74) 9.2%

Male 1413 0.94 (0.94, 0.95) 453 0.83 ( 0.81, 0.84) 3.0%

U.S 2093 0.93 (0.93, 0.94) 672 0.79 (0.78, 0.81) 5.4%

Non‑U.S 347 0.95 (0.93, 0.97) 54 0.67 (0.59, 0.74) 0%

White 2191 0.94 (0.93, 0.95) 651 0.79 (0.78, 0.81) 5.5%

Black 249 0.91 (0.88, 0.93) 75 0.69 (0.63, 0.74) 0%

Occ Exp 259 0.98 (0.97, 0.99) 35 0.83 (0.76, 0.9) 2.9%

Non‑Occ Exp 2181 0.93 (0.92, 0.94) 691 0.78 (0.76, 0.8) 5.1%

ParaOcc Exp 752 0.91 (0.90, 0.93) 272 0.76 (0.73, 0.79) 2.6%

Non‑ParaOcc Exp 1688 0.95 (0.94, 0.95) 454 0.8 (0.78, 0.82) 6.4%



Page 13 of 16Marks‑Anglin et al. BMC Medical Research Methodology           (2024) 24:67  

AFT model. Overall, this investigation illustrates that 
the strengths and weaknesses of missing data methods 
may depend on the missingness process as well as the 
parameters being estimated and models of interest, and 
such factors should be considered when choosing the 
methods to address the missing event times. However, 
MICS most consistently reduced bias across settings in 
our simulation study.

Differential ascertainment of event times may arise 
in other study applications involving linked data. For 
example, a recent study [25] characterized the feasibil-
ity of mortality ascertainment using vital status link-
age for a diverse historic U.S. pregnancy cohort, finding 

differences in ascertainment rates by race and across 
vital record sources. Similar challenges face studies 
using electronic health record (EHR) data, where the 
absence of a central, unified health record database 
leads to variability in the quality and quantity of infor-
mation that individual EHR sources contain. Thus, 
obtaining and verifying patient outcomes in cohort 
studies using EHR data can be subject to differential 
ascertainment resulting in bias [26]. Ascertainment bias 
may also be encountered in studies where event records 
may be less accessible for under-resourced groups, mar-
ried women with name changes, and those who have 
switched residences or healthcare.

Table 6 Unadjusted median survival by occupational and para‑occupational exposure

Method n Median Survival

Overall Occupational Exposure Para‑Occupational Exposure

X = 0 X = 1 X = 0 X = 1

All 4507

 Complete Cases 71.77 72.33 69.90 72.55 69.51

 IPW 73.60 74.00 70.92 74.28 72.11

 MIRM Tau = 80 65.49 65.45 65.71 66.31 64.32

 MIRM Tau = 110 66.51 66.51 66.79 67.44 65.24

 MICS 70.17 70.32 69.31 70.32 67.94

Black 560

 Complete Cases 63.53 62.99 63.53 69.00 54.73

 IPW 66.68 66.29 68.37 71.60 61.73

 MIRM Tau = 80 60.89 61.08 59.94 60.89 61.97

 MIRM Tau = 110 61.12 61.42 60.18 62.25 60.21

 MICS 63.59 63.77 62.66 66.27 61.18

White 3947

 Complete Cases 72.44 72.93 80.81 72.94 71.39

 IPW 74.28 74.75 71.29 74.74 73.80

 MIRM Tau = 80 66.04 65.98 66.31 66.64 65.03

 MIRM Tau = 110 67.22 67.18 67.38 67.89 66.10

 MICS 71.01 71.16 70.14 71.72 69.58

Male 2282

 Complete Cases 69.52 69.09 70.05 70.39 66.29

 IPW 71.44 71.66 70.92 72.09 69.92

 MIRM Tau = 80 63.96 63.31 65.70 65.26 62.15

 MIRM Tau = 110 64.66 63.92 66.58 66.02 62.62

 MICS 68.39 68.08 69.42 69.77 65.72

Female 2225

 Complete Cases 74.84 75.00 61.04 75.92 72.68

 IPW 75.92 75.96 70.81 76.68 74.84

 MIRM Tau = 80 66.30 66.33 65.80 67.05 65.34

 MIRM Tau = 110 67.72 67.73 67.19 68.65 66.54

 MICS 71.94 72.06 67.63 73.20 70.01
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Our empirical study was not without limitations. 
Firstly, we assumed the correct specification of survival 
and imputation models, and that all variables that may 
impact missingness and/or survival were correctly meas-
ured and observed. If missingness is related to variables 
not collected at the time of the census, or time-varying 
variables, this may impact our findings, particularly 
for inverse-probability weights. We also showed the 
sensitivity of imputation methods to predictor/covari-
ate omission in the imputation model, with AFT model 
hazard ratios being most robust to misspecification. 
Furthermore, we did not consider possible interactions 
between the covariates and the exposure variable in the 

missingness or survival mechanisms. Robustness of the 
results to model misspecification should be investigated 
in future work. In addition, we did not vary the level of 
missingness and/or censoring in evaluating the per-
formance of our methods. In our data application, we 
assumed that the observed variables were sufficient in 
accounting for differential ascertainment.

Finally, we assumed non-informative censoring in our 
simulations and data application, meaning the censor-
ing mechanism is independent of the time-to-event. 
However, in practice, this may not hold as life expec-
tancy has increased substantially over the past century 
with advances in medicine, public health, and nutrition. 

Table 7 Hazard ratio (HR) estimates from Cox PH model for occupational and para‑occupational exposure, adjusting for age, sex and 
race. Figures in bold indicate statistically significant (p< 0.05) effects

Method n Cox Proportional Hazards Model,exp
(

̂β1

)

Occupational Exposure Para‑Occupational Exposure

HR 95% CI HR 95% CI

All 4507

 Complete Cases 1.18 (1.02, 1.36) 1.02 (0.94, 1.12)

 IPW 1.16 (1.004, 1.34) 1.01 (0.92, 1.11)

 MIRM Tau = 80 1.10 (0.93, 1.31) 1.04 (0.87, 1.25)

 MIRM Tau = 110 1.14 (0.94, 1.38) 1.02 (0.83, 1.26)

 MICS 1.14 (0.999, 1.30) 1.02 (0.93, 1.12)

Black 560

 Complete Cases 1.59 (1.10, 2.30) 1.19 (0.92, 1.55)

 IPW 1.50 (1.06, 2.12) 1.22 (0.94, 1.59)

 MIRM Tau = 80 1.16 (0.82, 1.64) 1.57 (1.16, 2.11)
 MIRM Tau = 110 1.20 (0.84, 1.71) 1.53 (1.11, 2.12)
 MICS 1.31 (1.002, 1.70) 1.14 (0.94, 1.38)

White 3947

 Complete Cases 1.13 (0.97, 1.32) 1.00 (0.91, 1.10)

 IPW 1.12 (0.96, 1.32) 0.98 (0.89, 1.09)

 MIRM Tau = 80 1.11 (0.93, 1.32) 0.99 (0.83, 1.19)

 MIRM Tau = 110 1.15 (0.95, 1.39) 0.97 (0.79, 1.20)

 MICS 1.11 (0.96, 1.29) 1.00 (0.91, 1.11)

Male 2282

 Complete Cases 1.19 (1.03, 1.39) 1.06 (0.94, 1.19)

 IPW 1.17 (1.01, 1.36) 1.03 (0.91, 1.16)

 MIRM Tau = 80 1.04 (0.89, 1.21) 1.08 (0.90, 1.30)

 MIRM Tau = 110 1.07 (0.90, 1.26) 1.06 (0.87, 1.30)

 MICS 1.13 (0.99, 1.29) 1.04 (0.91, 1.20)

Female 2225

 Complete Cases 1.17 (0.72, 1.90) 0.98 (0.86, 1.13)

 IPW 1.15 (0.67, 1.98) 1.00 (0.86, 1.15)

 MIRM Tau = 80 1.50 (0.95, 2.35) 1.01 (0.81, 1.26)

 MIRM Tau = 110 1.60 (1.00, 2.58) 0.99 (0.76, 1.27)

 MICST 1.21 (0.84, 1.74) 1.00 (0.89, 1.14)
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Administrative record-keeping has also improved over 
the same time, resulting in greater linkage success for 
later birth cohorts, who also have longer survival. One 
way to account for this is by adjusting for calendar effects 
in survival models.

Conclusions
Future work should investigate extensions to differen-
tial missingness of exposure variables, which may also 
be found in studies with EHR and genomic data [27, 28], 

or joint missingness of exposure and outcome variables. 
The performance of machine-learning approaches, such 
as random forests and k-nearest neighbor algorithms, 
can also be investigated for this setting. Finally, it should 
be emphasized that although we have proposed post-hoc 
measures to account for missing event outcomes, efforts 
to improve successful data linkages, such as the creation 
of more centralized databases, or control measures to 
promote consistency in the quality of data across sources, 
are preferable.
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